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4G, 5G, and smart city networks often rely on microwave and millimeter-wave x-haul links. A major challenge

associated with these high frequency links is their susceptibility to weather conditions. In particular, precipi-

tation may cause severe signal attenuation, which significantly degrades the network performance. In this

paper, we develop a Predictive Network Reconfiguration (PNR) framework that uses historical data to predict

the future condition of each link and then prepares the network ahead of time for imminent disturbances. The

PNR framework has two components: (i) an Attenuation Prediction (AP) mechanism; and (ii) a Multi-Step

Network Reconfiguration (MSNR) algorithm. The AP mechanism employs an encoder-decoder Long Short-

Term Memory (LSTM) model to predict the sequence of future attenuation levels of each link. The MSNR

algorithm leverages these predictions to dynamically optimize routing and admission control decisions aiming

to maximize network utilization, while preserving max-min fairness among the nodes using the network (e.g.,

base-stations) and preventing transient congestion that may be caused by switching routes. We train, validate,

and evaluate the PNR framework using a dataset containing over 2 million measurements collected from a

real-world city-scale backhaul network. The results show that the framework: (i) predicts attenuation with

high accuracy, with an RMSE of less than 0.4 dB for a prediction horizon of 50 seconds; and (ii) can improve

the instantaneous network utilization by more than 200% when compared to reactive network reconfiguration

algorithms that cannot leverage information about future disturbances.
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(a) (b)

Fig. 1. (a) A wireless backhaul network in Gothenborg, Sweden (the map area is of approximately 10x10 km
2
).

The data utilized in this paper was collected from this network by Ericsson AB and is available, in part, at [3].

(b) An abstraction of the network topology (described in Sec. 2).

1 INTRODUCTION
4G, 5G, and smart city networks often use high bandwidth microwave and millimeter-wave

(mmWave) links in their fronthaul, midhaul, and backhaul (x-haul) networks [14]. These wireless x-

haul networks can connect a large number of Base-Stations (BSs), covering entire cities, as depicted

in Fig. 1(a). However, a major challenge is the high susceptibility of microwave and mmWave links

to weather conditions.

The signal attenuation due to different atmospheric and weather phenomena is described by

the International Telecommunication Union in [21–24] and depicted in Fig. 2(a). It can be seen

from Fig. 2(a) that, apart from the oxygen resonance frequency at 60 GHz, the dominant factor

affecting link attenuation is precipitation. Notice that the stronger the downpour, the stronger the

attenuation. Fig. 2(b) shows attenuation measurements from five links of the network in Fig. 1

collected during a rainy period on 2015-06-02. The impact of the attenuation on the capacity of the

wireless links is displayed in Fig. 2(c). It is evident from Fig. 2 that weather-induced attenuation and

the resulting capacity degradation vary over time, geographical location, rain intensity, and can be

severe. The need for a high capacity wireless x-haul that is robust to variations in the links’ conditions

calls for the development of a predictive network reconfiguration framework that can dynamically

allocate resources based on current and future estimated conditions.

Until recently, only local Physical/Link layer mechanisms were employed to alleviate the impact

of the time-varying conditions of the links on the network performance. For example, the Automatic

Transmit Power Control is a commonly used mechanism that adjusts the transmitter power based

on measurements of the link attenuation. However, with the emergence of Software-Defined

Networking (SDN) [10, 28, 38], it is now possible to develop global Network layer mechanisms

(such as NEC’s backhaul solution [40]) that monitor the entire network and react to weather-

induced disturbances. However, a main drawback of reactive reconfiguration mechanisms is their

delay in mitigating performance issues, which may severely affect time-sensitive applications. To

overcome this challenge, predictive reconfiguration mechanisms should be developed.

RelatedWork: Prior work on predictive network reconfiguration algorithms (see [8] for a survey)

focused mainly on alleviating the effects of node mobility [11, 13, 34, 37, 39, 60], traffic demand

variability [1, 4, 7, 17, 19, 43, 48, 51, 55], and link quality degradation due to multi-path reflection,

line-of-sight occlusion, and interference [9, 36, 52–54, 58, 61, 62].Weather effects pose fundamentally
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(a) (b) (c)

Fig. 2. (a) Signal attenuation (in dB/km) for various atmospheric phenomena as a function of frequency [21].

The commonly used bands of 6–40 GHz (K-band) and 60–90 GHz (E-band) are highlighted. (b) Measured

attenuation over time for five links from the network in Fig. 1. Time-steps are separated by 10 seconds,

adding up to 1.1 hours of measurements collected on 2015-06-02. Between time-steps 1, 100 and 1, 300 there

was an increased attenuation due to rain which affected links (2, 13), (6, 13), (9, 13), and (10, 13), in that
order, while not affecting link (4, 6). Comparing with the network topology in Fig. 1(b), we can see that the

rain was moving from Southeast to Northwest, and did not affect link (4, 6) located on the Southwest. The

spatio-temporal correlation is evident. (c) Link capacities over time for the same five links.

different challenges. In particular, weather-induced attenuation can be severe, affect large contiguous

geographic areas, and last for extended periods of time. The literature on the prediction ofmicrowave

and mmWave signal attenuation due to weather conditions uses meteorological data (e.g., weather-

radar echo measurements) to predict the current/future attenuation levels [25, 45] or uses past

attenuation measurements to predict future attenuation levels [26, 27, 44, 50, 59]. Most relevant to

this paper is [26] which employs an encoder-decoder LSTMmodel to predict future link attenuation

levels. The main drawbacks of [26] are that: (i) it does not capture the significant spatial correlation

of the rain-induced attenuation (i.e., predictions are at per-link level rather than for a network of

links); and (ii) the prediction mechanism is not employed to inform any network algorithm.

The literature on predictive weather-aware reconfiguration algorithms is rather sparse [25, 29, 45,

59]. In particular, [25, 29, 45] develop modifications to standard distributed routing protocols, such

as Open Shortest Path First (OSPF), which may converge slowly, thereby making them unsuitable for

networks that support time-sensitive applications. SDN is leveraged in [59] to perform centralized

predictive network-wide reconfiguration. The framework of [59] predicts the future attenuation

of each link using a mathematical model specific to rain fading and then computes current and

future routing decisions aiming to maximize throughput. However, developing a framework that

can capture the spatial correlation of the weather-effects, predict future link attenuation levels

during dry and rain periods, prevent transient congestion that may be caused by re-routing, and/or

guarantee fairness in the allocation of network resources is still an open problem.

Our contributions: We develop and evaluate (based on a real dataset) a Predictive Network

Reconfiguration (PNR) framework, illustrated in Fig 3, that prepares the network ahead of time

for imminent disturbances, significantly enhancing the network’s robustness to variations in the

links’ conditions. The PNR leverages existing local Physical/Link layer mechanisms and adds

an Attenuation Prediction (AP) mechanism and a Multi-Step Network Reconfiguration (MSNR)

algorithm.

The AP mechanism employs an encoder-decoder LSTM model to predict the sequence of

future attenuation levels based on past measurements, capturing both time and spatial correlation

that are typical of weather-effects without incorporating weather-related models. This allows it to
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Fig. 3. Overview of the main components and information flow in the proposed PNR framework.

be used both in dry and rain periods, and without relying on meteorological data from external

sources such as weather radars. To train, validate, and evaluate the AP mechanism, we use a dataset

obtained from the real-world city-scale backhaul network in Gothenborg, Sweden (see Fig. 1(a)),

collected by Ericsson AB and available
1
, in part, at [3]. The dataset utilized in this paper contains

2,295,000 measurements of link attenuation levels. In Fig. 2(b), we can see that weather-induced

attenuation depends not only on the time-varying rain intensity, but also on links’ characteristics

such as frequency, polarization, and length, which makes the prediction task challenging. The AP

mechanism leverages the spatio-temporal correlation of the weather-effects to achieve high attenuation

prediction accuracy.

TheMSNR algorithm leverages the predictions from the AP mechanism to prepare the network

for future disturbances. Specifically, it generalizes the Maximum Concurrent Flow [2, 49] problem

and uses Model Predictive Control [35] to compute the sequence of current and future routing and

admission control decisions that: (i) maximize network utilization, while (ii) guaranteeing max-min

fairness among the BSs sharing the network, and (iii) preventing transient congestion that may be

caused by switching routes. These routing and admission control decisions are employed by the

centralized SDN controller to reconfigure the network over time. For example, based on a prediction

that a set of links will become unavailable in 30 seconds, the MSNR algorithm can determine when it

is optimal for the SDN controller to redirect flows in order to avoid potential interruptions to service

and can decide whether or not it is necessary to decrease traffic admission from low priority services.

An important challenge associated with the MSNR algorithm is computational complexity. We

present a principled implementation of the MSNR algorithm which has a computational complexity

that grows polynomially with the prediction horizon, as opposed to a naive implementation that

can have exponential complexity.

We evaluate the PNR framework using the data collected from the backhaul network. Specifi-

cally, we show that the AP mechanism can achieve high attenuation prediction accuracy with a Root

Mean Square Error (RMSE) of less than 0.4 dB for a prediction horizon of 50 seconds. We evaluate

two benchmark time series prediction methods that do not capture the spatial correlation of the

weather-effects and show that both of them can perform 30% worse than the APmechanism in terms

of RMSE. In addition, we show that the MSNR algorithm can improve the instantaneous network

1
In general, datasets with high frequency link attenuation measurements are proprietary information of the network

operators. However, many data-processing code repositories with example datasets similar to the one used in the

paper are available online as described in [32]. For access, one can join the collaborative COST Action OpenSense

(https://opensenseaction.eu/join-us/), which supports data sharing.
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utilization by more than 200% when compared to reactive network reconfiguration algorithms that

do not prepare the network for future disturbances.

To the best of our knowledge, this is the first attempt to propose and evaluate, based on a real

dataset, an integrated framework for x-haul network reconfiguration that leverages the spatio-temporal

correlation of the weather-effects to jointly optimize routing and admission control decisions. A patent

including some of the results is pending [42]. The remainder of this paper is organized as follows.

In Sec. 2, we describe the network model and the dataset. In Sec. 3, we develop the AP mechanism.

In Sec. 4, we develop the MSNR algorithm. In Sec. 5, we evaluate the performance of the PNR

framework. In Sec. 6, we conclude the paper and discusses future work.

