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We develop an exact method for computing the Casimir energy between arbitrary compact objects,
either dielectrics or perfect conductors. The energy is obtained as an interaction between multipoles,
generated by quantum current fluctuations. The objects’ shape and composition enter only through their
scattering matrices. The result is exact when all multipoles are included, and converges rapidly. A low
frequency expansion yields the energy as a series in the ratio of the objects’ size to their separation. As an
example, we obtain this series for two dielectric spheres and the full interaction at all separations for
perfectly conducting spheres.
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The electromagnetic (EM) force between neutral bodies
is governed by the coordinated dance of fluctuating charges
[1]. At the atomic scale, this attractive interaction appears
in the guises of van der Waals, Keesom, Debye, and
London forces. The collective behavior of condensed
atoms is better formulated in terms of dielectric properties.
In 1948, Casimir computed the force between two parallel
metallic plates by focusing on the quantum fluctuations of
the EM field between the two plates [2]. This was extended
by Lifshitz to dielectric plates, accounting for the fluctuat-
ing fields in the media [3]. The force between atoms at
asymptotically large distances was computed by Casimir
and Polder [4] and related to the atoms’ polarizabilities.
For compact objects, such as two spheres, Feinberg and
Sucher [5] generalized this work to include magnetic
effects.

In this Letter we obtain the EM Casimir interaction
between compact objects at arbitrary separations [6], and
determine explicitly the dependence on shape and material
properties [7]. In a qualitative sense, our approach is
similar to a multipole expansion for the fluctuating sources.
The dependence on shape and material appears through the
susceptibility to current fluctuations, and is related to the
scattering of EM waves by the object. While the scattering
matrix is in principle complicated, there are tools for
computing it and it is known for certain geometries. As
an example, we compute the EM force between two di-
electric spheres at any separation.

Earlier studies of the Casimir force between compact
objects include a multiple reflection formalism [8], which
in principle could be applied to perfect conductors of
arbitrary shape. A formulation of the Casimir energy of
compact objects in terms of their scattering matrices, for a
scalar field coupled to a dielectric background, is intro-
duced in Ref. [9], where it is suggested that it can also be
extended to the EM case.

Many of our results can be derived by either Green’s
function or path integral methods. We shall sketch the
latter derivation—due to the letter format only the key
steps are outlined, and details are left for a more complete
exposition [10]. Note first that since the objects are fixed in
time, the action is diagonal in the frequency k. Therefore in
all subsequent steps we can treat each frequency indepen-
dently, and integrate over k at the end. The Casimir energy
can be associated with modifications of gauge field fluctu-
ations due to constraints imposed by boundary conditions
at the material objects. An alternative and equivalent de-
scription, stressed by Schwinger [11], is to attribute the
Casimir interaction to fluctuating current and charge den-
sities J, % inside the objects. In the latter formulation, the
EM gauge and scalar potential �A�x; t�;��x; t�� are given
for each source configuration by the classical solutions,
which in Lorentz gauge read

 �A�x�;��x�� �
Z
dx0G0�x;x0��J�x0�; %�x0��; (1)

with G0�x;x0� � eikjx�x0j=�4�jx� x0j�. For path integral
quantization, we integrate over all allowed configurations
of the fluctuating currents, weighted by the appropriate
action. The Lagrangian for a collection of currents in
vacuum is the kinetic energy 1

2 JA minus the potential
energy 1

2%�. This yields, using Eq. (1) and the continuity
equation rJ � ik%, the action S�J� �

R
�dk=4���Sk�J� �

S�k�J�� for the current densities fJ�g on the objects, with

 Sk�fJ�g� �
1

2

Z
dxdx0

X
��

J���x�G0�x;x0�J��x0�; (2)

where G0�x;x0� � G0�x;x0� � 1
k2r	 r

0G0�x;x0� is the
tensor Green’s function. Next we must constrain the cur-
rents to be induced sources that depend on shape and
material of the objects. Formally this is achieved by inte-
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grating over currents, inserting constraints to ensure that
the currents in vacuum simulate the correct induction of
microscopic polarization P� and magnetization M� (from
all multipoles) inside the dielectric objects in response to
an incident wave.

