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Multi-Commodity Flow Problem

Discrete-time system with slot index t. Network with N nodes and K commodities.
e Each noden € {1,2, ..., N} keeps per-commodity queues;

e Commodity-c packets are addressed to node c;

o Af time-average arrival rate of commodity-c packets at node n;

e Goal is to find a network control algorithm that supports the arrivals A5, (when possible).



Network of Queues

o Let Q5 (t) be the number of commodity-c packets enqueued at node n at the beginning of
time-slot t. Then, according to Lindley recursion:

N N
Qn(t +1) < max {Qﬁ(t) - z Uy () 0} + Z =1uf,n(t) + A7 ()

j=1 i
where:

o AS(t) = 0isthe number of exogenous packet arrivals at the end of slot ¢;

. %cw_ (t) = 0 is the offered transmission opportunity to comm.-c over (n, j) during slot ¢t;
* Up (t) = K . ,u,‘;,j(t) is the total transmission opportunity over (n, j) during slot ¢t;
e 0 < f,,ij (t) < ,u,ij (t) is the # of packet transmissions of comm.-c over (n, j) during slot ¢;

* Cpj is the capacity constraint of link (n, j).
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Network of Queues

o Let Q5 (t) be the number of commodity-c packets enqueued at node n at the beginning of
time-slot t. Then, according to Lindley recursion:
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Network of Queues

o Let Q5 (t) be the number of commodity-c packets enqueued at node n at the beginning of
time-slot t. Then, according to Lindley recursion:

N
Qi +1) = Q5(0) — Z T O+ ), S0+ 450

Assumptions:

1 —t-1
lim — A%(T) =15 w.p.1
. A5()
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Network of Queues — Stability is the objective

Arrival Rate = Departure < Dep. Opport.

. R bility: 1 Qn(t) 0 , N N
ate stability: tl_)rglo T W.D. ’ N N\ N\
N N N
* Queue Q5 (t) is rate stable if and only if ) 1fi,cn + A5 = z | 1fnc,j = z 1"1%,]
1= J= J=
. . . Q?gt(t) . N rC C N cC
e If Arrival > Departure, then: g1_>r£10 =/ 1fim +Ah— ) 1fn,j w.p.1
i= j=

t—1

1
 Strong stability: L}im ?2 E[QL(T)] < oo [bounded time-average queue backlog]
7=0

e If Q5 (t) is strongly stable and there exists C > 0 such that
arr(t) —dep_opp(t) < C w.p.1,Vt or dep_opp(t)—arr(t) <C w.p.1,Vt
Then Qf(t) is also Rate Stable.



Network of Queues — Action and Outcome

* Network State: s(t) € § « channels, topology, packet arrivals,... [uncontrollable]

e Assumption: s(t) evolves according to an irreducible MC with finite states such that :

t—1
lim — Indicatorigp=sy = Mg W.p.1.; Vs €S

t—oo =0

* Action: I(t) € Js) < controls y; j(t) and f;*;(t) using knowledge of the network state

and (possibly) other information such as current queue backlog.
I(t) satisfies constraints from the state space Jg(y).

* Outcome: the result of any given state action pair (s(t), I(t)) are: 1) A% (t) for every
node n and; 2) u; ;(t) and fl-fj(t) for every link (i,j) and commodity c.

* Define the (total) link transmission rate matrix as U(S(t), I(t)) = [,ul-J (t)]ij.



Capacity Region — Definition

Definition: Capacity Region A is the closure of the set of all arrival rate matrices (45,), . that
can be stabilized by some (possibly unknown) network control algorithm.

Example: wireline network with capacity C, ;. State is s(t) = all channels are ON, Vt.

A3 (t) The capacity region A is given by the set of all A], A3
C . : : = o
L’ N %A for which there exists flow variables fncj satisfying:
C1,2 ] |
R @ Capacity: Y.X_, fii < CijVi,j;
Ve — —
@1’3\ d Cs4 Conservation: A}, = ﬂy=1 fnc,j - Y, fin,Vn,c;

Notice similarity between flow conservation and the
3 necessary and sufficient conditions for rate stability.



Capacity Region — Definition

Definition: Capacity Region A is the closure of the set of all arrival rate matrices (45,), . that
can be stabilized by some (possibly unknown) network control algorithm.