2 PROBLEM FORMULATION AND DATASET
We now present the network model used to develop the PNR framework. We first describe the

model in general and then establish the connection between the model and the real-world backhaul

network. Let 𝐺 = (𝑉 , 𝐸) be the directed graph that represents an x-haul communication network

with BSs, also called nodes, 𝑛 ∈ 𝑉 = {1, 2, . . . , 𝑁 }, connected by wireless links (𝑘, 𝑙) ∈ 𝐸 where 𝑘, 𝑙 ∈
𝑉 and (𝑘, 𝑙) represents the link 𝑘 → 𝑙 . Time is divided into time-steps with index 𝑡 ∈ {1, 2, . . . ,𝑇 },
where 𝑇 is the time-horizon and the time interval between 𝑡 and 𝑡 + 1 is Δ = 10 seconds (without

loss of generality). Let 𝑑𝑛 > 0 be the demand associated with commodity 𝑛 ∈ 𝑉 . The demand 𝑑𝑛
represents the uplink traffic that BS 𝑛 aggregates from its associated users. Let 𝑧𝑛,𝑡 ∈ [0, 1] be the
fraction of the demand 𝑑𝑛 admitted during time-step 𝑡 . It follows that the admitted demand from

BS 𝑛 during time 𝑡 is given by 𝑧𝑛,𝑡𝑑𝑛 . For simplicity, we assume
2
that demands 𝑑𝑛 remain fixed

over time and that node 𝑁 is the common destination for all commodities 𝑛 ∈ 𝑉 \ 𝑁 . Naturally,

for the common destination 𝑁 , we have 𝑑𝑁 = 0 and 𝑧𝑁,𝑡 = 0,∀𝑡 . Let 𝑓 (𝑘,𝑙 )𝑛,𝑡 ∈ [0, 1] be the fraction
of the admitted demand 𝑧𝑛,𝑡𝑑𝑛 that flows through link (𝑘, 𝑙) during time 𝑡 . The constraints on the

incoming flows at the source nodes are given by 𝑓
(𝑘,𝑛)
𝑛,𝑡 = 0,∀(𝑘, 𝑛) ∈ 𝐸,∀𝑡, the constraints on the

outgoing flows at the destination node 𝑁 are given by 𝑓
(𝑁,𝑙 )
𝑛,𝑡 = 0,∀𝑛 ∈ 𝑉 ,∀(𝑁, 𝑙) ∈ 𝐸,∀𝑡, and

non-existing links are such that 𝑓
(𝑘,𝑙 )
𝑛,𝑡 = 0,∀𝑛 ∈ 𝑉 ,∀(𝑘, 𝑙) ∉ 𝐸,∀𝑡 . The total flow in link (𝑘, 𝑙) ∈ 𝐸

during time 𝑡 is given by

∑𝑁−1

𝑛=1
𝑧𝑛,𝑡𝑑𝑛 𝑓

(𝑘,𝑙 )
𝑛,𝑡 .

Feasibility and Fairness.We assume that 𝐺 = (𝑉 , 𝐸) and 𝑑𝑛 are given and remain fixed over

time. We assume that routing and admission control decisions by the centralized SDN controller

at time-step 𝑡 , namely 𝑓
(𝑘,𝑙 )
𝑛,𝑡 and 𝑧𝑛,𝑡 , respectively, remain fixed in the interval between 𝑡 and

𝑡 + 1. Routing and admission control decisions at each time 𝑡 are feasible when they satisfy flow

conservation and capacity constraints. The flow conservation associated with commodity 𝑛 ∈ 𝑉
and node 𝑙 ∈ 𝑉 at time 𝑡 is given by

𝑁∑︁
𝑘=1

𝑓
(𝑘,𝑙 )
𝑛,𝑡 −

𝑁∑︁
𝑚=1

𝑓
(𝑙,𝑚)
𝑛,𝑡 = 1{l=N} − 1{l=n} , (1)

where 1{X} is the indicator function that is 1 when 𝑋 is true and 0 otherwise, 𝑙 = 𝑛 indicates

that node 𝑙 is the source of commodity 𝑛, and 𝑙 = 𝑁 indicates that node 𝑙 is the destination of

commodity 𝑛. 𝑐
(𝑘,𝑙 )
𝑡 ≥ 0 is the capacity of link (𝑘, 𝑙) at time 𝑡 and 𝑐

(𝑘,𝑙 )
𝑡+1 ≥ 0 is the predicted capacity

of link (𝑘, 𝑙) at time 𝑡 + 1. Since the exact moment between 𝑡 and 𝑡 + 1 in which the capacity changes

from 𝑐
(𝑘,𝑙 )
𝑡 to 𝑐

(𝑘,𝑙 )
𝑡+1 is unknown, we assume the worst-case and represent the capacity in this interval

by min{𝑐 (𝑘,𝑙 )𝑡 , 𝑐
(𝑘,𝑙 )
𝑡+1 }. Hence, the capacity constraint associated with link (𝑘, 𝑙) ∈ 𝐸 at time 𝑡 is given

2
The PNR framework can be easily adapted to networks with multiple destinations and to incorporate mechanisms that

predict time-varying traffic demands 𝑑𝑛 , such as the mechanisms developed in [17, 51].
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(a) (b)

Fig. 4. Characteristics of the 17 links that compose the backhaul network. (a) Center frequency and geo-

graphical Euclidean distance. (b) Minimum attenuation and length. The minimum attenuation is selected

among the measurements collected on 2015-06-02 over a period of 14.3 hours. The minimum attenuation

represents the baseline attenuation during a dry period.

by

𝑁−1∑︁
𝑛=1

𝑧𝑛,𝑡𝑑𝑛 𝑓
(𝑘,𝑙 )
𝑛,𝑡 ≤ min{𝑐 (𝑘,𝑙 )𝑡 , 𝑐

(𝑘,𝑙 )
𝑡+1 } . (2)

Definition 1 (Feasibility). The set of routing and admission control decisions at time 𝑡 , namely

{𝑓 (𝑘,𝑙 )𝑛,𝑡 , 𝑧𝑛,𝑡 }, ∀𝑛 ∈ 𝑉 , ∀(𝑘, 𝑙) ∈ 𝐸, is feasible when it satisfies the flow conservation in (1) and the

capacity constraints in (2).

Definition 2 (Max-Min Fairness). The feasible set {𝑓 (𝑘,𝑙 )𝑛,𝑡 , 𝑧𝑛,𝑡 } at time-step 𝑡 has admission

rates 𝑧𝑛,𝑡 that are max-min fair if, in order to maintain feasibility, an increase of any 𝑧𝑛,𝑡 necessarily

results in the decrease of 𝑧𝑚,𝑡 of another source𝑚 for which 𝑧𝑚,𝑡 ≤ 𝑧𝑛,𝑡 .

The goal of the PNR framework is to dynamically optimize routing and admission control

decisions over time, taking into account future predicted network conditions, aiming to maximize

the cumulative sum of admission rates

∑𝑇
𝑡=1

∑𝑁−1

𝑛=1
𝑧𝑛,𝑡 , while guaranteeing that, in each time-

step 𝑡 , the selected feasible set {𝑓 (𝑘,𝑙 )𝑛,𝑡 , 𝑧𝑛,𝑡 } is max-min fair and can be implemented without

inducing transient congestion. Omitting the fairness constraint and obtaining a solution to the

corresponding Maximum Flow problem could lead to an increased cumulative sum of admission

rates

∑𝑇
𝑡=1

∑𝑁−1

𝑛=1
𝑧𝑛,𝑡 . However, a critical drawback of this “unfair” solution is that it may starve

flows from one or more BSs. To avoid that, we formulated the dynamic optimization problem

with max-min fairness at its center. This challenging optimization problem and its complexity are

addressed in Sec. 4.

Real-World Network and Dataset. Consider the backhaul network in Fig. 1(a) composed of

17 line-of-sight wireless links whose lengths vary from 0.6 to 5.9 km, operating between 18 and

40GHz, using vertical polarization, and with antenna diameters ranging from 20 cm to 1.2m and

antenna gains ranging from 31 dBi to 47 dBi. Fig. 4 shows the links’ center frequencies, lengths,

and minimum attenuation levels. Notice that, in general, higher-frequency links are installed at

shorter distances to reduce attenuation.

The directed graph 𝐺 = (𝑉 , 𝐸) with 𝑁 = 13 nodes in Fig. 1(b) is generated by assuming that

link endpoints in Fig. 1(a) which are in close proximity (up to 300m apart) are connected by fiber
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which is not capacity-limited. Under this assumption
3
, a node in𝐺 = (𝑉 , 𝐸) represents one or more

neighboring link endpoints in Fig. 1(a).

The data collection system, described in [3, 6], runs at Ericsson
4
and utilizes the Simple Network

Management Protocol to fetch the latest measurements of the transmitted and received signal levels

(in dB), represented by 𝑃
(𝑘,𝑙 )
𝑇𝑥,𝑡

and 𝑃
(𝑘,𝑙 )
𝑅𝑥,𝑡

, respectively, at every 10 sec from every link in the backhaul

network. According to [3, 6], the extra load associated with the transmission of measurements

via the x-haul network is insignificant (around 10 bytes per second per node) and, in general, the

measurements are ready in the data collector within 1 to 3 seconds. From May to December 2015,

the data collection success rate, excluding maintenance periods, was greater than 99.6% with data

loss being caused by rare events such as link blockages. Notice that the PNR framework could help

to further improve the data collection success rate by re-routing flows before link blockages.

Throughout the paper, we assume that in each time-step 𝑡 , the following events occur: (i) the

data collection system shares the latest measurements of 𝑃
(𝑘,𝑙 )
𝑇𝑥,𝑡

and 𝑃
(𝑘,𝑙 )
𝑅𝑥,𝑡

with the centralized PNR

framework; (ii) the AP mechanism computes the attenuation levels 𝑥
(𝑘,𝑙 )
𝑡 = 𝑃

(𝑘,𝑙 )
𝑇𝑥,𝑡
− 𝑃 (𝑘,𝑙 )

𝑅𝑥,𝑡
of every

link and predicts future attenuation levels; (iii) the MSNR algorithm computes new routing 𝑓
(𝑘,𝑙 )
𝑛,𝑡

and admission control 𝑧𝑛,𝑡 decisions; and (iv) the SDN controller implements the new network

configuration by propagating {𝑓 (𝑘,𝑙 )𝑛,𝑡 , 𝑧𝑛,𝑡 } to the corresponding BSs. Similarly to [3, 6], we assume

that the extra load associated with the transmission of routes and admission control updates

{𝑓 (𝑘,𝑙 )𝑛,𝑡 , 𝑧𝑛,𝑡 } utilize negligible resources of the x-haul network, as they are transmitted at most once

every Δ = 10 seconds.

To train, validate, and evaluate the PNR framework we use a dataset containing measurements

collected during 2015 from the network in Fig. 1(a). We use the method proposed in [47] to detect

rainy periods
5
. Then, we select 20 days which contain both rainy and dry periods and use 2, 295, 000

measurements (i.e., 135, 000 per link) from these 20 days to train/test the encoder-decoder LSTM

model. The test data utilized to evaluate the PNR framework in Sec. 5 is composed of three sequences

ofmeasurements, each containing a period of rain: Test Seq. I with 87, 890measurements collected

over a period of 14.3 hours on 2015-06-02, Test Seq. II with 11, 900 measurements collected over

a period of 1.9 hours on 2015-05-19, and Test Seq. III with 94, 690 measurements collected over a

period of 15.5 hours on 2015-06-17.

