

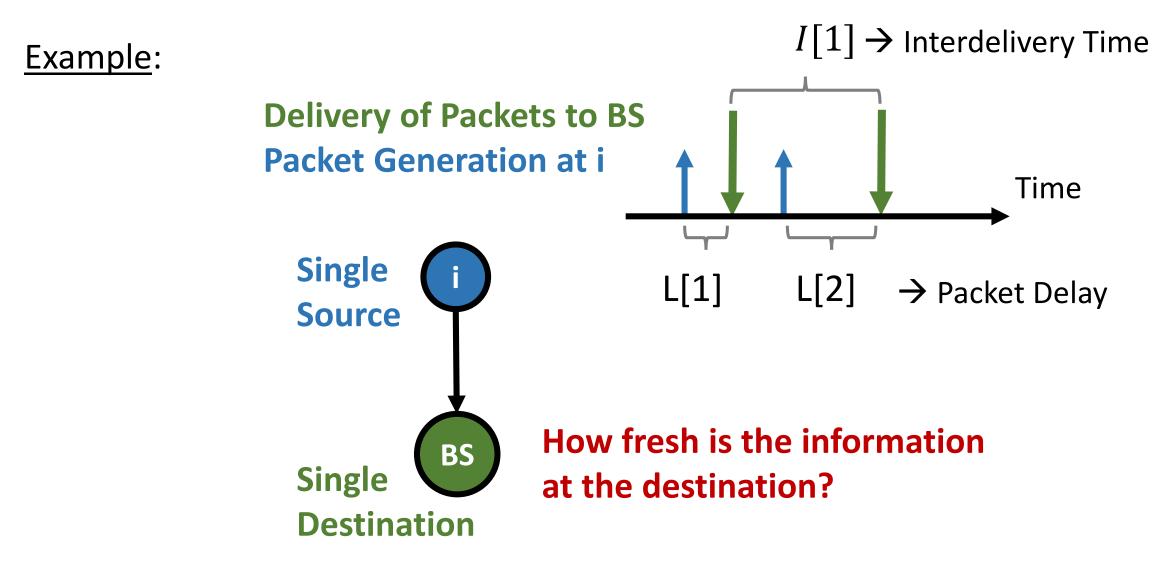
Optimizing Age of Information in Wireless Networks with Throughput Constraints

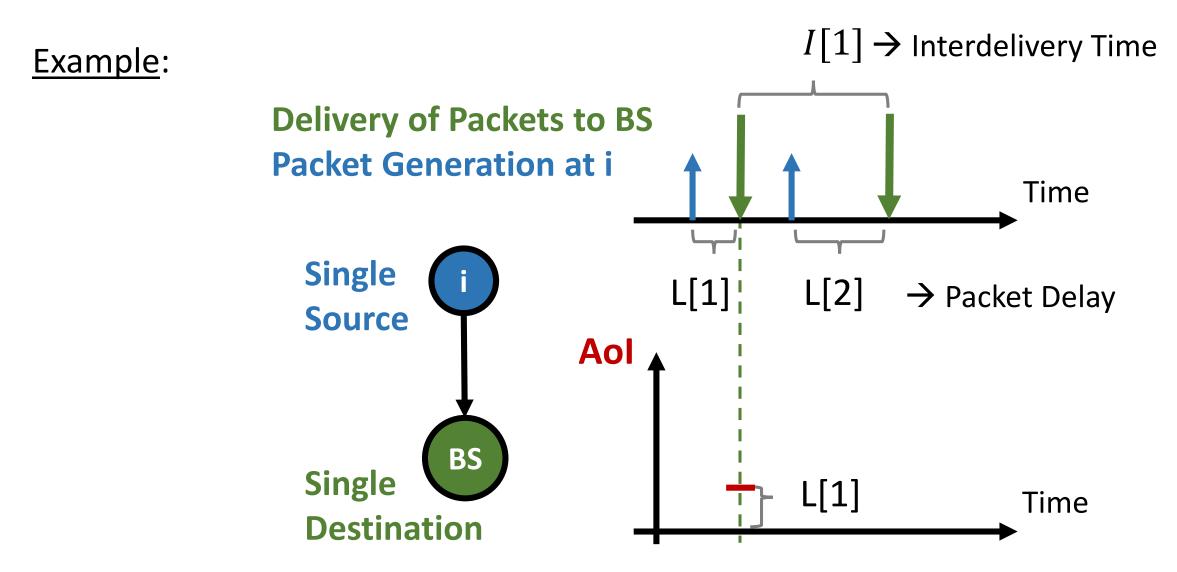
Igor Kadota, Abhishek Sinha and Eytan Modiano