Let us consider one object. First, the induced current is
J� � �ikP� �r
M�, and since P� � ��� � 1�E,
M� � �1� 1=���B, it can be expressed in terms of the
total fields E, B inside the object as

 J � � �ik��� � 1�E�r
 ��1� 1=���B�: (3)

Second, the total field inside the object must consist of the
field generated by J� and the incident field E0�fJ�;S�g;x�
that has to impinge on the object to induce J�, so that

 E �x� � E0�fJ�;S�g;x� � ik
Z
dx0G0�x;x0�J��x0�: (4)

The incident field depends on the current density to be
induced and on the scattering matrix S� of the object,
which connects the incident wave to the scattered wave.
It is fully specified by the multipole moments of J� (see
below for details). Substituting Eq. (4) and B � �1=ik�r 

E into Eq. (3) yields a self-consistency condition that
constrains the current J�. If one writes this condition as
C��J�� � 0 for each object, the functional integration over
the currents constrained this way for all objects yields the
partition function

 Z �
Z Y

�

DJ�
Y

x2V�

��C��J��x��� exp�iS�fJ�g��: (5)

It is instructive to look at two compact objects at a
distance L, measured between the (arbitrary) origins O�
inside the objects. In this case the action of Eq. (2) is

 Sk�fJ�g� �
1

2

X
���

Z
dx�J���x��

1

ik
E��x� � L�ẑ�

�
1

2

X
�

Z
dx�dx0�J���x��G0�x�;x0��J��x0��;

(6)

where we have substituted the electric field E��x�� �
ik
R
dx0�G0�x�;x0��J��x0�� and the fields are measured

now in local coordinates so that x � O� � x�, and L� �
L (� L) for � � 1�2�. The off-diagonal terms in Eq. (6)
represent the interaction between the currents on the two
materials. A natural way to decompose the interaction
between charges is to use the multipole expansion. For
each body we define magnetic and electric multipoles as
 

Q�
M;lm�

k
�

Z
dx�J��x��r
�x�jl�kr��Y�lm�x̂���;

Q�
E;lm�

1

�

Z
dx�J��x��r
r
�x�jl�kr��Y�lm�x̂���;

(7)

for l � 1, jmj � l, where � �
����������������
l�l� 1�

p
, jl are spherical

Bessel functions and Ylm spherical harmonics. We change

variables from currents to multipoles in the functional
integral and, as the final step in our quantization, integrate
over all multipole fluctuations on the two objects weighted
by the effective action,

 Seff
k �fQ

�
lmg� �

1

2

i
k

X
lm

X
l0m0

�
Q1�
lmU

�
lml0m0Q

2
l0m0

�Q2�
lmU

�
lml0m0Q

1
l0m0

�
X
��1;2

Q��
lm ��T

���1
lml0m0Q

�
l0m0

�
; (8)

with Q�
lm � �Q

�
M;lm; Q

�
E;lm�. Let us discuss the terms ap-

pearing in Eq. (8) and sketch its derivation.
Off-diagonal terms.—We need to know the electric

fields in Eq. (6) exterior to the source that generates
them. They can be represented in terms of the multipoles
as E��x�� � �k

P
lmQ

�
lm�out

lm �x��, where �out
lm �x�� are

outgoing vector solutions of the Helmholtz equation in
the coordinates of object � [12]. We would like to express
the currents J�� in Eq. (6) also in terms of multipoles. The
difficulty in doing so is that the electric field is expressed
in terms of outgoing partial waves in the coordinates of
object �, while according to Eq. (7), the multipoles in-
volve partial waves �reg

lm �x�� that are regular at the origin
O�, in the coordinates of object � [12]. Going from
the outgoing to the regular vector solutions and changing
the coordinate system involves a translation and change of
basis which can be expressed as �out

lm �x� 
 Lẑ� �P
l0m0U



l0m0lm�reg

l0m0 �x��, where the universal (shape and ma-
terial independent) matrices U� and U� represent the
interaction between the multipoles. For fixed (lm), (l0m0),
they are 2
 2 matrices (magnetic and electric multi-
poles), and functions of kL only. Their explicit form is
known but not provided here to save space [13]; they fall
off with kL according to classical expectations for the EM
field. Then the electric field becomes 1

ikE��x� 
 Lẑ� �P
lm�

�
lm�reg

lm �x�� with ��
lm � i

P
lmU



lml0m0Q

�
l0m0 , and the

integration in Eq. (6) leads, using Eq. (7), to the off-
diagonal terms in Eq. (8).