3 ATTENUATION PREDICTION MECHANISM
In this section, we present the AP mechanism which predicts the sequence of future attenuation

levels based on historical data, as illustrated in Fig. 3. The high accuracy of the AP mechanism

(validated in Sec. 5.1) stems from: (i) the suitability of the encoder-decoder LSTMmodel to sequence-

to-sequence learning problems, such as machine translation, natural language generation, and

speech recognition [15, 16, 57]; and (ii) the capability of LSTMs to capture both time and spatial

correlations that are typical of weather-effects. The LSTM model has two main parts: the encoder,

which maps the input sequence into a state vector and the decoder, which maps the state vector

into a sequence of predictions.

The AP mechanism employs the sliding-window method and the encoder-decoder LSTM model

illustrated in Figs. 5(a) and 5(b), respectively, to predict the next 𝐻 attenuation levels based on the

previous𝑊 measurements. In particular, let 𝑥
(𝑘,𝑙 )
𝑡 = 𝑃

(𝑘,𝑙 )
𝑇𝑥,𝑡
− 𝑃 (𝑘,𝑙 )

𝑅𝑥,𝑡
be the attenuation measurement

3
Other assumptions could have been made without affecting the results’ generality.

4
The office is located in Gothenborg, in the West part of the map in Fig. 1(a)

5
This method is based on the observation that the variability of the attenuation increases during rain. In [47], this method

was shown to accurately classify rainy/dry periods without the need for side information (such as meteorologic data).
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(a) (b)

Fig. 5. (a) Measured attenuation for all the 17 links in the network in Fig. 1 with time-steps 𝑡 separated by

10 seconds (adding up to 1.9 hours) together with an illustration of the sliding-window method with input
window size of𝑊 time-steps and prediction window size of 𝐻 time-steps. The different baseline attenuation

levels are due to the difference in the links’ frequency and length. (b) Encoder-decoder LSTM model that

employs the last𝑊 attenuation measurements {𝒙𝒕−𝑾+1, . . . , 𝒙𝒕−1, 𝒙𝒕 } from every link in the network (i.e.,

the input window) to predict the future 𝐻 attenuation levels {𝒙̂𝒕+1, . . ., 𝒙̂𝒕+𝑯−1, 𝒙̂𝒕+𝑯 } in each link (i.e., the

prediction window).

for link (𝑘, 𝑙) ∈ 𝐸 at time 𝑡 , and let 𝒙𝒕 = (𝑥 (𝑘,𝑙 )𝑡 ) and 𝒙̂𝒕+𝒉 = (𝑥 (𝑘,𝑙 )
𝑡+ℎ ) be the vector of attenuation mea-

surements and the vector of ℎ-steps-ahead attenuation predictions for all links at time 𝑡 , respectively.

In each time-step 𝑡 , the encoder-decoder LSTM model employs the sequence of measurements

in the input window {𝒙𝒕−𝑾+1, 𝒙𝒕−𝑾+2, . . . , 𝒙𝒕 } to predict the sequence of attenuation levels in the

prediction window {𝒙̂𝒕+1,𝒙̂𝒕+2, . . ., 𝒙̂𝒕+𝑯 }. Notice that the measurements in the input window allow

the encoder-decoder LSTM model to capture the spatio-temporal correlation of weather-induced

attenuation. We employ an input window size of𝑊 = 12 and a prediction window size of 𝐻 = 5,

which corresponds to 120 seconds and 50 seconds, respectively.

We train the encoder-decoder LSTM model to minimize the prediction error. In particular,

consider a dataset with a sequence of attenuation measurements in the interval 𝑡 ∈ {1, . . . ,𝑇 }. The
encoder and decoder are jointly trained to minimize the objective function:

L(Θ) =
𝑇−𝐻∑︁
𝑡=1

𝐻∑︁
ℎ=1

∥ 𝒙𝒕+𝒉 − 𝒙̂𝒕+𝒉 ∥2 (3)

where ∥·∥ is the Euclidean norm, and Θ represents the parameters of the encoder-decoder LSTM

model, i.e., weights and biases. We implement the encoder and the decoder LSTM with one hidden

layer containing 128 units. To train, tune, and evaluate the AP mechanism, we use the dataset

described in Sec. 2 with a train-validation-test split of 80-10-10. We train the AP mechanism using

Backpropagation Through Time [56] and Adaptive Moment Estimation (Adam) [31] with a batch

size of 150. The prediction accuracy of the AP mechanism is evaluated in Sec. 5.1.

4 MULTI-STEP NETWORK RECONFIGURATION ALGORITHM
SDN enables the design of algorithms that dynamically reconfigure the entire network. Building on

that capability, we develop the MSNR algorithm, which leverages information about links’ future

conditions to compute the sequence of current and future routing and admission control decisions

that: (i) attempt to maximize network utilization, while (ii) guaranteeing max-min fairness (in every
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time-step 𝑡 ) among the BSs sharing the network, and (iii) preventing transient congestion that may

be caused by switching routes. Hereafter, we denote this sequence of routing and admission control

decisions as the optimal sequence of network configurations.

The problem of finding the optimal sequence of network configurations is a generalization of

the Maximum Concurrent Flow (MCF) problem. The solution to the traditional MCF problem in [2]

considers a network with fixed link capacities and finds routing and admission control decisions

that maximize admission rates at time 𝑡 while ensuring that the admitted traffic is max-min fair.

The MSNR algorithm generalizes this solution to the more challenging setting where: (i) link

capacities are time varying; (ii) the optimization is performed (jointly) over multiple time-steps

𝑡, 𝑡 +1, · · · , 𝑡 +𝐻 ; and (iii) there is a performance cost for re-routing. The time-varying link capacities

and the re-routing costs lead to a more realistic but significantly more complex network model,

since they create a trade-off between the future expected benefits of re-routing and the present cost of

re-routing.

The MSNR algorithm employs Model Predictive Control to address this generalized MCF op-

timization problem. In particular, in each time-step 𝑡 , the MSNR algorithm uses its knowledge

of future (predicted) network conditions to evaluate and compare the performance of different

congestion-free max-min fair sequences of network configurations {𝑓 (𝑘,𝑙 )
𝑛,𝑡+ℎ, 𝑧𝑛,𝑡+ℎ}, ∀𝑛 ∈ 𝑉 , ∀(𝑘, 𝑙)

∈ 𝐸, ∀ℎ ∈ {0, 1, . . . , 𝐻 − 1} and then selects the sequence with highest cumulative sum of admission

rates

∑𝐻−1

ℎ=0

∑𝑁−1

𝑛=1
𝑧𝑛,𝑡+ℎ . The SDN controller implements the first configuration in the selected se-

quence, i.e., the configuration {𝑓 (𝑘,𝑙 )𝑛,𝑡 , 𝑧𝑛,𝑡 } associated with the current time 𝑡 . This iterative process

allows the SDN controller to account for future predicted network conditions when optimizing the

current network configuration. An important feature of the MSNR algorithm is that it guarantees

that the selected network configuration is always max-min fair.

A major challenge associated with the MSNR algorithm is computational complexity. A naive

implementation computes and compares the performance of all possible sequences of network

configurations within the prediction window {𝑡, . . . , 𝑡 +𝐻 }. The number of such sequences grows

exponentially with 𝐻 , as discussed in Sec. 4.3, which could render the MSNR algorithm impractical.

To overcome this challenge, we develop a principled implementation of the MSNR algorithm

which employs the structure of the optimization problem to recursively explore the space of all

possible sequences of network configurations. This recursive method reduces the complexity from

exponential 𝑂 (2𝐻 ) to polynomial 𝑂 (𝐻 4).
Prior to introducing the MSNR algorithm, we describe: (i) the adaptive modulation mechanism

in [5], which is a Physical layer mechanism employed by the backhaul network in Sweden to

maximize link capacity over time; and (ii) the SWAN mechanism developed in [18], which is a

Network layer mechanism that eliminates transient congestion that may be caused by re-routing.

The MSNR algorithm builds upon both these existing solutions to optimize routing and admission

control decisions over time, as illustrated in Fig. 3.

4.1 Adaptive Modulation Mechanism
Three parameters that can be dynamically adjusted to compensate for high attenuation levels in

microwave and mmWave links are: the transmission power, the coding rate, and the modulation

scheme. The dataset utilized in this paper was collected for a backhaul network that uses radios

similar to the ones described in [3, 5, 6] which: (i) employ a constant transmit power 𝑃
(𝑘,𝑙 )
𝑇𝑥,𝑡

and a

constant coding rate over time; (ii) use Quadrature Amplitude Modulation (QAM) with adaptive

constellation size𝑀 ; and (iii) use a fixed channel bandwidth of 28MHz that achieves a capacity of

45Mbps when𝑀 = 4. Recall that when𝑀 is increased by a factor of 𝑘 , the capacity 𝑐
(𝑘,𝑙 )
𝑡 increases

by a factor of log
2
𝑘 and the Bit Error Rate (BER) decreases according to [12, Eq. (18)].
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Table 1. Parameters of the adaptive modulation mechanism with hysteresis for a BER threshold of 10
−9
.

𝑀 Bitrate (Mbps) Limit up (dBm) Limit down (dBm)

4 45 -72 N/A

16 90 -66 -74

64 135 -62.5 -68

128 157 -61 -64

256 180 -57 -62

512 202.5 -53 -58

1024 225 N/A -54

The adaptive modulation (AM) mechanism adjusts the constellation size 𝑀 over time, aiming

to maximize link capacity 𝑐
(𝑘,𝑙 )
𝑡 while keeping the BER above a given threshold. To comply with

the radios in [5, Sec. II.B], hereafter, we consider a wireless x-haul network that employs the AM

mechanism with hysteresis represented in Table 1. Table 1 represents a mapping from the evolution

of the received signal levels 𝑃
(𝑘,𝑙 )
𝑅𝑥,𝑡

over time to the evolution of the link capacities 𝑐
(𝑘,𝑙 )
𝑡 over time.

In particular, we assume that every link (𝑘, 𝑙) ∈ 𝐸 uses radios that adapt their constellation size𝑀

at each time-step 𝑡 based on Table 1 and on their measured received signal level 𝑃
(𝑘,𝑙 )
𝑅𝑥,𝑡

. The limit up

in Table 1 represents the received signal level in which the adopted𝑀 should increase. The limit

down represents the received signal level in which the adopted𝑀 should decrease to keep the BER

above the set threshold.

4.2 The Cost of Re-routing
One possible approach to dynamically optimizing the network configuration without resorting to

predictions of links’ future conditions is for the SDN controller to carry out, in each time 𝑡 , the fol-

lowing procedure: (i) gather information about the current link capacities 𝑐
(𝑘,𝑙 )
𝑡 ; (ii) employ existing

solutions to the MCF optimization problem (e.g., [2, 49]) to find the configuration {𝑓 (𝑘,𝑙 )𝑛,𝑡 , 𝑧𝑛,𝑡 } that
maximizes the current network utilization; and (iii) implement the new routing decisions 𝑓

(𝑘,𝑙 )
𝑛,𝑡 and

admission rates 𝑧𝑛,𝑡 by sending control packets to the BSs in the x-haul network. Upon reception

of these control packets, the BSs add/remove entries from their routing tables and adjust their

admission control accordingly. Two important drawbacks of this approach are the delay to recover

from performance degradation, which is characteristic of reactive reconfiguration mechanisms, and

that it does not take into account the transient congestion that may be caused by re-routing. Both

drawbacks may severely affect time-sensitive traffic. The MSNR algorithm proposed in Sec. 4.3

addresses both drawbacks. In this section, we discuss the negative effects that re-routing may have

on the network performance.

