

Optimizing Age of Information in Wireless Networks with Throughput Constraints

Igor Kadota

SQUALL Seminar, Dec 5, 2017

ACK: Eytan Modiano, Elif Uysal-Biyikoglu, Abhishek Sinha, Rahul Singh To appear in INFOCOM 2018.

Outline

- Age of Information (AoI)
- Network Model
- Scheduling Policies for Aol
- Discussion: Throughput versus Aol
- Scheduling Policies for AoI with Throughput Requirements
- Final Remarks

Aol: time elapsed since the most recently delivered packet was generated.

 $I[1] \rightarrow$ Interdelivery Time Time Single L[1] L[2] \rightarrow Packet Delay Source Aol BS Single L[1] Time **Destination**

Aol: time elapsed since the most recently delivered packet was generated.

Aol: time elapsed since the most recently delivered packet was generated.

Aol: time elapsed since the most recently delivered packet was generated.

At time t: AoI = t – $\tau(t)$

 $\tau(t)$ is the time stamp of the most recently delivered packet.

Relation between Aol, delay and interdelivery time?

Aol, Delay and Interdelivery time

• Example: M/M/1 queue

Controllable arrival rate λ and fixed service rate $\mu = 1$ packet per second.

λ	$\mathbb{E}[delay]$	$\mathbb{E}[interdel.]$	Average Aol
0.01	1.01	100.00	
0.53	2.13	1.89	
0.99	100.00	1.01	

[1] S. Kaul, R. Yates, and M. Gruteser, "Real-time status: How often should one update?", 2012.

Aol, Delay and Interdelivery time

• Example: M/M/1 queue

Controllable arrival rate λ and fixed service rate $\mu = 1$ packet per second.

λ	$\mathbb{E}[delay]$	$\mathbb{E}[interdel.]$	Average Aol
0.01	1.01	100.00	101.00
0.53	2.13	1.89	3.48
0.99	100.00	1.01	100.02

Low time-average AoI when packets with low delay are delivered regularly.

[1] S. Kaul, R. Yates, and M. Gruteser, "Real-time status: How often should one update?", 2012.

Network Model

Network - Example

Wireless Parking Sensor

Wireless Tire-Pressure Monitoring System

Wireless Rearview Camera

Network - Description

1) Central Monitor requires **fresh data** (low Aol)

2) Some sensors are more **important** than others (weights α_i)

3) Channel is **shared** and **unreliable** (probability of successful transmission p_i)

Network - Scheduling Policy

Scheduling decision during slot k:

1) BS selects a single node i $[u_i(k) = 1 \text{ and } u_j(k) = 0, \forall j \neq i]$

2) Selected node **samples** new data and then **transmits** [packet delay = 1 slot]

3) Packet is **delivered** to the BS wp p_i $[d_i(k) = 1 \text{ and } d_j(k) = 0, \forall j \neq i]$

Class of non-anticipative policies Π . Arbitrary policy $\pi \in \Pi$.

Network - Performance Metric

- Age of Information associated with node i at the beginning of slot k is given by $h_i(k)$.
- **Recall:** selected node samples new data and then transmits [packet delay = 1 slot]

• Evolution of Aol:

$$\mathbf{h}_{i}(\boldsymbol{k}+1) = \begin{cases} 1, & \text{if } \boldsymbol{d}_{i}(\boldsymbol{k}) = 1 \\ h_{i}(\boldsymbol{k}) + 1, & \text{otherwise} \end{cases}$$

Delivery of packets from sensor i to the BS Slots $h_i(k)$ 3 2 1 Slots

Network - Objective Function

• Expected Weighted Sum Age of Information when policy π is employed:

$$\mathbb{E}[J_{K}^{\pi}] = \frac{1}{KM} \mathbb{E}\left[\sum_{k=1}^{K} \sum_{i=1}^{M} \alpha_{i} h_{i}^{\pi}(k)\right], \text{ where } h_{i}^{\pi}(k) \text{ is the Aol of node i} \\ \text{ and } \alpha_{i} \text{ is the positive weight}$$

Network - Challenges

1) Scheduling policies must be **low-complexity** in order to be meaningful

2) Evolution of Aol is not simple

3) Unreliability of the wireless channel makes scheduling more challenging

Optimal Scheduling Policy for **Symmetric** Networks

Obs.: symmetry when $p_i = p \in (0,1]$ and $\alpha_i = \alpha > 0, \forall i$.