Supported transmission rate matrices: CI(T)

e Consider a fixed state s € 5 and define the set A; of all possible transmission rate matrices:
As ={UGsD) = [y ©], | 1€

 Consider the Stationary Randomized policy which selects I(t) = I w.p. ps(1) € (0,1].

 This stationary policy attains E [[,ul-’j(t)]ij‘s(t) = S] € ConvHull{A,}.

By appropriately selecting p,(I), any point in ConvHull{A.} can be achieved.

 The long-term link transmission rate matrix achieved by the class of Stationary Randomized
policies is defined as " := ), s msConvHuUll{A} and its closure is denoted CL(T").



Capacity Region — Definition

Definition: Capacity Region A is the closure of the set of all arrival rate matrices (17,),, . that
can be stabilized by some (possibly unknown) network control algorithm.

lllustration:
IE[MZ]A o Ag, ={U(s,D| T €7, } IE[piz] I = ZsegnsCoanull{AS}
./ % — ConvHull{A;_} ‘l' -
e ® &
%o o | 5
o ;
O As, Z{U(52,1)|16732} ~Q@._ @
i > Efpy] — E[y,]

*figure adapted from the book “Resource Allocation and Cross-Layer Control in Wireless Networks”



Capacity Region — Theorem

Definition: Capacity Region A is the closure of the set of all arrival rate matrices (45,), . that
can be stabilized by some (possibly unknown) network control algorithm.

Theorem: the capacity region A is given by the set of arrival rate matrices (17,),, . for which
there exists a transmission rate matrix IE[,ul-’j(t)]ij = [‘ai'j]ij € CIL(T') together with multi-

commodity flow variables ff] that satisfy the following routing feasibility constraints:
. . K ~ —_ .
* Flow capacity: X e—; flC] <@; <CiVij

* Flow conservation: A, = X2, fr i — Y01 fi5,Vn,c;

Flow are efficient: flcl =0, fccl = 0; [no flow from a node to itself or from the destination]

Flows are non-negative: £ = 0,V1,j, ¢;

e Routing constraints: flcj = 0,V(i, ], c) for which flow is not allowed.



Capacity Region — Example On/Off downlink

e i.i.d. Bernoulli channel state with P{s;(t) = ON} = p; and P{s,(t) = ON} = p,

 Every time-slot t, the controller observes the channels s, (t) and serves at most one packet
from one of the queues: u,, (t) € {0,1} such that u; (t) + u,(t) < 1,Vvt.

State Probability Transmission Rates

:l Q ‘pi (OFF,OFF) (1-p,)(1-p,) (0,0)
O—

_ - (ON/OFF) pl(l_pZ) (010)1 (110)
:IQ D2 (OFEON)  (1-py)p, (0,0), (0,1)
(ON,ON) p1p2 (0,0), (110)1 (011)

e Long-term link transmission rate matrix:

r=_01-p)1—-p){(0,0)} +p;(1—py) +
+(1 — py)p,ConvHull{(0,0),(0,1)} + p1p,



Capacity Region — Example On/Off downlink

e i.i.d. Bernoulli channel state with P{s;(t) = ON} = p; and P{s,(t) = ON} = p,

 Every time-slot t, the controller observes the channels s, (t) and serves at most one packet
from one of the queues: u,, (t) € {0,1} such that u; (t) + u,(t) < 1,Vvt.

e Long-term link transmission rate matrix:

r=_1-p)1-p){(0,0)} +p,(1—py) +
+(1 — py)pConvHull{(0,0),(0,1)} + p1p;

r=_01-p)(1-p;)(0,0)+p,(1—p;) + (1 —p1)p2(0,92) + p102

Ir =(p(1—-p2)q: +p1p ,(1 —p1)p2q2 + p1p2q3), forq € [0,1]



Capacity Region — Example On/Off downlink

e i.i.d. Bernoulli channel state with P{s;(t) = ON} = p; and P{s,(t) = ON} = p,

 Every time-slot t, the controller observes the channels s, (t) and serves at most one packet
from one of the queues: u,, (t) € {0,1} such that u; (t) + u,(t) < 1,Vvt.

4 Elus,]
:IQ‘pi@ 1%,
O r

e Long-term link transmission rate matrix: P1

> Elu,]

I =((p:(1—-p3)q, + 01D , (1 —p1)p2q2 + 010295)



Capacity Region — Example On/Off downlink

* i.i.d. Bernoulli packet arrivals with P{A{(t) = 1} = 1; and P{A,(t) = 1} = 4,.
e i.i.d. Bernoulli channel state with P{s;(t) = ON} = p; and P{s,(t) = ON} = p,

 Every time-slot t, the controller observes the channels s, (t) and serves at most one packet
from one of the queues: u,,(t) € {0,1} such that u,(t) + u,(t) < 1,vt.