Diagonal terms.—The self-action, given by the second
term of Eq. (6), is more interesting and more challenging. It
can be expressed in terms of multipoles if we use the
constraint for the currents, Eqs. (3) and (4). To do so, we
first note that in scattering theory one usually knows the
incident solution and would like to find the outgoing
scattered solution. They are related by the S matrix. Here
the situation is slightly different. We seek to relate a regular
solution E0�x�� � ik

P
lm�0;lm�reg

lm �x�� and the outgoing
scattered solution, E��x�� � �k

P
lmQ

�
lm�out

lm �x��, gener-
ated by the currents in the material—a relation determined
by the T matrix, T� � �S� � I�=2—schematically iQ� �
T��0 [14,15]. We face the inverse problem of determining
�0;lm for known scattering data Q�

lm, hence,

 �0;lm � i
X
l0m0
�T���1

lml0m0Q
�
l0m0 (9)
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so that the incident field is given in terms of the Smatrix, as
indicated in Eq. (4). Next, we express the self-action of the
currents inside a body [the second term of Eq. (6)], as
S�k �J�� �

1
2

R
dx��ED� � BH� � �E0D�0 � B0H�0��, the

change of the field action that results from placing the
body into the fixed (regular) incident field E0 � D0, H0 �
B0, where E, H and D, B are the new total fields and fluxes
in the presence of the body. Using D � ��E, H � ��1

� B
inside the body and Eq. (3), straightforward manipulations
lead to the simple self-action S�k �J�� � �

1
2ik 
R

dx�J��E0�fJ�;S�g�. If we substitute the regular wave
expansion for E0 with coefficients of Eq. (9) and integrate
by using Eq. (7), we get Eq. (8).

The T matrix can be obtained for dielectric objects of
arbitrary shape by integrating the standard vector solutions
of the Helmholtz equation in dielectric media over the
object’s surface [15] and both analytical and numerical
results are available for many shapes [16]. Hence, for the
time being, we shall assume that the elements of the T
matrix are available. The functional integral over multi-
poles is Gaussian. The resulting partition function is an
integral over all frequencies of the determinant of a matrix
M, with inverse T-matrices along the diagonal and the
matrices U
 off the diagonal. For each (lm), M is a 4

4 matrix (2 polarizations for 2 objects). The generalization
to more than two objects is straightforward. The result is
formally infinite but the infinity can be trivially removed
by dividing by Z1, the partition function with all objects
removed to infinite separations, corresponding to setting
the off-diagonal terms to zero. Dividing by Z1 also cancels
the functional Jacobian necessary to transform from an
integral over sources to an integral over multipoles. After
a Wick rotation, k! i	, we finally get the Casimir energy

 E �
@c
2�

Z 1
0
d	 logdet�I� U�T2U�T1� (10)

in terms of the matrices introduced in Eq. (8). The depen-
dence of the interaction on distance is completely con-
tained in U
, whereas all shape and material dependence
comes from the T matrices. With N � U�T2U�T1 it can
be written as E � � @c

2�

R
1
0 d	Tr

P
1
p�1

1
pN

p, which allows
for a simple physical interpretation. The matrix N scales
with distance L as� exp��2L	� and describes a wave that
travels from one object to the other and back, involving one
scattering at each object. Hence, we have obtained a
multiple-scattering expansion where each elementary
two-scattering process, described by N, is further decom-
posed into partial waves. This structure allows for a sys-
tematic and exact expansion of the interaction in the
inverse distance. At large distance, the interaction is de-
termined by the small 	 scaling of the T matrix, T�lml0m0 �
	l�l

0�1. This shows that 2p scatterings become important
at order L�1�6p, and that partial waves of order l have to be
considered at order L�5�2l. Hence, in actual computations,
the sum over reflections can be cut off at finite p and the
matrix N can be truncated to have dimension 2l�2� l� 

2l�2� l� at partial wave order l (see below). We note that
Eq. (10) applies also to spatially varying but local �� and
��, since this affects only the T matrix. Likewise, it can be
extended to any other boundary conditions or materials by
inserting the appropriate T matrix.

As a specific example, we consider two identical dielec-
tric spheres. Due to symmetry, the multipoles are de-
coupled so that the T matrix is diagonal,

 T11
lmlm � ��1�l

�
2


Il�1=2�z��Il�1=2�nz� � 2nzI0l�1=2�nz�� � nIl�1=2�nz��Il�1=2�z� � 2zI0l�1=2�z��


Kl�1=2�z��Il�1=2�nz� � 2nzI0l�1=2�nz�� � nIl�1=2�nz��Kl�1=2�z� � 2zK0l�1=2�z��
; (11)

where the sphere radius is R, z � 	R, n �
�����������������������
��i	���i	�

p
,


 �
��������������������������
��i	�=��i	�

p
, and Il�1=2, Kl�1=2 are Bessel func-

tions. T22
lmlm is obtained from Eq. (11) by interchanging �

and �. For all partial waves, the leading low frequency
contribution is determined by the static electric multipole
polarizability, �El � ���� 1�=��� �l� 1�=l��R2l�1, and
the corresponding magnetic polarizability, �Ml �
���� 1�=��� �l� 1�=l��R2l�1. Including the next to
leading terms, the T matrix has the structure

 T11
lmlm�	

2l
�
��1�l�1�l�1��Ml
l�2l�1�!!�2l�1�!!