Optimality of Greedy

• Greedy Policy: in slot k, select the node with highest value of $h_i(k)$.

Theorem: for **any** symmetric network with $p \in (0,1]$ and $\alpha > 0$, the Greedy policy attains the minimum expected sum Aol, i.e.

Greedy = argmin
$$\frac{\alpha}{KM} \mathbb{E} \left[\sum_{k=1}^{K} \sum_{i=1}^{M} h_i(k) \right]$$

Intuition of the proof: ideal channels

- Consider M = 3 nodes and p = 1 (ideal channels)
- Employ GREEDY policy. **Deliveries** are in green.

Intuition of the proof: ideal channels

- Consider M = 3 nodes and p = 1 (ideal channels)
- Employ GREEDY policy. **Deliveries** are in green.

• Greedy achieves the lowest $\sum_{i=1}^{M} h_i(k)$ in every slot $k \rightarrow$ Greedy is optimal.

Intuition of the proof: coupling argument [3]

- Consider M = 3 nodes and $p \in (0,1]$ (unreliable channels)
- Employ ARBITRARY policy. Deliveries are green. Failed transmissions are red.

[3] D. Stoyan, Comparison Methods for Queues and other Stochastic Models, 1983

Intuition of the proof: coupling argument [3]

- Consider M = 3 nodes and $p \in (0,1]$ (unreliable channels)
- Employ **ARBITRARY policy**. **Deliveries** are green. **Failed** transmissions are red.

• Goal is to show that Greedy achieves the lowest $\sum_{i=1}^{M} h_i(k)$ in every slot k.

[3] D. Stoyan, Comparison Methods for Queues and other Stochastic Models, 1983

Intuition of the proof: coupling argument [3]

- Consider M = 3 nodes and $p \in (0,1]$ (unreliable channels)
- Employ ARBITRARY policy. Deliveries are green. Failed transmissions are red.

Scheduling Policies for General Networks

Aol from a different perspective

$$\lim_{K \to \infty} J_K^{\pi} \triangleq \lim_{K \to \infty} \frac{1}{KM} \sum_{k=1}^K \sum_{i=1}^M \alpha_i h_i(k) = \frac{1}{M} \sum_{i=1}^M \frac{\alpha_i}{2} \left[\frac{\overline{\mathbb{M}}[I_i^2]}{\overline{\mathbb{M}}[I_i]} + 1 \right], \text{ wp1}$$

where $I_i[m]$ is the inter-delivery time of node i and $\overline{\mathbb{M}}[I_i]$ is the **sample mean** of $I_i[m]$.

(m-1)th packet delivery

$$\lim_{K \to \infty} \frac{1}{K} \sum_{k=1}^{K} \boldsymbol{h}_{\boldsymbol{i}}(\boldsymbol{k}) = \frac{1}{2} \left[\frac{\overline{\mathbb{M}} [\boldsymbol{I}_{\boldsymbol{i}}^{2}]}{\overline{\mathbb{M}} [\boldsymbol{I}_{\boldsymbol{i}}]} + 1 \right], \text{ wp1}$$

$$I_i[m] = \mathbf{3}$$

Aol from a different perspective

$$\lim_{K \to \infty} J_K^{\pi} \triangleq \lim_{K \to \infty} \frac{1}{KM} \sum_{k=1}^K \sum_{i=1}^M \alpha_i h_i(k) = \frac{1}{M} \sum_{i=1}^M \frac{\alpha_i}{2} \left[\frac{\overline{\mathbb{M}}[I_i^2]}{\overline{\mathbb{M}}[I_i]} + 1 \right], \text{ wp1}$$

where $I_i[m]$ is the inter-delivery time of node i and $\overline{\mathbb{M}}[I_i]$ is the **sample mean** of $I_i[m]$.