To update routes from 𝑓
(𝑘,𝑙 )
𝑛,𝑡−1

to 𝑓
(𝑘,𝑙 )
𝑛,𝑡 , the SDN controller may have to send control packets to

multiple BSs. Due to communication/processing delays, some BSs may apply the new routes 𝑓
(𝑘,𝑙 )
𝑛,𝑡

while others still employ old routes 𝑓
(𝑘,𝑙 )
𝑛,𝑡−1

, which may cause significant transient congestion and

over-utilization of communication links, namely violation of the capacity constraints (2). Depending

on the duration and magnitude of the congestion, data packets may be severely delayed or even

lost. Hence, the re-routing process can have performance impacts that should be taken into account

when the SDN controller decides to re-route or not.

In order to reduce the transient congestion associated with re-routing, a common approach (e.g.,

[18, 33, 59]) is to subdivide the re-routing process into multiple stages. In each stage, the SDN
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controller updates a small number of BSs. Each stage is designed to generate zero (or little) transient

congestion and the complete sequence of stages is designed to lead to the desired final routing

configuration. An important constraint is that the time for completing the re-routing process should

be shorter than the interval between two consecutive time-steps, e.g., 𝑡 and 𝑡 + 1, which in this

paper is Δ = 10 seconds. In [18, 33, 59], the authors propose different route implementation systems

that attempt to minimize the transient congestion. Yet, these route implementation systems can

only guarantee that re-routing is performed with zero congestion when a fraction of the network

capacity is not utilized before the update. Naturally, when all links are fully utilized, the first update

to take effect will always congest at least one link.

In this paper, we consider an SDN controller that implements new routes 𝑓
(𝑘,𝑙 )
𝑛,𝑡 by employing the

SWAN mechanism [18], which leverages scratch capacity in every link to perform congestion-free

re-routing. In particular, [18] shows that SWAN can update routes, i.e., change from 𝑓
(𝑘,𝑙 )
𝑛,𝑡−1

to any

given 𝑓
(𝑘,𝑙 )
𝑛,𝑡 , with zero transient congestion in at most ⌈1/𝑠𝑡 ⌉ − 1 stages, where 𝑠𝑡 ∈ (0, 1] represents

the scratch capacity of the network at time 𝑡 . 𝑠𝑡 is given by

𝑠𝑡 = argmax

𝑠∈ (0,1]

{
𝑁−1∑︁
𝑛=1

𝑧𝑛,𝑡−1𝑑𝑛 𝑓
(𝑘,𝑙 )
𝑛,𝑡−1

≤ (1 − 𝑠)𝑐 (𝑘,𝑙 )𝑡 ,∀(𝑘, 𝑙) ∈ 𝐸
}
. (4)

More details on the SWAN route implementation mechanism are available in [18]. Notice that when

the network has no scratch capacity, i.e., 𝑠𝑡 → 0, the SWANmechanism needs ⌈1/𝑠𝑡 ⌉−1→∞ stages

to complete a single congestion-free re-routing process. We assume that the period to complete

each stage is≪ 0.5 seconds and we impose a lower bound of 𝑠𝑚𝑖𝑛 = 0.05 on the scratch capacity, 𝑠𝑡 .

This way, we ensure that the time to complete a re-routing process is≪ Δ𝑡 = 10 seconds. Hereafter,

we assume that the SDN controller is allowed to re-route at time 𝑡 , if and only if 𝑠𝑡 ≥ 𝑠𝑚𝑖𝑛 = 0.05.

The SDN controller employs the MSNR algorithm to compute the optimal sequence of network

configurations over time and, when necessary, it employs the SWAN mechanism to implement new

routes. In particular, in each time-step 𝑡 , given the prior routing and admission control decisions,

{𝑓 (𝑘,𝑙 )
𝑛,𝑡−1

, 𝑧𝑛,𝑡−1}, the SDN controller employs (4) to calculate the current scratch capacity 𝑠𝑡 . If

𝑠𝑡 ≥ 𝑠𝑚𝑖𝑛 , the SDN controller employs the MSNR algorithm to compute the optimal sequence of

network configurations and then it employs SWAN to implement the optimal configuration {𝑓 (𝑘,𝑙 )𝑛,𝑡 ,

𝑧𝑛,𝑡 } at the current time 𝑡 . Alternatively, if 𝑠𝑡 < 𝑠𝑚𝑖𝑛 , the SDN controller is not allowed to re-route

at time 𝑡 , but it can still optimize the admission rates 𝑧𝑛,𝑡 . In this case, the SDN controller employs

the MSNR algorithm with fixed routing parameters 𝑓
(𝑘,𝑙 )
𝑛,𝑡 = 𝑓

(𝑘,𝑙 )
𝑛,𝑡−1

to compute the optimal sequence

of network configurations and then it implements the optimal admission rates 𝑧𝑛,𝑡 at time 𝑡 . It is

easy to see that admission rates can be updated from 𝑧𝑛,𝑡−1 to 𝑧𝑛,𝑡 with zero transient congestion in

at most two stages, irrespective of the value of 𝑠𝑡 . In the first stage, the SDN controller updates

all BSs in which 𝑧𝑛,𝑡−1 > 𝑧𝑛,𝑡 and, in the last stage, the SDN controller updates all BSs in which

𝑧𝑛,𝑡−1 < 𝑧𝑛,𝑡 .

The routing and admission control decisions at time 𝑡 determine the scratch capacity 𝑠𝑡+1 at
time 𝑡 + 1, which determines whether the SDN controller will be allowed to re-route at time 𝑡 + 1.

Hence, if the SDN controller plans to re-route at time 𝑡 + 1, it should select a network configuration

{𝑓 (𝑘,𝑙 )𝑛,𝑡 , 𝑧𝑛,𝑡 } that will lead to 𝑠𝑡+1 ≥ 𝑠𝑚𝑖𝑛 . This can be achieved by employing, at time 𝑡 , the following

capacity constraint for every link (𝑘, 𝑙) ∈ 𝐸

𝑁−1∑︁
𝑛=1

𝑧𝑛,𝑡𝑑𝑛 𝑓
(𝑘,𝑙 )
𝑛,𝑡 ≤ min{𝑐 (𝑘,𝑙 )𝑡 , (1 − 𝑠𝑚𝑖𝑛)𝑐 (𝑘,𝑙 )𝑡+1 } . (5)
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Alternatively, if the SDN controller plans to keep the same routes in the next time-step, i.e.,

𝑓
(𝑘,𝑙 )
𝑛,𝑡+1 = 𝑓

(𝑘,𝑙 )
𝑛,𝑡 , it should attempt to fully utilize the links, leaving no scratch capacity. This can

be achieved by employing the capacity constraints in (2). Intuitively, this means that, in order to

re-route in the next time-step 𝑡 + 1, the SDN controller may need to reduce the admission rates 𝑧𝑛,𝑡
in the current time-step 𝑡 . This reduction of 𝑧𝑛,𝑡 represents the cost of re-routing, as illustrated in the

following example.

Example: consider the network in Fig. 8(a) with 𝑁 = 3 nodes, three links {(1, 2), (2, 3), (1, 3)},
and fixed demands 𝑑1 = 1 and 𝑑2 = 0.5. Assume that this network has capacities 𝑐

(𝑘,𝑙 )
𝑡 = 0.5 for all

links and predicted capacities 𝑐
(𝑘,𝑙 )
𝑡+ℎ = 0.5 for all links and prediction horizons ℎ. Moreover, assume

that 𝑠𝑡 ≥ 𝑠𝑚𝑖𝑛 = 0.05, meaning that the SDN controller is allowed to re-route at the current decision

time 𝑡 .

Plan to not re-route. If the SDN controller plans to keep the same routes in future time-steps, then

it adopts the capacity constraints in (2). In this toy example, it is easy to see that the corresponding

max-min fair admission rates are 𝑧1,𝑡 = 𝑧2,𝑡 = 2/3. Notice that there exists feasible configurations
{𝑓 (𝑘,𝑙 )𝑛,𝑡 , 𝑧𝑛,𝑡 } with higher sum

∑
2

𝑛=1
𝑧𝑛,𝑡 , but their admission rates are not max-min fair. An example

of such unfair feasible admission rates are 𝑧1,𝑡 = 0.5, 𝑧2,𝑡 = 1.

Plan to re-route. Alternatively, if the SDN controller plans to re-route in the next time-step, then

it adopts the capacity constraints in (5) with 𝑠𝑚𝑖𝑛 = 0.05. It is easy to see that the corresponding

max-min fair admission rates are 𝑧1,𝑡 = 𝑧2,𝑡 = 2/3 ∗ (1 − 0.05).
Two important observations about re-routing plans. (i) Planning to re-route at time 𝑡 + 1 does

not guarantee that the SDN controller will be able to re-route at time 𝑡 + 1. In particular, if the

capacity prediction is inaccurate and (by chance) 𝑐
(𝑘,𝑙 )
𝑡+1 > 𝑐

(𝑘,𝑙 )
𝑡+1 , the SDN controller may not have

enough scratch capacity at time 𝑡 + 1 to re-route. In this case, the SDN controller is only allowed to

adjust the admitted demand. (ii) Planning to re-route at time 𝑡 + 1, can only cause performance

degradation at the current time 𝑡 , due to the provision of the scratch capacity. The potential benefits

of planning to re-route at time 𝑡 + 1 can only be assessed by computing the performance of the

network at future time-steps.

4.3 Optimal Sequence of Configurations
In this section, we develop the MSNR algorithm which leverages information about current and

future predicted link capacities {𝑐 (𝑘,𝑙 )𝑡 , 𝑐
(𝑘,𝑙 )
𝑡+1 , . . . , 𝑐

(𝑘,𝑙 )
𝑡+𝐻 } to dynamically optimize routing and admis-

sion control decisions aiming to maximize the cumulative sum of admission rates

∑𝑇
𝑡=1

∑𝑁−1

𝑛=1
𝑧𝑛,𝑡 ,

while ensuring that, in every time-step 𝑡 , the selected feasible set {𝑓 (𝑘,𝑙 )𝑛,𝑡 , 𝑧𝑛,𝑡 } is max-min fair and

can be implemented by the SDN controller without inducing transient congestion. An important

feature of the MSNR algorithm is that it guarantees (as shown in Proposition 4) that the selected

network configuration is always max-min fair.