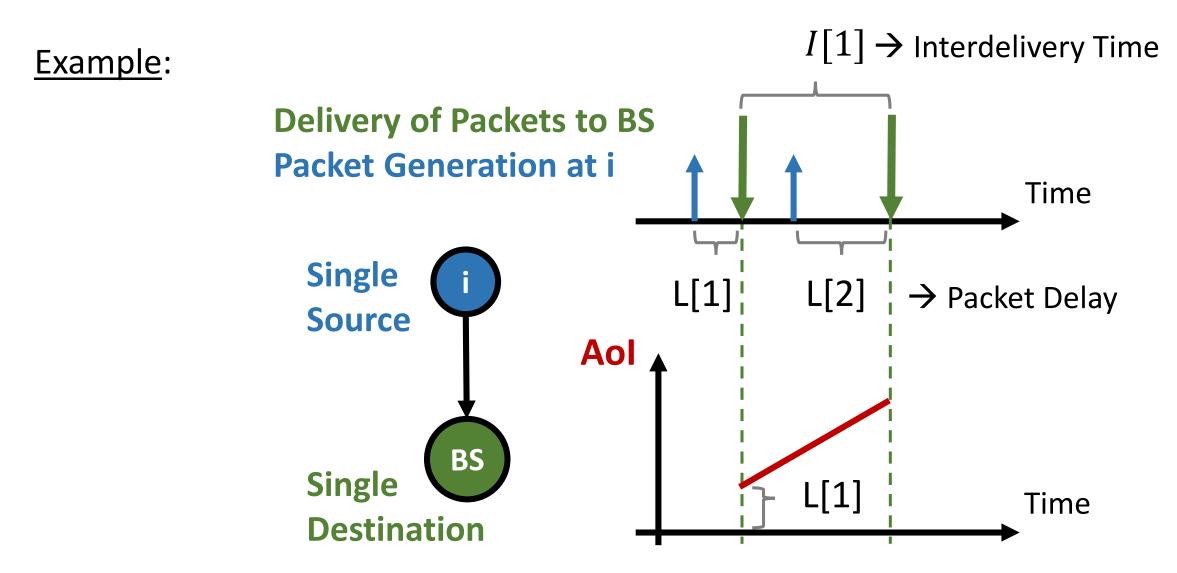
IEEE INFOCOM, April 19, 2018

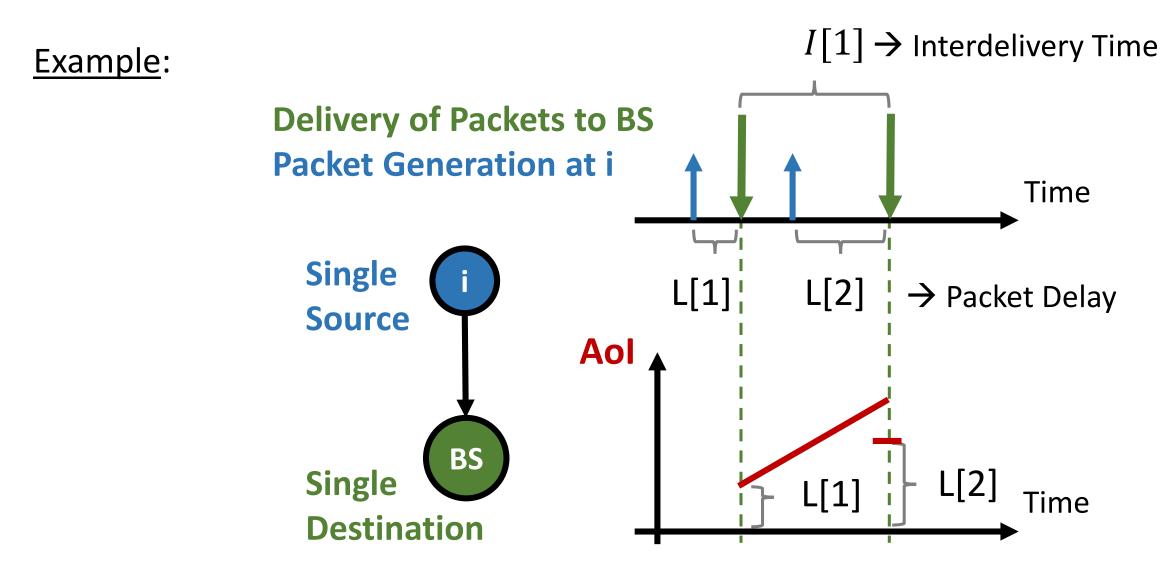
Outline

- Age of Information and Motivation
- Network Model
- Scheduling Policies and Performance Guarantees
 - Stationary Randomized Policy
 - Max-Weight Policy
 - Whittle's Index Policy
- Numerical Results



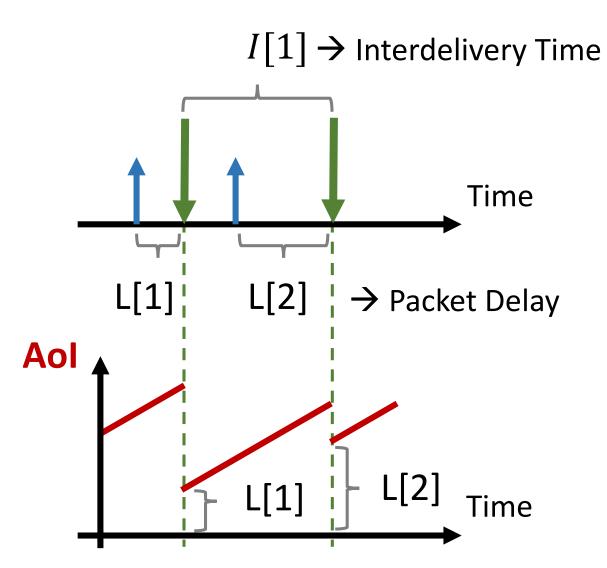






Aol: time elapsed since the most recently delivered packet was generated.