$$\lim_{K \to \infty} \frac{1}{K} \sum_{k=1}^{K} \boldsymbol{h}_{i}(\boldsymbol{k}) = \frac{1}{2} \left[\frac{\overline{\mathbb{M}}[\boldsymbol{I}_{i}^{2}]}{\overline{\mathbb{M}}[\boldsymbol{I}_{i}]} + 1 \right], \text{ wp1}$$

Notice: $\frac{\mathbb{E}[I_i^2]}{\mathbb{E}[I_i]} = \frac{\mathbb{V}ar[I_i]}{\mathbb{E}[I_i]} + \mathbb{E}[I_i]$ (delivery regularity)

Intuition of the proof:

Intuition of the proof:

Lower Bound

Lemma:

$$\lim_{K \to \infty} J_K^{\pi} \triangleq \lim_{K \to \infty} \frac{1}{KM} \sum_{k=1}^K \sum_{i=1}^M \alpha_i h_i(k) = \frac{1}{M} \sum_{i=1}^M \frac{\alpha_i}{2} \left[\frac{\overline{\mathbb{M}}[I_i^2]}{\overline{\mathbb{M}}[I_i]} + 1 \right], \text{ wp1}$$

Theorem:

$$\lim_{K \to \infty} \mathbb{E}[J_K^{\pi}] \ge L_B, \text{ where } L_B = \frac{1}{2M} \min_{\pi \in \Pi} \left\{ \sum_{i=1}^M \alpha_i \mathbb{E}[\overline{\mathbb{M}}[I_i^{\pi}]] \right\} + \frac{1}{2M} \sum_{i=1}^M \alpha_i$$

Proof: applying Fatou's Lemma to the non-negative sequence J_K^{π} and then the generalized mean inequality $\overline{\mathbb{M}}[I_i^2] \ge (\overline{\mathbb{M}}[I_i])^2$.

Transmission Scheduling Policies

• Next, we develop three different scheduling policies:

Scheduling Policy	Technique	Optimality Ratio	Simulation Result
Optimal Stationary Randomized Policy	Renewal Theory	2-optimal	~ 2-optimal
Max-Weight Policy	Lyapunov Optimization	2-optimal	close to optimal
Whittle's Index Policy	RMAB Framework	8-optimal	close to optimal

$$L_B \leq \lim_{K \to \infty} \mathbb{E} \left[J_K^{\mathbf{R}} \right] \leq 2L_B$$

• Stationary Randomized Policy:

in slot k, select node i with probability μ_i .

- Clearly, $d_i(k) \sim Ber(\mu_i p_i)$ and $I_i[m] \sim Geo(\mu_i p_i)$ iid for node i
- Sequence of packet deliveries from node i is a renewal process:

• Stationary Randomized Policy:

in slot k, select node i with probability μ_i .

- Clearly, $d_i(k) \sim Ber(\mu_i p_i)$ and $I_i[m] \sim Geo(\mu_i p_i)$ iid for node i
- Sum of $h_i(k)$ is a **renewal-reward process**:
 - Period length $\mathbb{E}[I_i] = (\mu_i p_i)^{-1}$
 - Reward in a period is $\mathbb{E}[I_i^2 + I_i]/2 = (\mu_i p_i)^{-2}$

Hence, by the elementary renewal theorem:

$$\lim_{K \to \infty} \mathbb{E}[J_K^R] = \frac{1}{M} \sum_{i=1}^M \alpha_i \frac{\mathbb{E}[reward]}{\mathbb{E}[period]} = \frac{1}{M} \sum_{i=1}^M \frac{\alpha_i}{\mu_i p_i} =$$

• Stationary Randomized Policy:

in slot k, select node i with probability μ_i .