Before describing the MSNR algorithm, we introduce the concept of a re-routing plan. For a

given time 𝑡 and a prediction window size𝐻 , let 𝑟𝑡,ℎ be an indicator function that is equal to 1, if the

plan is to re-route in time-step 𝑡 + ℎ, ∀ℎ ∈ {0, 1, . . . , 𝐻 }, and 𝑟𝑡,ℎ = 0, otherwise. The re-routing plan

at time 𝑡 is given by the vector rt = (𝑟𝑡,0, 𝑟𝑡,1, . . . , 𝑟𝑡,𝐻 ). Notice that if 𝑠𝑡 < 𝑠𝑚𝑖𝑛 , then 𝑟𝑡,0 = 0 and if

𝑠𝑡 ≥ 𝑠𝑚𝑖𝑛 , then 𝑟𝑡,0 ∈ {0, 1}. The capacity constraint associated with link (𝑘, 𝑙) ∈ 𝐸 at time-step 𝑡 +ℎ
depends on whether the plan is to re-route at time-step 𝑡 + ℎ + 1 or not, and is represented by

𝑁−1∑︁
𝑛=1

𝑧𝑛,𝑡+ℎ𝑑𝑛 𝑓
(𝑘,𝑙 )
𝑛,𝑡+ℎ ≤ min{𝑐 (𝑘,𝑙 )

𝑡+ℎ , (1 − 𝑠𝑚𝑖𝑛𝑟𝑡,ℎ+1)𝑐 (𝑘,𝑙 )𝑡+ℎ+1} , (6)

which is a generalization of (2) and (5).
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The optimization problem associated with a given re-routing plan rt can be subdivided at the

re-routing times (i.e., times 𝑡 + ℎ in which 𝑟𝑡,ℎ = 1) without loss of optimality. Let {𝑡 + ℎ1, 𝑡 + ℎ1 + 1,

. . . , 𝑡 +ℎ2} represent a subdivision of a re-routing plan rt. The Generalized-MCF (G-MCF) algorithm

described in Algorithm 1 jointly optimizes the routing decisions 𝑓
(𝑘,𝑙 )
𝑛,𝑡+ℎ1

,∀𝑛,∀(𝑘, 𝑙) at the initial
time 𝑡 + ℎ1 and the admission rates 𝑧𝑛,𝑡+ℎ,∀𝑛,∀ℎ ∈ {ℎ1, . . . , ℎ2}. Notice that routes remain fixed

within a subdivision. To address this joint optimization, G-MCF solves a sequence of MCF problems

with increasing admission rates 𝑧𝑛,𝑡+ℎ until all commodities in the network become saturated. To

compute the optimal routing and admission control decisions associated with an entire re-routing

plan rt, the G-MCF algorithm is employed in each of its subdivisions.

Algorithm 1: Generalized-MCF (G-MCF) algorithm

1 Input: subdivision under consideration {𝑡 + ℎ1, 𝑡 + ℎ1 + 1, . . . , 𝑡 + ℎ2}, re-routing plan rt, network

topology 𝐺 = (𝑉 , 𝐸), demands 𝑑𝑛 , current link capacities 𝑐
(𝑘,𝑙 )
𝑡 , and predicted link capacities 𝑐

(𝑘,𝑙 )
𝑡+ℎ ;

2 Initialization: iteration 𝑘 = 0, unsaturated commodities𝑈 = {(𝑛,ℎ)}, ∀(𝑛,ℎ), and admission rates

that saturate each commodity 𝑧𝑆(𝑛,ℎ) = 0, ∀𝑛 ∈ {1, . . . , 𝑁 − 1}, ∀ℎ ∈ {ℎ1, . . . , ℎ2};
3 while𝑈 ≠ ∅ do
4 % Next, we find 𝑧 that solves the joint optimization described in Line 7;

5 for 𝑛 ∈ {1, . . . , 𝑁 − 1} and ℎ ∈ {ℎ1, . . . , ℎ2} do
6 if (𝑛,ℎ) ∈ 𝑈 then 𝑧𝑛,𝑡+ℎ ← 𝑧; else 𝑧𝑛,𝑡+ℎ ← 𝑧𝑆(𝑛,ℎ) ;

7 Solve: max 𝑧, s.t. 𝑧 ∈ [0, 1] and constraints (1), (6), ∀ℎ;
8 Output 1: values of 𝑧∗ and 𝑓

(𝑘,𝑙 )
𝑛,𝑡+ℎ ;

9 % Next, we identify the new saturated commodities (𝑛,ℎ);
10 Determine the set 𝐷 of disconnected commodities in the residual graph associated with Output 1;

11 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝐹𝑙𝑎𝑔 = ∅;
12 for (𝑛,ℎ) ∈ 𝐷 do
13 % Next, we find 𝑧 (𝑛,ℎ) that solves the joint optimization described in Line 16;

14 Assign: 𝑧𝑛,𝑡+ℎ ← 𝑧 (𝑛,ℎ) ;
15 for (𝑚, 𝑗) ∈ 𝑈 \ (𝑛,ℎ) do 𝑧𝑚,𝑡+𝑗 ← 𝑧∗;
16 Solve: max 𝑧 (𝑛,ℎ) , s.t. 𝑧 (𝑛,ℎ) ∈ [0, 1] and (1), (6), ∀ℎ;
17 Output 2: values of 𝑧∗(𝑛,ℎ) and 𝑓

(𝑘,𝑙 )
𝑛,𝑡+ℎ ;

18 if 𝑧∗(𝑛,ℎ) = 𝑧∗ then
19 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝐹𝑙𝑎𝑔← 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝐹𝑙𝑎𝑔 ∪ (𝑛,ℎ);
20 for (𝑛,ℎ) ∈ Saturation Flag do
21 Assign: 𝑧𝑆(𝑛,ℎ) ← 𝑧∗ and𝑈 ← 𝑈 \ (𝑛,ℎ);
22 𝑘 ← 𝑘 + 1

23 % Next, we find the max-min fair feasible configuration;

24 for 𝑛 ∈ {1, . . . , 𝑁 − 1} and ℎ ∈ {ℎ1, . . . , ℎ2} do
25 Assign: 𝑧𝑛,𝑡+ℎ ← 𝑧𝑆(𝑛,ℎ) ;

26 Obtain: 𝑓
(𝑘,𝑙 )
𝑛,𝑡+ℎ that satisfy (1) and (6) for ℎ ∈ {ℎ1, . . . , ℎ2};

27 Output 3: values of 𝑧𝑛,𝑡+ℎ = 𝑧𝑆(𝑛,ℎ) and 𝑓
(𝑘,𝑙 )
𝑛,𝑡+ℎ ;

MSNR algorithm. To find the optimal sequence of network configurations at time-step 𝑡 , the

MSNR algorithm selects the plan r∗t with highest cumulative sumof admission rates

∑𝐻−1

ℎ=0

∑𝑁−1

𝑛=1
𝑧𝑛,𝑡+ℎ .

A naive implementation of the MSNR algorithm computes and compares the performance of the

(at least) 2
𝐻
admissible re-routing plans. To reduce the computational complexity from exponential
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𝑂 (2𝐻 ) to polynomial 𝑂 (𝐻 4), we develop a principled implementation of the MSNR algorithm

which leverages the fact that the G-MCF algorithm optimizes subdivisions of the re-routing plan rt
separately. This principled implementation based on backward induction is described next.

First Case. Consider the space of plans rt that re-route for the first time at step 𝑡 + 𝐻 − 1, i.e.,

rt ∈ {(0, . . . , 0, 1, 0), (0, . . . , 0, 1, 1)}. TheMSNR algorithm employs the G-MCF algorithm to compute

the optimal routing and admission control decisions for these 2 re-routing plans and then selects the

plan r(1)t with highest cumulative sum of admission rates at time 𝑡 +𝐻 − 1, namely

∑𝑁−1

𝑛=1
𝑧𝑛,𝑡+𝐻−1.

Second Case. Consider the space of plans that re-route for the first time at step 𝑡 + 𝐻 − 2, i.e.,

rt ∈ {(0, . . . , 0, 1, 0, 0), (0, . . . , 0, 1, 0, 1), (0, . . . , 0, 1, 1, 0), (0, . . . , 0, 1, 1, 1)}. Notice that in the subspace
of plans that re-route both at times 𝑡 + 𝐻 − 2 and 𝑡 + 𝐻 − 1, we know from the First Case that

rt = r(1)t + (0, . . . , 0, 1, 0, 0) has the best performance and, hence, all other plans in this particular

subspace can be excluded from consideration. The MSNR algorithm computes the optimal routing

and admission control decisions for the remaining 3 re-routing plans and selects the plan r(2)t with

highest cumulative sum of admission rates at times 𝑡+𝐻−2 and 𝑡+𝐻−1, namely

∑𝐻−1

ℎ=𝐻−2

∑𝑁−1

𝑛=1
𝑧𝑛,𝑡+ℎ .

Third Case. Consider the space of plans that re-route for the first time at step 𝑡 + 𝐻 − 3, i.e.,

rt ∈ {(0, . . . , 0, 1, 0, 0, 0), . . ., (0, . . . , 0, 1, 1, 1, 0), (0, . . . , 0, 1, 1, 1, 1)}. Notice that in the subspace of

plans that re-route both at times 𝑡 + 𝐻 − 3 and 𝑡 + 𝐻 − 2, we know from the Second Case that

rt = r(2)t + (0, . . . , 0, 1, 0, 0, 0) has the best performance and, hence, all other plans in this particular

subspace can be excluded from consideration. Similarly, in the subspace of plans that re-route both

at times 𝑡 + 𝐻 − 3 and 𝑡 + 𝐻 − 1, but do not re-route at time 𝑡 + 𝐻 − 2, we know from the First

Case that rt = r(1)t + (0, . . . , 0, 1, 0, 0, 0) has the best performance and, hence, all other plans in

this particular subspace can be excluded from consideration. The MSNR algorithm computes the

optimal routing and admission control decisions for the remaining 4 re-routing plans and selects

the plan r(3)t with highest cumulative sum of admission rates from times 𝑡 + 𝐻 − 3 to 𝑡 + 𝐻 − 1,

namely

∑𝐻−1

ℎ=𝐻−3

∑𝑁−1

𝑛=1
𝑧𝑛,𝑡+ℎ .

Subsequent Cases. The MSNR algorithm considers the space of plans that re-route for the first

time at steps 𝑡 + 𝐻 − 4, 𝑡 + 𝐻 − 5, . . ., 𝑡 and employs an analogous procedure in order to determine

the best plans r(4)t , r(5)t , . . ., r(H)t .

Last Case.TheMSNR algorithm compares the performance of the best plans r(h)t ,∀ℎ ∈ {1, 2, · · · , 𝐻 }
with the performance of the plans (0, . . . , 0, 0) and (0, . . . , 0, 1), and then selects the plan r∗t with
highest cumulative sum of admission rates

∑𝐻−1

ℎ=0

∑𝑁−1

𝑛=1
𝑧𝑛,𝑡+ℎ in the entire prediction window. The

routing and admission control decisions associated with r∗t are the optimal sequence of network

configurations.