	��Ml3	
3��Ml4	

4� . . .
�
;

and T22
lmlm is obtained by �Ml ! �El , �Mln ! �Eln. The first

terms are �M13 � ��4�������� 6��=�5��� 2�2�R5,
�M14 � �4=9����� 1�=��� 2��2R6, and �E13, �E14 are ob-
tained again by the replacement, �! �. Now we can
apply our general formula in Eq. (10) to two dielectric
spheres with center-to-center distance L. For simplicity, we

restrict to two partial waves (l � 2) and two scatterings
(p � 1), which yields the exact Casimir energy to order
L�10. Matrix operations are performed with
MATHEMATICA, and we find the interaction
 

E � �
@c
�

��
23

4
���E1 �

2 � ��M1 �
2� �

7

2
�E1�

M
1

�
1

L7

�
9

16
��E1 �59�E2 � 11�M2 � 86�E13 � 54�M13�

� E$ M�
1

L9 �
315

16
��E1 �7�

E
14 � 5�M14�

� E$ M�
1

L10 � . . .
�

; (12)

where E$ M indicates terms with exchanged super-
scripts. The leading term, �L�7, has precisely the form
of the Casimir-Polder force between two atoms [4], includ-
ing magnetic effects [5]. The higher order terms are new,
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and provide the first systematic result for dielectrics with
strong curvature. There is no �1=L8 term.

The limit of perfect metals follows for �! 1, �! 0.
Then higher orders are easily included, yielding an asymp-
totic series

 E � �
@c
�
R6

L7

X1
n�0

cn

�
R
L

�
n
; (13)

where the first 10 coefficients are c0 � 143=16, c1�0,
c2 � 7947=160, c3�2065=32, c4 � 27 705 347=100 800,
c5 � �55 251=64, c6 � 1 373 212 550 401=144 506 880,
c7 � �7 583 389=320, c8 � �2 516 749 144 274 023=
44 508 119 040, c9 � 274 953 589 659 739=275 251 200.
This series is obtained by expanding in powers of N and
frequency 	, and does not converge for any fixed R=L. To
obtain the energy at all separations, one has to compute
Eq. (10) without these expansions. This is done by truncat-
ing the matrix N at a finite multipole order l, and comput-
ing the determinant and the integral numerically. The result
is shown in Fig. 1 for perfect metal spheres. Our data
indicate that the energy converges as e���L=R�2�l to its
exact value at l! 1, with ��O�1�. Our result spans all
separations between the Casimir-Polder limit for L� R,
and the proximity force approximation (PFA) for R=L!
1=2. At a surface-to-surface distance d � 4R=3 (R=L �
0:3), PFA overestimates the energy by a factor of 10.
Including up to l � 32 and extrapolating based on the
exponential fit, we can accurately determine the Casimir
energy down to R=L � 0:49, i.e., d � 0:04R. A similar
numerical evaluation can be also applied to dielectrics
[10].

We have developed a systematic method for computing
the EM Casimir interaction between compact dielectric
objects of arbitrary shapes. Casimir interactions are com-
pletely characterized by the S matrices of the individual
bodies. We have computed the force between spheres for
arbitrary separations, generalizing previous results that
applied only in singular limits. Our method allows for
the first time a description of the Casimir interaction
from atomic-scale particles (Casimir-Polder limit) up to
macroscopic objects at short separations (PFA limit). For
more complicated shapes and multiple objects, it would be
interesting to probe the dependence on the relative orien-
tations of nonspherical objects and corrections to pairwise
additivity. Our approach can be applied at finite tempera-
tures and extended to the computation of correlation func-
tions, energy densities, and the density of states and may
prove also useful to obtain thermal (classical) fluctuation
forces.
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FIG. 1 (color online). Casimir energy of two metal spheres,
divided by the PFA estimate EPFA � ���3=1440�@cR=�L�
2R�2, which holds only in the limit R=L! 1=2. The label l
denotes the multipole order of truncation. The curves l � 1 are
obtained by extrapolation. The Casimir-Polder curve is the
leading term of Eq. (13). Inset: Convergence at short separations.
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