- Clearly, $d_i(k) \sim Ber(\mu_i p_i)$ and $I_i[m] \sim Geo(\mu_i p_i)$ iid for node i
- Sum of $h_i(k)$ is a **renewal-reward process**:
 - Period length $\mathbb{E}[I_i] = (\mu_i p_i)^{-1}$
 - Reward in a period is $\mathbb{E}[I_i^2 + I_i]/2 = (\mu_i p_i)^{-2}$

Hence, by the elementary renewal theorem:

$$\lim_{K \to \infty} \mathbb{E}[J_K^R] = \frac{1}{M} \sum_{i=1}^M \alpha_i \frac{\mathbb{E}[reward]}{\mathbb{E}[period]} = \frac{1}{M} \sum_{i=1}^M \frac{\alpha_i}{\mu_i p_i} = \frac{1}{M} \sum_{i=1}^M \alpha_i \mathbb{E}[I_i^R]$$

Theorem: there exists **R** which is **2-optimal** for **any** network configuration.

• Proof:
Recall that:
$$L_B = \frac{1}{2M} \min_{\pi \in \Pi} \left\{ \sum_{i=1}^{M} \alpha_i \mathbb{E}[\overline{\mathbb{M}}[I_i^{\pi}]] \right\} + \frac{1}{2M} \sum_{i=1}^{M} \alpha_i$$

Policy that solves the minimization above yields some value of $\mathbb{E}\left[\overline{\mathbb{M}}[I_i^{\pi}]\right]$. There exists **R** such that $\mathbb{E}\left[I_i^{\mathbf{R}}\right] = \mathbb{E}\left[\overline{\mathbb{M}}[I_i^{\pi}]\right]$ for all nodes. For this particular **R**, we have:

$$\lim_{K \to \infty} \mathbb{E}[I_K^{\mathbf{R}}] = \frac{1}{M} \sum_{i=1}^{N} \alpha_i \mathbb{E}[\overline{\mathbb{M}}[I_i^{\mathbf{\pi}}]] \le 2L_B$$

Theorem: there exists **R** which is **2-optimal** for **any** network configuration.

• **Optimal Stationary Randomized Policy:** $\mu_i^* = \frac{1}{M} \underset{\mu_i,\forall i}{\operatorname{argmin}} \left\{ \sum_{i=1}^M \frac{\alpha_i}{\mu_i p_i} \right\}$ The optimal solution is $\mu_i^* \propto \sqrt{\alpha_i/p_i}$

Corollary: Optimal **R*** is 2-optimal.

Summary (so far...)

• Objective Function:

$$\min_{\pi \in \Pi} \lim_{K \to \infty} \mathbb{E}[J_K^{\pi}] = \min_{\pi \in \Pi} \lim_{K \to \infty} \frac{1}{KM} \mathbb{E}\left[\sum_{k=1}^K \sum_{i=1}^M \alpha_i h_i^{\pi}(k)\right]$$

• Network Model:

Policy	Decision in slot k	Performance
Greedy	highest h_i(k)	optimal when symmetric
Randomized	node i wp $\propto \sqrt{\alpha_i/p_i}$	2-optimal
Max-Weight		
Whittle's Index		

Max-Weight Policy

• Max-Weight is designed to minimize the Lyapunov Drift.

- Evolution of AoI: $\mathbf{h}_{i}(\mathbf{k} + \mathbf{1}) = \begin{cases} 1, & \text{if } d_{i}(\mathbf{k}) = 1 \\ \mathbf{h}_{i}(\mathbf{k}) + 1, & \text{otherwise} \end{cases}$
- Equivalently: $h_i(k+1) = h_i(k)[1 d_i(k)] + 1$ $h_i(k+1) = h_i(k)[1 - c_i(k)u_i(k)] + 1$

Slots

Max-Weight Policy

• Lyapunov Function: $L(k) = \frac{1}{M} \sum_{i=1}^{M} \beta_i h_i(k)$, where $\beta_i > 0$ is a constant

• Lyapunov Drift: $\Delta(k) = \mathbb{E}\{L(k+1) - L(k) \mid h_i(k)\}$

• Lyapunov Function: $L(k) = \frac{1}{M} \sum_{i=1}^{M} \beta_i h_i(k)$, where $\beta_i > 0$ is a constant