Remark 3 (Computational Complexity). To find the best plans r(1)t , r(2)t , . . ., r(H)t in each of the

corresponding backward induction cases, the MSNR algorithm computes and compares the performance

of 2, 3, . . . , 𝐻 + 1 re-routing plans, respectively. Then, in the last case of the induction, the MSNR

algorithm computes and compares the performance of𝐻 +2 re-routing plans in order to find the plan r∗t
and the associated optimal sequence of network configurations {𝑓 (𝑘,𝑙 )

𝑛,𝑡+ℎ, 𝑧𝑛,𝑡+ℎ}, ∀ℎ ∈ {0, 1, . . . , 𝐻 − 1},
at time 𝑡 . In total, the MSNR algorithm employing backward induction computes the performance of

(𝐻 +1) (𝐻 +4)/2 re-routing plans, as opposed to the (at least) 2
𝐻
computations associated with the naive

implementation. Notice from Algorithm 1 that to compute the performance of any given re-routing

plan rt, the G-MCF algorithm solves 𝑂 (𝐻 2𝑁 2) MCF optimization problems, each of which can be

solved in polynomial time [2, 49]. It follows that the MSNR algorithm has polynomial computational

complexity which grows as 𝑂 (𝐻 4).
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Proposition 4 (Max-Min Fairness of the MSNR algorithm). The optimal sequence of network

configurations {𝑓 (𝑘,𝑙 )
𝑛,𝑡+ℎ, 𝑧𝑛,𝑡+ℎ} given by the MSNR algorithm has admission rates {𝑧𝑛,𝑡+ℎ}𝑁−1

𝑛=1
that are

max-min fair in every time-step 𝑡 + ℎ and for any given ℎ ∈ {0, 1, . . . , 𝐻 − 1}, irrespective of the
topology 𝐺 = (𝑉 , 𝐸), demands 𝑑𝑛 , and current and predicted link capacities {𝑐 (𝑘,𝑙 )𝑡 , 𝑐

(𝑘,𝑙 )
𝑡+1 , . . . , 𝑐

(𝑘,𝑙 )
𝑡+𝐻 }.

Proof. The complete proof is in Appendix A. □

5 PERFORMANCE EVALUATION
In this section, we evaluate the performance of the PNR framework. In particular, in Sec. 5.1 we

evaluate the prediction accuracy of the AP mechanism and compare it with two benchmark time

series prediction methods. Then, in Sec. 5.2, we evaluate the performance of the MSNR algorithm

and compare it with two reactive algorithms using a small network with 𝑁 = 3 nodes, synthetically

generated attenuation levels 𝑥
(𝑘,𝑙 )
𝑡 and synthetically generated attenuation predictions 𝑥

(𝑘,𝑙 )
𝑡+ℎ with

tunable prediction accuracies. The goal is to gain insight from this small and controllable network.

Finally, in Sec. 5.3, we evaluate the PNR framework (with both the AP mechanism and the MSNR

algorithm) using the dataset from the backhaul network with 𝑁 = 13 nodes, illustrated in Fig. 1.

5.1 Evaluation of the AP mechanism
The prediction accuracy of the AP mechanism is evaluated using the test sequences of attenuation

measurements described in Sec. 2. In this section, we show the results associated with Test Seq. I

and Test Seq. II, both of which include a period of rain. We first assess the prediction error of a

given link, then we analyze the prediction RMSE of the entire network and, finally, we assess the

empirical probability of large prediction errors. Additional evaluation, including results associated

with different test sequences and different links, are shown in Appendix B and in [30].

Let 𝑒
(𝑘,𝑙 )
𝑡,ℎ

= 𝑥
(𝑘,𝑙 )
𝑡+ℎ − 𝑥

(𝑘,𝑙 )
𝑡+ℎ be the ℎ-steps-ahead prediction error associated with link (𝑘, 𝑙) at time 𝑡 .

In Fig. 6(a), we compare the evolution of the attenuation measurements 𝑥
(9,13)
𝑡+3 from link (9, 13)

with the 3-steps-ahead predictions 𝑥
(9,13)
𝑡+3 generated by the AP mechanism during an interval of

300 time-steps from Test Seq. I. In Fig. 6(b), we display the relative frequency distribution of the

3-steps-ahead prediction error 𝑒
(9,13)
𝑡,3

from link (9, 13) associated with the entire Test Seq. I. The

results in Fig. 6 suggest that: (i) the attenuation predictions accurately track the measurements; (ii)

the distribution of the prediction error 𝑒
(𝑘,𝑙 )
𝑡,ℎ

is similar to a normal distribution with zero mean; and

(iii) at high measured attenuation levels, predictions tend to (slightly) underestimate the attenuation.

This underestimation is further assessed in Appendix B.

Weather-induced attenuation varies over time and location, and also depends on links’ char-

acteristics such as frequency, polarization, and length. Therefore, prediction errors may differ

considerably across different links. To capture the prediction error in the entire network, we employ

𝑅𝑀𝑆𝐸
avg

ℎ
=

√√√
1

𝑇 − 𝐻

𝑇−𝐻∑︁
𝑡=1

1

|𝐸 |
∑︁
(𝑘,𝑙 ) ∈𝐸

(
𝑒
(𝑘,𝑙 )
𝑡,ℎ

)
2

, 𝑅𝑀𝑆𝐸max

ℎ
=

√√√
1

𝑇 − 𝐻

𝑇−𝐻∑︁
𝑡=1

max

(𝑘,𝑙 ) ∈𝐸

{(
𝑒
(𝑘,𝑙 )
𝑡,ℎ

)
2

}
(7)

which calculate the RMSE associated with the ℎ-steps-ahead prediction errors of all links over the

entire time-horizon and the RMSE associated with the largest ℎ-steps-ahead prediction error among

all the links in each time-step 𝑡 , respectively. In Fig. 7(a)-(b), we display the 𝑅𝑀𝑆𝐸
avg

ℎ
and 𝑅𝑀𝑆𝐸max

ℎ

(in dB) as a function of the prediction horizon ℎ ∈ {1, . . . , 𝐻 } for Test Seq. I and II and for three

prediction mechanisms: (i) the AP mechanism; (ii) the naive AP method, also called random-walk

method, which is a commonly used benchmark [20] that employs the latest measurement as future

predictions, i.e., 𝑥
(𝑘,𝑙 )
𝑡+ℎ (𝑛𝑎𝑖𝑣𝑒) = 𝑥

(𝑘,𝑙 )
𝑡 ,∀ℎ; and (iii) the ARIMA model, which is a well-known time
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(a) (b)

Fig. 6. (a) Comparison of the attenuation from link (9, 13) with the 3-steps-ahead predictions. (b) Relative

frequency distribution of the 3-steps-ahead prediction error.

(a) Test Seq. I (b) Test Seq. II

(c) AP mechanism, Test Seq. I (d) ARIMA model, Test Seq. I

Fig. 7. (a)-(b): 𝑅𝑀𝑆𝐸
avg

ℎ
and 𝑅𝑀𝑆𝐸max

ℎ
of the prediction error for different horizons ℎ and for the AP mecha-

nism, naive AP method, and ARIMA model. (c)-(d): Percentile for the modulus of the prediction error.

series prediction model [44]. It is important to emphasize that both benchmark methods (i.e., naive

and ARIMA) consider each link in isolation when predicting future attenuation levels and, thus, they

do not capture the spatial correlation that is typical of weather-induced attenuation. The results in

Fig. 7(a)-(b) suggest that the AP mechanism outperforms the benchmark methods in both Test Seqs. I

and II and that this performance improvement increases as the prediction horizon ℎ increases.
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When the network condition is steady (e.g., during a dry period or when the rain intensity does

not vary significantly) we expect the accuracy of any sound prediction mechanism to be high.

Therefore, time-average improvements such as the ones displayed in Fig 7(a)-(b) can seem modest.

To capture the improvement of AP in critical moments, we analyze the empirical probability of large

prediction errors by computing the percentile associated with the modulus of the ℎ-steps-ahead

predictions errors |𝑒 (𝑘,𝑙 )
𝑡,ℎ
|. In particular, for a given test sequence with measurements 𝑥

(𝑘,𝑙 )
𝑡+ℎ and

associated attenuation predictions 𝑥
(𝑘,𝑙 )
𝑡+ℎ , the 𝜂 th percentile value represents the lowest |𝑒 (𝑘,𝑙 )

𝑡,ℎ
|

that is larger than or equal to 𝜂% of all the values of |𝑒 (𝑘,𝑙 )
𝑡,ℎ
| in the considered dataset. In Figs. 7(c)

and (d), we show the percentile values for different prediction horizons ℎ ∈ {1, . . . , 5} for the AP
mechanism and for the ARIMA model, respectively. The results in Figs. 7(c) and (d) suggest that,

as expected, the percentile values increase with the prediction horizon ℎ. More importantly, the

results also show that 99.9% of the one-step-ahead errors for ARIMA and AP are lower than 0.96 dB

and 0.84 dB, respectively, and the 5-step-ahead errors for ARIMA and AP are lower than 3.26 dB

2.39 dB, respectively, highlighting the significant improvement of AP over ARIMA, which can be

attributed at least in part to the capability of the AP mechanism of capturing the spatial correlation

of weather-induced attenuation.

In summary, the results in Figs. 6 and 7 show that the APmechanism predicts future link attenuation

with high accuracy even when network’s conditions change abruptly. This high prediction accuracy

is what allows us to use the predicted link capacities as input to the MSNR algorithm. The impact

of the prediction accuracy on the performance of the MSNR algorithm is discussed next.

5.2 Evaluation of reconfiguration algorithms in a small network
We compare the performance of the MSNR algorithm with that of two reactive network reconfigura-

tion algorithms in a small network with𝑁 = 3 nodes, synthetically generated link attenuation levels,

and tunable accuracy of attenuation predictions. The goal is to leverage the small tunable network

to gain insight into the behavior of the different reconfiguration algorithms. The drawback is that

the limited re-routing options restrict the performance benefit of the reconfiguration algorithm. To

evaluate the performance benefit in a large network, in the next section we consider the city-scale

backhaul network.

The reconfiguration algorithms are evaluated in terms of their network utilization, which is

captured by the evolution of the node-average admission rate

∑𝑁−1

𝑛=1
𝑧𝑛,𝑡/(𝑁 − 1) over time 𝑡 . The

considered reconfiguration algorithms are:

i) MSNR algorithm: as described in Sec. 4.3.

ii) Never re-route algorithm: attempts to maximize the admission rates 𝑧𝑛,𝑡 by never provision-

ing scratch capacity and, thus, fully utilizing links whenever possible. Under this algorithm,

the SDN controller is rarely
6
allowed to re-route, but it continuously optimizes the admission

rates.

iii) Always re-route algorithm: attempts to provision scratch capacity 𝑠𝑡 ≥ 𝑠𝑚𝑖𝑛 = 0.05 at every

time-step 𝑡 , allowing the SDN controller to optimize routing decisions often.