A —> \Q \pi : U2
n—_Or P2

 We already know the link transmission rate matrix I'.

>

* Flow conservation + Flow capacity yields:
* An < fo < fin = Elu, (0], n o€ {1,2}. >
e Conclusion: T = A. P1




Capacity Region — Randomized policy

Corollary: consider a Stationary Randomized policy that observes s(t) = s and select a
control I(t) = I according to p,(I). Notice that p,(I) disregards Q% (t). If an arrival rate
matrix (A3,),, ¢ is interior to A, then there is a randomized policy that stabilizes the system.

Interpretation: the randomized policy manages packet flows as a “continuous fluid”.

e it schedules links randomly - according to p.(I) - in order to attain the target time-average
packet transmission rates [‘ai'j]ij'

* then, it splits the total rate i; ; among commodities ¢, such that the time-average rates ﬁgj
accommodate all flows that pass through link (i, j), namely flcj < ﬁﬁj,Vc.

* this way, it can support all flows and A5, = ?’:1 fncj — Iiv=1 flcn

Question: is the randomized policy work-conserving? How can it be throughput optimal?
What is its drawback?



Question: any work-conserving policy can stabilize the system?
e Strict priority policy: transmits 1 while Q,(t) > 0 and s;(t) = ON. Transmits 2 otherwise.

e Analysis of transmission rate:
e Queue 1 has strict priority = E[u,(t)] = ii; =7?.
e Queue 2 is served when Queue 1 is not served and s,(t) = ON — ji, =7

* Policy is throughput-optimal? i 4

h— \Qﬁ::
= O :




Question: any work-conserving policy can stabilize the system?
e Strict priority policy: transmits 1 while Q,(t) > 0 and s;(t) = ON. Transmits 2 otherwise.

e Analysis of transmission rate:
* Queue 1 has strict priority = E|u,(t)] = ity = min{A,,p,}.
e Queue 2 is served when Queue 1 is not served and s,(t) = ON - i, = (1 — ji;)p,
e Policy is NOT throughput-optimal. See graph 2> iy 4

 Strict priority policy serves Queue 2 only when Queue 1
is empty. What happens if, by then, channel 2 is OFF? P>
The transmission opportunity is lost, since Q,(t) = 0.
Policy does not benefit from multi-user diversity gain.

e Max-Weight policy: transmits queue with s,,(t) = ON

and largest backlog Q,,(t). ) E
1 1

e Max-Weight is throughput-optimal. [to be proven in this lecture]
Balances between exploring good channel conditions and serving the largest queue.
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Overloaded system — Example

e Letp; = 0.5, p, = 0.6and (14,4,) = (1/2, 1) for increasing values of 1 = 0.
e QOutside of the capacity region A, both Q(t) and Q,(t) are unstable.

. .
= (4/2,1) H2 (A/2,2) S Increasing
. A . A Arrival Rates
° /  Strict Priority 2 /  Max-Weight ,
! olic // policy Resulting
// PONEY / Transmission Rates
/ /
/ /
/ /

e Strict Priority policy always serves Q(t) first. What happens when 4 — 0.

e How does the Max-Weight policy behaves?
e Which one is “better”? What would be the desirable outcome?

22



Overloaded system — Example

e Letp; = 0.5, p, = 0.6and (14,4,) = (1/2, 1) for increasing values of 1 = 0.
e QOutside of the capacity region A, both Q(t) and Q,(t) are unstable.

THR, \ TP, \
H2 (1/2,1) H2 (1/2,1) S Increasing
» A » P Arrival Rates
° /  Strict Priority 2 /  Max-Weight ,
/ olic olic Resulting
poTicy POTicY Transmission Rates
> >
P1 U1 P1 251

e Strict Priority policy always serves Q(t) first. That is why it goes to the RHS when 1 — oo,

* Max-Weight policy serves Q,(t) first because Q,(t) > Q.(t) ast - o and 1 — oo,
e Which one is “better”? What would be the desirable outcome??

23



Overloaded system — Definition

* Assume that arrival rates A%, are infinitely large. Then all queues Q5 (t) are unstable.