- Lyapunov Drift: $\Delta(k) = \mathbb{E}\{L(k+1) L(k) \mid h_i(k)\}$
- Recall that: $h_i(k+1) = h_i(k)[1 c_i(k)u_i(k)] + 1$

$$\Delta(k) = -\frac{1}{M} \sum_{i=1}^{M} \beta_i h_i(k) \boldsymbol{p}_i \mathbb{E}\{\boldsymbol{u}_i(\boldsymbol{k}) \mid h_i(k)\} + \frac{1}{M} \sum_{i=1}^{M} \beta_i$$

• **MW policy:** in slot k, schedule node with highest value of $\beta_i p_i h_i(k)$

Max-Weight Policy

Theorem: MW with $\beta_i = \alpha_i / \mu_i^* p_i$ is **2-optimal** for **any** network configuration

• MW policy with $\beta_i = \alpha_i / \mu_i^* p_i$:

in slot k, schedule node with highest value of $\sqrt{\alpha_i p_i} h_i(k) \equiv \alpha_i p_i h_i^2(k)$

Max-Weight Policy

Theorem: MW with $\beta_i = \alpha_i / \mu_i^* p_i$ is **2-optimal** for **any** network configuration

• MW policy with $\beta_i = \alpha_i / \mu_i^* p_i$:

in slot k, schedule node with highest value of $\sqrt{\alpha_i p_i} h_i(k) \equiv \alpha_i p_i h_i^2(k)$

- Proof outline:
 - MW minimizes drift while Optimal R* does not. Thus:

 $\Delta^{\boldsymbol{M}\boldsymbol{W}}(k) \leq \Delta^{\boldsymbol{R}^*}(k)$

• Manipulating the expression and substituting $\beta_i = \alpha_i / \mu_i^* p_i$, gives:

$$\lim_{K \to \infty} \mathbb{E} \big[J_K^{\boldsymbol{M} \boldsymbol{W}} \big] \le \lim_{K \to \infty} \mathbb{E} \big[J_K^{\boldsymbol{R}^*} \big]$$

• Hence, Max-Weight is 2-optimal.

Summary (so far...)

• Objective Function:

$$\min_{\pi \in \Pi} \lim_{K \to \infty} \mathbb{E}[J_K^{\pi}] = \min_{\pi \in \Pi} \lim_{K \to \infty} \frac{1}{KM} \mathbb{E}\left[\sum_{k=1}^K \sum_{i=1}^M \alpha_i h_i^{\pi}(k)\right]$$

• Network Model:

Policy	Decision in slot k	Performance
Greedy	highest h_i(k)	optimal when symmetric
Randomized	node i wp $\propto \sqrt{\alpha_i/p_i}$	2-optimal
Max-Weight	highest $\alpha_i p_i h_i^2(k)$	2-optimal

A Markov Bandit is characterized by a MDP in which:

- u(k) = 0 freezes the process and gives no reward;
- u(k) = 1 continues the process with \mathbb{P} and gives reward r(h(k))
- In contrast, when the bandit is **restless**:
 - u(k) = 0 continues the process with \mathbb{P}_0 and gives reward $r_0(h(k))$
 - u(k) = 1 continues the process with \mathbb{P}_1 and gives reward $r_1(h(k))$
- The AoI of each node evolves as a **restless bandit**. Hence, we can use the RMAB framework [2] to design an Index Policy.

[2] P. Whittle, "Restless bandits: Activity allocation in a changing world", 1988.

- For designing the Index Policy, we use the RMAB framework in [2].
 - We relax our problem to the case of a single node i, M = 1, and add a cost per transmission, C > 0:

$$\min_{\pi \in \Pi} \lim_{K \to \infty} \frac{1}{K} \mathbb{E} \left[\sum_{k=1}^{K} \alpha_{i} h_{i}(k) + C u_{i}(k) \right]$$

- The solution to this relaxed problem yields:
 - Condition for indexability;
 - Expression for the Whittle Index, $C_i(h_i(k))$.
- Challenges

[2] P. Whittle, "Restless bandits: Activity allocation in a changing world", 1988.