All three network reconfiguration algorithms select max-min fair admission rates 𝑧𝑛,𝑡 at every

time-step 𝑡 . The main difference is that only the MSNR algorithm employs the predictions of the

links’ future conditions to decide when to re-route. Both the Never re-route and Always re-

route algorithms simply react to the time-varying conditions of the network. Unfortunately, a

comparison with the predictive SDN-based routing framework developed in [59] is impractical

6
If the predicted capacities 𝑐

(𝑘,𝑙 )
𝑡+1 are inaccurate, in particular if 𝑐

(𝑘,𝑙 )
𝑡+1 < 𝑐

(𝑘,𝑙 )
𝑡+1 , it may happen that 𝑠𝑡+1 ≥ 𝑠𝑚𝑖𝑛 and the

Never re-route algorithm is allowed to re-route at time 𝑡 + 1.
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due to the incompatible assumptions. The framework in [59] can only be employed during periods

of rain, it allows flows to temporarily exceed the link capacity, and it does not take fairness into

account.

The results in this section are associated with the small network with 𝑁 = 3 nodes and three

links {(1, 2), (2, 3), (1, 3)} illustrated in Fig. 8(a). The normalized
7
demands associated with nodes 1

and 2 remain fixed at 𝑑1 = 1 and 𝑑2 = 0.5, respectively, during the time-horizon of 1, 000 time-steps.

The attenuation levels 𝑥
(𝑘,𝑙 )
𝑡 and predicted attenuation levels 𝑥

(𝑘,𝑙 )
𝑡+ℎ are synthetically generated

according to the following stochastic processes

𝑥
(𝑘,𝑙 )
𝑡 = min{max{𝑥 (𝑘,𝑙 )

𝑡−1
+ 𝛿 (𝑘,𝑙 )𝑡 ;−100};−50} ; (8)

𝑥
(𝑘,𝑙 )
𝑡+ℎ = min{max{𝑥 (𝑘,𝑙 )

𝑡+ℎ + ˜𝛿
(𝑘,𝑙 )
𝑡,ℎ

;−100};−50} , (9)

for all links (𝑘, 𝑙) ∈ 𝐸, for all time-steps 𝑡 ∈ {1, . . . , 1, 000}, for all values of ℎ ∈ {1, . . . , 𝐻 }, and with
𝑥
(𝑘,𝑙 )
0

sampled from a uniform distribution in the interval (−100,−50). Notice that (8) establishes the
variation of the attenuation 𝑥

(𝑘,𝑙 )
𝑡 over time, while (9) establishes the noise in the prediction 𝑥

(𝑘,𝑙 )
𝑡+ℎ of

the future attenuation 𝑥
(𝑘,𝑙 )
𝑡+ℎ . The sequence of Gaussian random variables 𝛿

(𝑘,𝑙 )
𝑡 is i.i.d. over time 𝑡 ,

independent across links, and sampled according to N(0, 6.25). Similarly, the sequence of random

variables
˜𝛿
(𝑘,𝑙 )
𝑡,ℎ

are Gaussian N(0, 𝜎̃2) with positive variance 𝜎̃2
, i.i.d. over time, and independent

across different links. Notice from (9) that, a high variance 𝜎̃2
represents an AP mechanism with

poor accuracy, i.e. large prediction error. The choice of Gaussian distribution for
˜𝛿
(𝑘,𝑙 )
𝑡,ℎ

was inspired

by the relative frequency distribution of the prediction error shown in Fig. 6(b).

To determine the capacities 𝑐
(𝑘,𝑙 )
𝑡 and the predicted capacities 𝑐

(𝑘,𝑙 )
𝑡+ℎ associated with the synthetic

values of 𝑥
(𝑘,𝑙 )
𝑡 and 𝑥

(𝑘,𝑙 )
𝑡+ℎ , respectively, we adopt a constant transmission signal level of 𝑃

(𝑘,𝑙 )
𝑇𝑥,𝑡

=

0 dBm and use the AM mechanism described in Sec. 4.1. In Fig. 8(b), we display the evolution of

the normalized values of 𝑐
(𝑘,𝑙 )
𝑡 employed to obtain the results in this section. Notice that this is a

network with highly dynamic link capacities 𝑐
(𝑘,𝑙 )
𝑡 .

In Fig. 8(c), we compare the evolution of the node-average admission rate (𝑧1,𝑡 + 𝑧2,𝑡 )/2 over

time 𝑡 for different reconfiguration algorithms operating with ideal attenuation predictions, i.e.,

with 𝑥
(𝑘,𝑙 )
𝑡+ℎ = 𝑥

(𝑘,𝑙 )
𝑡+ℎ and, as a result, 𝑐

(𝑘,𝑙 )
𝑡+ℎ = 𝑐

(𝑘,𝑙 )
𝑡+ℎ . In Fig. 8(d) and in Table 2, we show the time-

average admission rates

∑𝑇
𝑡=1
(𝑧1,𝑡 +𝑧2,𝑡 )/2𝑇 for different reconfiguration algorithms operating with

attenuation predictions with different accuracies 𝜎̃2 ∈ {0, 0.0025, 0.25, 1, 4, 9, 25} and different

prediction window sizes 𝐻 ∈ {2, 3, 4, 5}.
The results in Fig. 8(c) show that, as expected, Never re-route has the worse performance, while

MSNR with prediction window size 𝐻 = 5 has the best performance in terms of network utilization.

The poor performance of Never re-route, especially between time-steps 500 and 800, results from

the SDN controller not being allowed to re-route. The lower performance of Always re-route

when compared to MSNR is due to the frequent provisioning of scratch capacity 𝑠𝑚𝑖𝑛 = 0.05. By

leveraging the prediction of links’ future conditions, MSNR can assess the potential future benefits

of re-routing
8
, which allows it to choose when is the best time to re-route. Throughout the 1, 000

time-steps, the SDN controller re-routes 31, 30, 28, and 29 times when employing MSNR with

prediction window sizes 𝐻 ∈ {2, 3, 4, 5}, respectively.

7
Both demands and capacities are normalized with respect to the maximum achievable bitrate of 225Mbps from Table 1.

8
Recall from the discussion in Sec. 4.2 that planning to re-route at the next time-step 𝑡 + 1, can only degrade the network

performance at the current time 𝑡 due to the provisioning of the scratch capacity.
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(a) Small network with 𝑁 = 3 nodes (b) Normalized link capacity 𝑐
(𝑘,𝑙 )
𝑡

(c) Node-average rate (𝑧1,𝑡 + 𝑧2,𝑡 )/2 (d) Time-average

∑𝑇
𝑡=1
(𝑧1,𝑡 + 𝑧2,𝑡 )/2𝑇

Fig. 8. Performance of the MSNR algorithm for a small network with 𝑁 = 3 nodes. (a) Small network with

two commodities and a destination. The admitted demands 𝑧𝑛,𝑡𝑑𝑛 at time-step 𝑡 are shown within the

corresponding nodes. The total flows and capacities at time-step 𝑡 are shown next to the corresponding links.

(b) Evolution of the normalized link capacity 𝑐
(𝑘,𝑙 )
𝑡 over time. (c) Node-average admission rate (𝑧1,𝑡 + 𝑧2,𝑡 )/2

for different reconfiguration algorithms with ideal attenuation prediction (𝜎̃2 = 0). (d) Time-average admission

rate

∑𝑇
𝑡=1
(𝑧1,𝑡 + 𝑧2,𝑡 )/2𝑇 for MSNR with different prediction window sizes 𝐻 ∈ {2, 3, 4, 5} and attenuation

prediction accuracies 𝜎̃2 ∈ {0, 0.0025, . . . , 9}.

The results in Fig 8(d) and Table 2 suggest that: (i) The performance of MSNR improves
9
as

the prediction accuracy improves and as the window size 𝐻 increases. Intuitively, this is because

accurate information about future network conditions allows the MSNR algorithm to better prepare

the network for imminent disturbances. (ii) The performance gain of improving the prediction

accuracy is more significant than the performance gain of increasing the prediction window size 𝐻 .

This is because the MSNR algorithm uses predicted network conditions as the ground-truth. This

design choice was made based on the high accuracy of the AP mechanism
10
.

5.3 Evaluation of the PNR Framework with real-world network data
We now evaluate the performance of the PNR framework using the data collected from the backhaul

network in Fig. 1 with𝑁 = 13 BSs (12 commodities and one destination) and 17 links. The normalized

demands assigned to the commodities are chosen according to a uniform distribution in the interval

(0, 2). In particular, the twelve demand values
11
are 𝒅 = [1.111, 0.557, 1.124, 1.266, 0.174, 1.485, 0.947,

9
Notice that a larger network with more re-routing options could have shown a more substantial performance improvement.

10
In case low prediction accuracy is detected, a viable alternative is for the SDR to fall back on reactive network reconfiguration

algorithms such as the one proposed by NEC in [40] that do not rely on future predictions.

11
Notice that similar results can be obtained for different vectors of demands.
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(a) Normalized link capacity 𝑐
(𝑘,𝑙 )
𝑡 (b) Ideal attenuation prediction

(c) Prediction from the AP mechanism

Fig. 9. Performance of the PNR framework using data collected from the backhaul network in Fig. 1. (a)

Evolution of the normalized measured link capacity 𝑐
(𝑘,𝑙 )
𝑡 over time. (b) Evolution of the node-average

admission rate

∑𝑁−1

𝑛=1
𝑧𝑛,𝑡 /(𝑁 − 1) over time for different network reconfiguration algorithms with ideal

attenuation prediction. (c) Evolution of

∑𝑁−1

𝑛=1
𝑧𝑛,𝑡 /(𝑁 − 1) over time for different network reconfiguration

algorithms using predictions from the AP mechanism.

Table 2. Time-average admission rates

∑𝑇
𝑡=1
(𝑧1,𝑡 + 𝑧2,𝑡 )/2𝑇 for different network reconfiguration algorithms

and for attenuation predictions with different accuracies.

Prediction accuracy Ideal 𝜎̃2 = 1 𝜎̃2 = 25

Never re-route 0.362 0.359 0.343

Always re-route 0.453 0.449 0.427

MSNR for 𝐻 = 2 0.477 0.473 0.447

MSNR for 𝐻 = 3 0.478 0.474 0.449

MSNR for 𝐻 = 4 0.479 0.476 0.449

MSNR for 𝐻 = 5 0.479 0.476 0.450

0.067, 0.140, 0.596, 1.413, 0.999]. The values of the (actual) capacities 𝑐 (𝑘,𝑙 )𝑡 and future predicted

capacities 𝑐
(𝑘,𝑙 )
𝑡+ℎ are determined by the link attenuation measurements in the dataset, by the AM

mechanism described in Sec. 4.1, and by the AP mechanism. To assess the performance of the

PNR framework in a challenging scenario, we choose a sequence of more than 400 measurements

(from Test Seq. I described in Sec. 2) that includes a period with high attenuation variability due to

a rain event. Moreover, we consider transmission signal levels 𝑃
(𝑘,𝑙 )
𝑇𝑥,𝑡

that are 10 dBm lower than

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 55. Publication date: December 2022.



Predictive Network Reconfiguration 55:21

Table 3. Performance gain of MSNR with 𝐻 ∈ {2, 5} when compared to a reactive algorithm: Never re-route

or Always re-route. The performance gain metrics in columns 3, 4, and 5 are defined in (10).