* Admission Control. Let 7,y (t) be the number of packets admitted to Q5 (t) at time t.
e Assume that admission is bounded ¥.X_, r.¢(t) < R™M%* V¢, n;
. . . _ 1
* Define the time-average admission rate as 7y = tllm ?Zizé E[rS(T)], Vn,c;
—00

Q:1(t) s1(t)

e GION 040
e OO
H2

Q2(t) s2(t)

e From another perspective: now we can control packet arrivals to the queues ;¢ (t). Can we
utilize admission control to achieve a “desired network behavior”?




Overloaded system — Utility Function

e Let g5, (r) be strictly concave, non-decreasing and continuously differentiable.
e Capture satisfaction/utility attained from sending commodity-c at a time-average rate .
e Can be used to achieve fairness across commodities and nodes.
e Good model for elastic flows (e.g. file download). Not good for inelastic flow or for flows
with an intrinsic rate (e.g. real-time video).
e Example: consider a network with 3 nodes, 3 flows and equal link capacities of 1. What is

the transmission rate distribution that maximizes:

]) +T'1+ ? (rlirlt 3)_(101)

2) 1og(72) + log () + log (75) 2 Ans. (24;2)

L 1 1 1
3) Max-min fairness ? Ans. (E ¥ E)




Overloaded system — Goal

e Recall that ,u,‘fu (t) is the offered transmission opportunity over link (n, j) to commodity-c.
Notice that: ZC 1 ,un](t) = Un,j(t) is the total offered transmission opportunity.

* With controlled packet arrivals to the queues ;£ (t), we have

N

N
Q%(t+1)smaX{Qﬁ(t)—z u,i,j<t>;o}+z K (6) + 1)

j=1

e Goal is to design admission, routing and scheduling algorithms that solve the optimal sum

utility problem: N K

maxz z In()  s.t.:(F)pc €A and 7€ > 0,Vn,c

n=1c=1

Is it possible to use Stationary Randomized Policy? Is it a practical policy?



Lyapunov Optimization

N

uz,j<t>;o} £ (O + 1)

N

Lindley recursion: Qf5(t + 1) < max {Qfl(t) - 2

j=1
. _ 1 N Kk o2

Lyapunov Function: L(t) = Zzn:1zC:1(Qn(t))

One-slot Lyapunov Drift: A(Q(t)) = E[L(t + 1) — L(t)|Q(t)]

Drift-Plus Penalty (DPP) Function: A(Q(t)) +V E[-XN_ >X_, g5(r¢(®)) |Q ()]

Next, we obtain an upper bound to the DPP Function and derive an algorithm that
minimizes this upper bound. By minimizing the upper bound, we aim to achieve low sum of
queues backlogs Qf (t) and high sum of utility functions g5 (#;* ). The DPP algorithm is
throughput optimal and ensures that utility is arbitrarily close to optimal.



e Manipulating Lindley Recursion

N 2
(st + D)’ Smax{Q%(t) - > Hey(®; } (Z HEn () + 75 (t))
j=1
N
+2 (Z HEn(6) + 75 (t)) max {Qn(t) Zun,w }
=1

2
N N
(05t + )" = (Q5(D)” < —2Q5(1) 2 uy i () + (z u:;,,-(t)> +
j=1 j=1

N 2 N
+ (Z HEn () + nf(t)) +2 (Z B () + nf(t)) 05
i=1 i=1

28



. ) |
(5t + 1) = (05(®)” < ~205() | ) 16,0 = ) pEa(®) = 15.(0)| +
=1

N 2 N _ 2
+ (Z uﬁ,,-(t)) + (Z i, (6 + rﬁ(t))
j=1 =1

N K
* Substituting into the Lyapunov Drift: A(Q(t)) = %Z Z E [(Qfl(t + 1))2 — (Q,ﬁ(t))z‘Q(t)]
c=1

n:

A(t) < —

M

Z Qf(OE[Z)Ly 15, (0) = Zy () — i (0] Q(0] + B

n=1c=1

N K
where %ZZ [(21 1[,¢n](t)) +( §V=1u€,n(t)+rﬁ(t))z

e Assuming that second moments are all bounded, B is a constant. 29



* Drift-Plus Penalty: consider the expression A(t) —V E[XN_; ¥X g5 (r5(0)) |Q()]

N K
A -V Z z Elgs(ri(0)|Q®] < B— ) > E[Q8(0) Ty 5,,(0) — Q5(0) TNy i, (8) +
n=1c=1

n=1c=

—Q5(Ors(6) + Vgs(ri(0)]|@)]

N K
A(t) — VZZE[gn(rn(t))lQ(t)] <B- Z Qi(OE X0y my ;(0) — X, uf, () |Q(@®)] +
n=1c= n=1c=1

N K
Z > E[-Q5(0ra(0) + Vgr (i (0)|e(@)]
n=1c=1

e DPP algorithm minimizes the upper bound on the RHS at every slot t The minimization
can be separated into two sub-problems: i) routing and scheduling u .(t); and ii) admission
control 5, (¢t).