• Consider the relaxed problem with a single node and cost per transmission C.

$$\min_{\pi \in \Pi} \lim_{K \to \infty} \frac{1}{K} \mathbb{E} \left[\sum_{k=1}^{K} \alpha_{i} h_{i}(k) + C u_{i}(k) \right]$$

- Condition for Indexability:
 - Let $\mathcal{P}(C)$ be the set of states $h_i(k)$ for which it is optimal to idle when the cost for transmission is C.
 - The problem is indexable if $\mathcal{P}(C)$ increases monotonically from \emptyset to the entire state space as C increases from 0 to $+\infty$.
 - The condition checks if the problem is suited for an Index Policy.

• Consider the relaxed problem with a single node and cost per transmission C.

$$\min_{\pi \in \Pi} \lim_{K \to \infty} \frac{1}{K} \mathbb{E} \left[\sum_{k=1}^{K} \alpha_{i} h_{i}(k) + C u_{i}(k) \right]$$

- Whittle Index:
 - Given indexability, C(h) is the infimum cost C that makes both scheduling decisions equally desirable in state h.
 - C(h) represents how valuable is to transmit a node in state h.

- We establish that the problem is **indexable** and find a **closed-form** solution for the Whittle Index.
- Index Policy: in slot k, select the node with highest value of $C_i(h_i(k))$, where:

$$C_i(h_i(k)) = \alpha_i p_i h_i(k) \left[h_i(k) + \frac{2}{p_i} - 1 \right]$$

- We establish that the problem is **indexable** and find a **closed-form** solution for the Whittle Index.
- Index Policy: in slot k, select the node with highest value of $C_i(h_i(k))$, where:

$$C_i(h_i(k)) = \alpha_i p_i h_i(k) \left[h_i(k) + \frac{2}{p_i} - 1 \right]$$

- Whittle's Index is similar to Max-Weight: $\alpha_i p_i h_i^2(k)$
- For Symmetric Networks:

Whittle's \equiv Max-Weight \equiv Greedy. [All optimal policies]

π

 α_M

Summary (so far...)

• Objective Function:

$$\min_{\pi \in \Pi} \lim_{K \to \infty} \mathbb{E}[J_K^{\pi}] = \min_{\pi \in \Pi} \lim_{K \to \infty} \frac{1}{KM} \mathbb{E}\left[\sum_{k=1}^K \sum_{i=1}^M \alpha_i h_i^{\pi}(k)\right]$$

• Network Model:

Policy	Decision in slot k	Performance
Greedy	highest h_i(k)	optimal when symmetric
Randomized	node i wp $\propto \sqrt{\alpha_i/p_i}$	2-optimal
Max-Weight	highest $\alpha_i p_i h_i^2(k)$	2-optimal
Whittle's Index	highest $C_i(h_i(k))$	8-optimal

Numerical Results

- Metric:
 - Expected Weighted Sum Aol : $\mathbb{E}[J_K^{\pi}]$
- Network Setup with M nodes. Node i has:
 - weight $\alpha_i = (M + 1 i)/M$
 - channel reliability $p_i = i/M$

[decreasing with i] [increasing with i]

- Each simulation runs for $K = M \times 10^6$ slots
- Each data point is an average over 10 simulations

Remarks (so far...)

- We developed and evaluated low-complexity scheduling policies:
 - Greedy, Optimal Stationary Randomized, Max-Weight and Whittle's Index
 - Obtained optimality ratios and validated their performance using Numerical Results
- Main ideas:
 - Age of Information is a measure of information freshness
 - Randomized Policy is the simplest possible policy and it is 2-optimal.
 - Max-Weight and Whittle's Index have near optimal AoI-performance.
- Next: Throughput versus Age of Information

Long-term Throughput vs Age of Information

Throughput

• The **Throughput maximization** problem is given by:

$$\mathbb{E}[T_{K}^{\pi}] = \frac{1}{KM} \mathbb{E}\left[\sum_{k=1}^{K} \sum_{i=1}^{M} \alpha_{i} d_{i}^{\pi}(k)\right], \text{ where } d_{i}^{\pi}(k) \text{ indicates a delivery} \\ \text{ and } \alpha_{i} \text{ is the positive weight}$$