MSNR Reactive Time-aver. Node-aver. Instant.

𝐻 = 5 Always 7.74% 18.00% 170.19%

𝐻 = 2 Always 15.49% 26.84% 263.58%

𝐻 = 5 Never 1.67% 10.37% 68.37%

𝐻 = 2 Never 8.98% 22.04% 208.01%

the dataset measurements. In Fig. 9(a), we display the evolution of the normalized capacities 𝑐
(𝑘,𝑙 )
𝑡

from three selected links. Notice that the variation is significant. In Fig. 9(b), we show the evolution

of the node-average admission rates

∑𝑁−1

𝑛=1
𝑧𝑛,𝑡/(𝑁 − 1) for different reconfiguration algorithms

employing ideal attenuation prediction, i.e., 𝑐
(𝑘,𝑙 )
𝑡+ℎ = 𝑐

(𝑘,𝑙 )
𝑡+ℎ . In Fig. 9(c), we display the node-average

admission rates for algorithms employing the AP mechanism to predict 𝑐
(𝑘,𝑙 )
𝑡+ℎ over time. The results

in Figs. 9(b) and 9(c) show that MSNR outperforms both Never re-route and Always re-route.

In Table 3, we display the performance gain of MSNR with 𝐻 ∈ {2, 5} employing the AP

mechanism when compared to reactive algorithms: Never re-route or Always re-route. Let

𝑧
(𝑀,𝑅)
𝑛,𝑡 = 𝑧

(𝑀 )
𝑛,𝑡 − 𝑧

(𝑅)
𝑛,𝑡 be the difference between the admission rates associated with MSNR and the

reactive algorithm. The third, fourth, and fifth columns of Table 3 are associated with∑𝑇
𝑡=1

∑𝑁−1

𝑛=1
𝑧
(𝑀,𝑅)
𝑛,𝑡∑𝑇

𝑡=1

∑𝑁−1

𝑛=1
𝑧
(𝑅)
𝑛,𝑡

, max

𝑡

{∑𝑁−1

𝑛=1
𝑧
(𝑀,𝑅)
𝑛,𝑡∑𝑁−1

𝑛=1
𝑧
(𝑅)
𝑛,𝑡

}
, max

𝑛,𝑡

{
𝑧
(𝑀,𝑅)
𝑛,𝑡

𝑧
(𝑅)
𝑛,𝑡

}
; (10)

which are the time-average performance gain, maximum node-average performance gain, and max-

imum instantaneous performance gain, respectively. The results in Table 3 show that the MSNR

algorithm can improve the time-average admission rate

∑𝑇
𝑡=1
(𝑧1,𝑡 + 𝑧2,𝑡 )/2𝑇 by more than 7% when

compared to either Always re-route or Never re-route. More importantly, they also show that

the gain in terms of the instantaneous per commodity admission rate 𝑧𝑛,𝑡 can exceed 200%.

These significant instantaneous gains occur during severe rain-induced attenuation events, thus

suggesting that the PNR framework can indeed alleviate the impact of abrupt disturbances on the

network performance, which can be paramount to time-sensitive applications.

An important observation from the results in Secs. 5.2 and 5.3 is that, when the AP mechanism

has high accuracy, the performance gap between MSNR with 𝐻 = 2 and reactive algorithms is

significantly larger than the performance gain obtained from increasing the prediction window

size 𝐻 . Adding to this observation the fact that the computational complexity of MSNR grows with

𝐻 , as discussed in Sec. 4.3, makes the PNR framework with 𝐻 = 2 an attractive choice both in terms

of performance and complexity.

6 CONCLUSION
We developed the PNR framework that has two components. The first is the AP mechanism that

uses historical data to predict the sequence of future attenuation levels, without incorporating

any specific weather-related models. The second is the MSNR algorithm that dynamically optimize

routing 𝑓
(𝑘,𝑙 )
𝑛,𝑡 and admission control 𝑧𝑛,𝑡 decisions over time aiming to maximize the cumulative

sum of admission rates

∑𝑇
𝑡=1

∑𝑁−1

𝑛=1
𝑧𝑛,𝑡 . The MSNR algorithm guarantees that the selected feasible

set {𝑓 (𝑘,𝑙 )𝑛,𝑡 , 𝑧𝑛,𝑡 } is max-min fair in every time-step 𝑡 and can be implemented without inducing

transient congestion. We used a real-world dataset to thoroughly evaluate the PNR framework and
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to show that it allows the SDN controllers to prepare the x-haul for imminent (and possibly severe)

weather-induced disturbances.

An interesting extension of this work is the introduction of a mechanism to predict time-varying

traffic demands 𝑑𝑛 . It is worth emphasizing that (i) time-varying demands can be easily accounted

for using the network model proposed in Sec. 2; and that (ii) the prediction uncertainty of future

demands would mainly affect the capacity constraint (2) of the network reconfiguration problem,

similarly to the prediction uncertainty of link attenuation levels. An important challenge is obtaining

compatible data for both high frequency link attenuation and traffic demands.

There are several additional open problems that will be considered in our future work, including

consideration of downlink/uplink traffic, consideration of alternative approaches for predicting link

attenuation (e.g., Transformer models), consideration of Reinforcement Learning for dynamic net-

work reconfiguration with fairness guarantees, application to 5G slice admission and provisioning,

and experimental evaluation in city-scale testbeds [41, 46].
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A PROOF OF PROPOSITION 4
Proposition 4 (Max-Min Fairness of the MSNR algorithm). The optimal sequence of network con-

figurations {𝑓 (𝑘,𝑙 )
𝑛,𝑡+ℎ, 𝑧𝑛,𝑡+ℎ} given by the MSNR algorithm has admission rates {𝑧𝑛,𝑡+ℎ}𝑁−1

𝑛=1
that are

max-min fair in every time-step 𝑡 + ℎ and for any given ℎ ∈ {0, 1, . . . , 𝐻 − 1}, irrespective of the
topology 𝐺 = (𝑉 , 𝐸), demands 𝑑𝑛 , and current and predicted link capacities {𝑐 (𝑘,𝑙 )𝑡 , 𝑐

(𝑘,𝑙 )
𝑡+1 , . . . , 𝑐

(𝑘,𝑙 )
𝑡+𝐻 }.

Proof. Proposition 4 holds by the design of the MSNR algorithm. In the first iteration, Algo-

rithm 1 finds the lowest admission rate 𝑧∗ that saturates at least one commodity (𝑛,ℎ), assigns
𝑧𝑛,𝑡+ℎ ← 𝑧∗, and removes the new saturated commodities from the set of unsaturated commodities,

i.e.,𝑈 \ (𝑛,ℎ). Similarly, in each subsequent iteration 𝑘 , Algorithm 1 finds the lowest admission rate

𝑧∗ that saturates at least one unsaturated commodity (𝑛,ℎ) ∈ 𝑈 , assigns 𝑧𝑛,𝑡+ℎ ← 𝑧∗, and performs

𝑈 \ (𝑛,ℎ). The algorithm terminates when all commodities are saturated, i.e.𝑈 = ∅.
Consider one of the commodities (𝑛,ℎ) that became saturated during iteration 𝑘 . To increase its

admission rate beyond saturation 𝑧𝑛,𝑡+ℎ , we would have to reduce the admission rate of at least

one other commodity (𝑛′, ℎ) that became saturated either in iteration 𝑘 or in a previous iteration
12
.

Notice that, by the design of Algorithm 1, the saturation admission rate of commodity (𝑛′, ℎ) is
lower or equal to 𝑧𝑛,𝑡+ℎ . This means that, in each iteration 𝑘 , the set of saturated admission rates

{𝑧𝑛,𝑡+ℎ} (𝑛,ℎ)∉𝑈 is max-min fair. It follows that, upon termination, Algorithm 1 yields admission

rates {𝑧𝑛,𝑡+ℎ}𝑁−1

𝑛=1
that are max-min fair. □

12
Notice that if we could increase the admission rate of (𝑛,ℎ) beyond saturation 𝑧𝑛,𝑡+ℎ without reducing the admission

rates of another saturated commodity (𝑛′, ℎ) , then (𝑛,ℎ) was not saturated.
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B EVALUATION OF THE AP MECHANISM
In this appendix, we complement the evaluation of the AP mechanism presented in Sec. 5.1.

Specifically, we include: (i) results associated with Test Seq. III ; (ii) results associated with different

links in the network; and (iii) scatter plots that relate the measured attenuation values with the

corresponding predictions.

In Fig. 10(a)-(f), we compare the evolution of the attenuation measurements 𝑥
(𝑘,𝑙 )
𝑡+3 with the 3-

steps-ahead predictions 𝑥
(𝑘,𝑙 )
𝑡+3 generated by the AP mechanism during an interval of 300 time-steps

from Test Seq. I. The results in Fig. 10 suggest that the attenuation predictions accurately track the

measurements.

(a) Link (4,6) (b) Link (5,6) (c) Link (2,13)

(d) Link (6,13) (e) Link (9,13) (f) Link (10,13)

Fig. 10. Comparison of the actual (measured) attenuation from different links in the network with the

corresponding 3-steps-ahead predictions, i.e., predictions of 30 seconds into the future.

In Figs. 11(a)-(c), we display the 𝑅𝑀𝑆𝐸
avg

ℎ
and 𝑅𝑀𝑆𝐸max

ℎ
(in dB), defined in (7), as a function of

the prediction horizon ℎ ∈ {1, . . . , 𝐻 } for Test Seq. I, II, and III and for three prediction mechanisms:

(i) the AP mechanism; (ii) the naive method; and (iii) the ARIMA model. The results in Fig. 11

suggest that the AP mechanism outperforms the benchmark methods in all three test sequences

and that this performance improvement increases as the prediction horizon ℎ increases.

In Figs. 12(a)-(b), we show scatter plots that relate the measured attenuation values with the

corresponding 1-step-ahead predictions 𝑥
(𝑘,𝑙 )
𝑡+1 and 5-steps-ahead predictions 𝑥

(𝑘,𝑙 )
𝑡+5 for edges (10,13)

and (12,13) during Test Seq. I. The dashed line represents zero prediction error. The results in Fig. 12

suggests that: (i) prediction errors increase with the prediction horizon ℎ; (ii) prediction errors

increase at higher measured attenuation levels (i.e., when the rain is stronger); and (iii) at high

measured attenuation levels, predictions tend to underestimate the attenuation.
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(a) Test Seq. I (b) Test Seq. II

(c) Test Seq. III

Fig. 11. 𝑅𝑀𝑆𝐸
avg

ℎ
and 𝑅𝑀𝑆𝐸max

ℎ
of the prediction error for different horizons ℎ and for the AP mechanism,

naive method, and ARIMA model.

(a) Link (10,13) (b) Link (12,13)

Fig. 12. Scatter plots that relate the measured attenuation values with the corresponding 1-step-ahead

predictions 𝑥
(𝑘,𝑙 )
𝑡+1 and 5-steps-ahead predictions 𝑥

(𝑘,𝑙 )
𝑡+5 for edges (10,13) and (12,13) during Test Seq. I.
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