Drift-Plus Penalty

The DPP minimization can be separated into two sub-problems:

u(t)er

N K
 Routing & Scheduling:  max {z z Q5 (OE[XI my, ;(©) — X pf , (0) |Q(t)]}
n=1c=1

N K
e Admission Control: max {z Z E[—Q5(O)rs (1) + Vgs(rs(0)]|Q )] }
n=1c=1

K
s.t.: z rs,(t) < R, vn

c=1

r5,(t) = 0,Vn,c



Drift-Plus Penalty — Routing & Scheduling

e Routing & Scheduling

K
max -« z Z Qﬁ(t)[E[Z] 1”n](t) — Zé\’:l ”in(t) |Q(t)]}
1

u(t)er

— K’I’l 1c=
(N K

max -

E(t)EF

( K
max < z
E(t)e[‘ _ -

K N
max 1> > (0F(0) - Q5 ©) E[uij(t)lQ(t)]}
RORT | &2 L 2

=
M::

E|Qs(®)u;;(D]|Q@®)] -

1c

K N
» IE[Q,-C(t)ME,-(t)IQ(t)]}
c=1i=1 \

11

N
z E[Qﬁ(t)uin(t)lcz(t)]}

E[Qf (®us;(D]|Q®)] -

1 J

MZﬁ

|
p—




Drift-Plus Penalty — Routing & Scheduling
ii CHORIHE) E[ug,-(t)m(t)]}

Solution [Backpressure — presented in previous lectures]:
e Routing: at time t and for every link (i, ), select the commodity with highest differential

max

Routing & Scheduling A
E(t)EF z

i=1c

backlog, namely ¢; ; = argmax{Qf(t) — Q]‘?(t)}

e Scheduling: for a given state s(t) = s, select action I(t) = I such that the set of
transmission rates U(s, ) = [Hi'j(t)]ij yields maximum sum:
Ci i Ci
> (Qi {GRY) f(t)) iy (®
(@.J)
Notice that full rate is allocated to commodity ¢; ;, namely p; ;j(t) = uijij (t).




Drift-Plus Penalty — Admission Control

e Admission Control
K

max z Z IE[ Q5 (T (1) + Vgs(rs (t))|Q(t)] S. t.:z ré(t) < R4 yn

c=1
ri(t) = 0,Vn,c

n=1c=

e Maximization is separable into a per-node problem. At time t, each node n should select
the set of values 5, (t), V¢, that solve the problem:

K K

max Z[Vgﬁ(rﬁ(t)) —Qs(Ors(] ¢ st Z ré(t) < Rmax

ra(t) e —
ri(t) =0,vn,c

Each node solves the problem independently of other nodes. The objective function is
concave and constraints are linear. How to solve?



Drift-Plus Penalty — KKT Conditions

* Lagrangean:

K K K
LE50m,79) = ) [Vga(ra(©) = 0@ (0] -7 (Z ri(6) - Rm> + ) Yo

c=1 c=1 c=1

where n and y¢ are non-negative KKT multipliers. The KKT Conditions can be written as:

(Stationarity) Ve L() =V (g,ﬁ(rf,(t))) '—Q(t)—n+yc=0

K
(Complementary Slackness) 7 (Z
C

r5(t) — R,T{‘“x> =0 and y°ri(t)=0,vc
1

K
(Primal/Dual Feasibility) zrg(t) < R* and r§(t)>0,¥c and =0 and y°>0,Vc
c=1

35



Drift-Plus Penalty — Solution

/ (&) +n—vy°
From Stationarity: Ve L() =0 = (g,ﬁ(r,ﬂ(t))) = On(8) Vn Y (Eq.1)
From Complementary Slackness, if y¢ # 0,then £ (t) = 0.
rQS(0) +
Initially, assume that y¢ = 0,Vc. Then we know that (g,ﬁ(rf,(t))) = Qn(; n,‘v’c

Notice that (g,ﬁ(r))'is non-increasing, invertible and that T ) always leads to | 7.