• Goal is to find the scheduling policy that $\max_{\pi \in \Pi} \mathbb{E}[T_K^{\pi}]$.

$$\mathbb{E}[T_K^{\pi}] = \frac{1}{KM} \sum_{k=1}^K \sum_{i=1}^M \alpha_i p_i \mathbb{E}[\boldsymbol{u}_i^{\pi}(\boldsymbol{k})]$$

• Optimal policy: in slot k, select node with highest value of $\alpha_i p_i$

Throughput vs Age of Information

• The **Throughput maximization** problem is given by:

$$\mathbb{E}[T_{K}^{\pi}] = \frac{1}{KM} \mathbb{E}\left[\sum_{k=1}^{K} \sum_{i=1}^{M} \alpha_{i} d_{i}^{\pi}(k)\right], \text{ where } d_{i}^{\pi}(k) \text{ indicates a delivery}$$

• The **Aol minimization** problem is given by:

$$\mathbb{E}[J_K^{\pi}] = \frac{1}{KM} \mathbb{E}\left[\sum_{k=1}^K \sum_{i=1}^M \alpha_i h_i^{\pi}(k)\right] \text{, where } h_i^{\pi}(k) \text{ is the Aol}$$

• We want to compare the scheduling policies that solve each problem.

Throughput vs Age of Information

• For a fixed vector of weights $\vec{\alpha}$, we have:

- We sweep $\vec{\alpha}$ and plot the results next:
 - **Red** is for metrics associated with the Throughput policy $\pi^*(\vec{\alpha})$.
 - Green is associated with the AoI policy $\eta^*(\vec{\alpha})$.

Minimizing Age of Information subject to Minimum Throughput Requirements

Minimum Throughput Requirement

• Long-term throughput of node i when policy π is employed is defined as:

$$\hat{q}_i^{\pi} := \lim_{K \to \infty} \frac{1}{K} \mathbb{E}\left[\sum_{k=1}^K d_i^{\pi}(k)\right]$$

• Minimum Throughput Requirements:

$$\widehat{q}_i^{\pi} \geq oldsymbol{q}_{oldsymbol{i}}$$
 , $orall i$

we assume that the set $\{q_i\}_{i=1}^M$ is feasible.

Optimization Problem

Aol Optimization
$$OPT^* = \min_{\pi \in \Pi} \left\{ \lim_{K \to \infty} \frac{1}{KM} \mathbb{E} \left[\sum_{k=1}^{K} \sum_{i=1}^{M} \alpha_i h_i(k) \right] \right\}$$
 (8a)s.t. $\hat{q}_i^{\pi} \ge q_i$, $\forall i$; $\sum_{i=1}^{M} u_i(k) \le 1$, $\forall k$.

(Age of Information)

(Minimum Throughput)

(Channel Interference)

- Next, we consider:
 - Stationary Randomized Policy;
 - Max-Weight Policy.

• Stationary Randomized Policy:

in slot k, select node i with probability μ_i .

• Solution given by KKT Conditions. Optimal **R*** is **2-optimal**.

Max Weight Policy

• Throughput **debt** at the beginning of slot k: $x_i(k)$

$$\mathbf{x_i}(\mathbf{k}) = (k-1)\mathbf{q_i} - \sum_{t=1}^{k-1} d_i(t)$$

• MW policy: in slot k, schedule node with highest value of

 $p_i \max{x_i(k), 0} + V(\alpha_i/\mu_i^*)h_i(k)$

Theorem: MW policy is $\left(2 + \frac{\epsilon}{V}\right)$ -optimal in terms of AoI and satisfies any feasible throughput constraints q_i .

Final Remarks

- We developed and evaluated low-complexity scheduling policies:
 - Greedy, Optimal Stationary Randomized, Max-Weight and Whittle's Index
 - Obtained optimality ratios and validated their performance using Numerical Results
- Takeaways:
 - Age of Information is a measure of information freshness
 - Randomized Policy is the simplest possible policy and it is 2-optimal.
 - Max-Weight has near optimal AoI-performance and it satisfies any feasible throughput constraints.