Algorithm:
1) Initialization: 7 = 0

2) Find (rf,(t))le associated with n using (Eq.1). If r5,(t) < 0, then set S (t) = 0.

3) IF XX 76 (&) < R™M%X then the unique solution (rf,(t))il was found.

4) Otherwise, increase 1 slightly and go back to step 2.



Drift-Plus Penalty — Solution (Example)

Example: consider the utility function g,ﬁ(rf,(t)) = log(rfl(t)).

/ 1 % — 1,C
Then (5(5(0)) = _ PNV e =

)v ) )t
Qn(t) +n—y° e

o Assuming n = y°© = 0 and that R}]*** is large enough, the solution is:

|74
ré(t) = ,Vn,c,t
" Q5 (t)
* Notice that:

* Alarger backlog on the queue T Q}(t) leads to less packets being admitted to the
queue | rS(t), what makes sense.

e Larger V implies in larger r5(t) which, in turn, implies in more network congestion.



Drift-Plus Penalty Algorithm

At every time t, the DPP algorithm runs three steps:
e Routing: for every link (i, j), select the commodity with highest differential backlog, namely
Cij = argmaX{QiC (t) — Q]q(t)}

e Scheduling: for a given state s(t) = s, select action I(t) = I such that the set of
transmission rates U(s,[) = [ﬂi'j(t)]ij yields maximum sum:

z (QiCZj (t) — Q]-Ci*'j (t)> i j(t)

(L.J)
e Admission control: each node n uses its own KKT Conditions to attain the values of 17,(t)

ra(t)

which solve: . K
max {Z [Vg,ﬁ(rf,(t)) — Q,ﬁ(t)rﬁ(t)]} s.t.: z ri(t) < RMex . ro(t) > 0,Vn,c

c=1 c=1



Drift-Plus Penalty Algorithm

e Admission Control. The parameter V captures the emphasis on utility maximization. If V is
large, then the admitted rates tend to be large, thus increasing the utility, but at the same
time increasing the network delay caused by congestion. Notice that admission control on
node n only requires information available locally.

* Routing & Scheduling is done using the Backpressure policy (already discussed in previous
lectures). Recall that routing requires no pre-specified paths, since paths are learned
dynamically. Moreover, this algorithm does not need information about arrival rates or
channel state statistics.

* Next, we show that the DPP Algorithm is throughput optimal and ensures that utility is
arbitrarily close to optimal.



Performance Analysis — Randomized Policy

* Prior to analyzing the performance of the DPP algorithm, we assess the Stationary
Randomized Policy associated with our original utility maximization problem:

N K
maxz Z In(Th)  s.t.: (M nc €A and 75 > 0,Vn,c

n=1c=1
* Denote (7'}, ), ¢ as the optimal solution to the utility maximization. A simple admission
control algorithm that achieves the optimal solution is: 75" = ;¥ (¢t), Vt.

* We know from our discussion of the capacity region that for (775,"),, . € A, there exists
flow variables f5 such that 75, + XL, fi5 = Xi-1 fir;and a Stationary Randomized
Policy with time-average packet transmission rates ﬁfj such that flC] < ﬁfj, Vi,j,cC.

e Consider the Stationary Randomized Policy with rates ﬁfj = flC] Vi, j,c.



Performance Analysis — Near-optimal solution

* Near-optimal solution. Let € > 0 and define the set A, = {r;°| (¥ + €) € A}.

e Consider the near-optimal solution (75" (€)) to the utility )
n n,c

maximization problem: A
N K

maxz z gn(73) s.t.:(Ty)nc € Ae and 75, = 0,Vn,c
n=1c=1 (&1

* Lemma: if g5 (r) are non-negative and concave, and if there is a
scalar 7y, > 0 such that a hypercube with edge size 1y, Can fitinto A, then:

Zzg"(r (G))*zthn(r Y as €e—>0

n=1c= n=1c=



Performance Analysis — Randomized Policy

Near-optimal solution. Let € > 0 and define the set A, = {r;¥|(7;¢ + €) € A}

Consider the near-optimal solution ('Ff,*(e))nlcto the utility P
maximization problem: A
N K
maxz z gn(73) s.t.:(Ty)nc € Ae and 75, = 0,Vn,c
n=1c=1 771

>
Consider the Stationary Randomized Policy: 75 (t) = 75 (€),Vn, c, t and ﬁfj = flcj Vi, j,c.
Recall that Z’i\’:lﬁ-fn + 7, = ?Llfnc’j. Hence, it follows that:

N N N .
z Hin + 7o (€) T €< Hnj = z o)~ Z i, —75(e)=e>0 (Eq2)
=1 Jj=1 j=1 i=1

Next, we compare the drift of the DPP algorithm with the drift of the Randomized Policy.
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Performance Analysis — DPP Algorithm
e Recall the expression for the Drift-Plus Penalty'

YGR Z z Elgs(ri.(0)|e(®)] < B - Z Z OR(OE (310~ Tl asin (0100] 4

n=1c=1 n=1c=1

- z z E[-Q5(0ri(0) + Vgs(ri(0)0(®)]

n=1c=1

e By definition, this upper bound is minimizes by the DPP Algorlthm Hence, the Stationary
Randomized Policy achieves a larger upper bound. Substltutlng ul] and 75 (€):

A(t)—vZZIE[gﬁ(rw))m(t)]SB—ZZQM Zun, zun, +

n=1c=1 n=1c=1 i =

.
=) ) [-0sFs (0 + Vi (5 ()]

n=1c=1



e By rearranging the upper bound and utilizing (Eq.2), we have:

O Z Z Elg5 (i (0)[ Q0] < B - ¢ Z 2 05(6) - Z z[Vgn(r (©)]

n=1c=1 n=1c=1 n=1c=

e Taking the expectation w. rt Q,ﬁ(t) and using the definition of Lyapunov Drift'

E[L(t + 1)] — E[L(D)] VZZ[E[gn(rn(t))]<B—eZZIE 0 VZZ[E[gn(r “(©)]

n=1c=1 n=1c=1 n=1c=1
e Summingovert € {0,2,...,T — 1} and dividing by T gives:

E[L(T)] E[L(O)] V% X\
T T T ZZE[%(T’C’“))]S

N K N K
<B-2) Y EQSOI-V ) > E[ga (i (@)




e Rearranging the expression and knowing that E[L(T)]/T is non-negative:

T-1 N

;zizﬁ[%(t)]—; 2, - Blo(ri0)] < - vZZIE[gn(r (@) + =2

n=1 t=0 n=1

K

n=1c=

e Taking the limit T — oo and assuming that E[L(0)] is finite gives:

N K

T-1 N
lim |~ E[Q5(O][ - )
t=0 n=1c

* Conclusion 1:

N K

> > Jim %Tirﬁ[(zﬁ(t)] <
0 i

n=1c=1 | t=

m | &9

K

=1

lim

T — o0

V
= Elgi(ri)]| S
t=0 |

N K [ T-1 ]

|74 1
+;zz{m 15 5 0)]
n=1c=1 | t=0 |

N K
~v ) ) Elgs(rs (©)]
n=1c=1

— E[g5 (75 (e))]} <

 All queues Q% (t) are strongly stable. DPP algorithm is throughput optimal.



N K '1 T—1 ; VoK
EZTIEE‘O ?z E[g7(r5.(0)]] = zzIE[gﬁ < (6))] -
- t=0 |

N K T-1 N K T-1 N K
z z lim gr —z E[ry (0] | = z 2 lim ?2 E[g5(rS(0)]] = E[g¢
n=1c=1 t=0 n=1c=1 t=0 n=1c=1
N K T—-1 N K
c C C [ =cCx* B
z Z In Th_r)n _z E[rs ()] | = Z z IE[gn re (e))] —7
n=1c=1 t=0 n=1c=1
N K B
e Conclusion 2: Fore = 0: z Z gs(rs) = Z E[gs(rs)] — v
n=1c= n=1c=1

e Larger values of V take the DPP Algorithm arbitrarily close to the optimal utility.



Topics covered

Definition of the Multi-commodity flow problem and discussion about Queue Stability,
Capacity Region and Stationary Randomized policies.

e Discussion about Utility Function and Fairness.

* Development of the Drift-Plus Penalty algorithm for an overloaded system. In particular,
we described an Admission Control Algorithm, a Routing Policy and a Scheduling Policy,

e Performance analysis of the Drift-Plus Penalty algorithm. Under mild assumptions, it was
shown to stabilize all queues in the network and at the same time achieve utility which is
arbitrarily close to the optimal.
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