Relation between Aol, delay and interdelivery time?

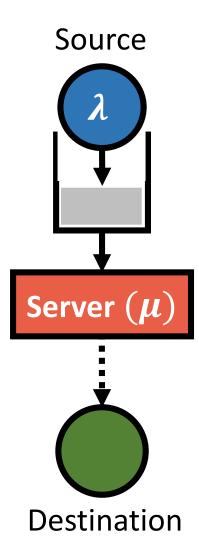


Aol, Delay and Interdelivery time

• Example: (M/M/1): (∞/FIFO) system

Controllable arrival rate λ and fixed service rate $\mu = 1$ packet per second.

_	λ	$\mathbb{E}[delay]$	$\mathbb{E}[interdel.]$	Average Aol
	0.01	1.01	100.00	
	0.53	2.13	1.89	
	0.99	100.00	1.01	



[1] S. Kaul, R. Yates, and M. Gruteser, "Real-time status: How often should one update?", 2012.

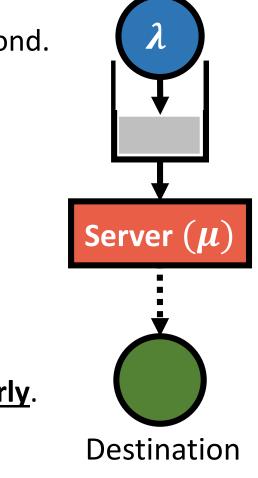
Aol, Delay and Interdelivery time

• Example: (M/M/1): (∞/FIFO) system

Controllable arrival rate λ and fixed service rate $\mu = 1$ packet per second.

λ	$\mathbb{E}[delay]$	$\mathbb{E}[interdel.]$	Average Aol
0.01	1.01	100.00	101.00
0.53	2.13	1.89	3.48
0.99	100.00	1.01	100.02

Low time-average AoI when packets with low delay are delivered regularly.



Source

[1] S. Kaul, R. Yates, and M. Gruteser, "Real-time status: How often should one update?", 2012.

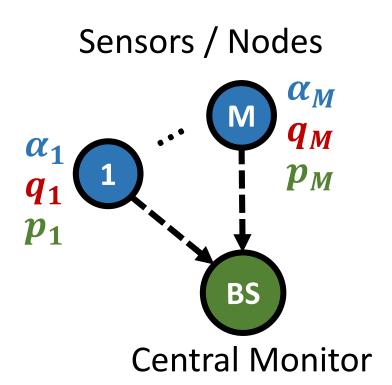
Network - Example

Wireless Parking Sensor

Wireless Tire-Pressure Monitoring System

Wireless Rearview Camera

Network - Description



1) Low network-wide Aol

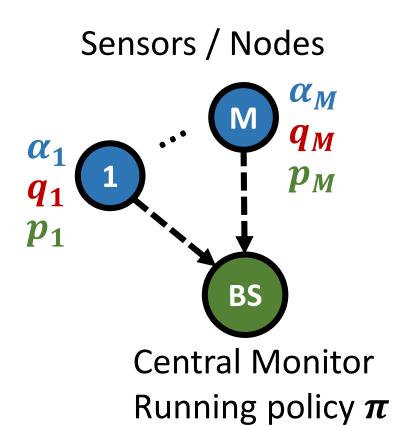
2) Weights α_i represent priority

3) Minimum throughput requirement, q_i

4) Channel is **shared** and **unreliable**, *p*_{*i*}

Values of M, α_i, q_i, p_i are fixed and known

Network - Scheduling Policy π



During slot k:

1) BS selects a single node i $[u_i(k) = 1]$

2) Selected node **samples** new data and then **transmits**

3) Packet is successfully **delivered** to the BS with probability p_i [$d_i(k) = 1$]

4) Packet Delay = 1 slot

Class of non-anticipative policies Π . Arbitrary policy $\pi \in \Pi$.

Network - Age of Information

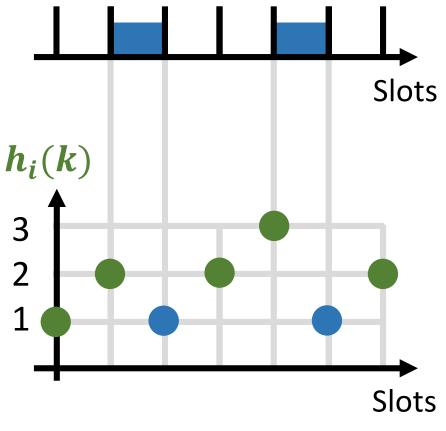
• Age of Information associated with node i at the beginning of slot k is given by $h_i(k)$.

• **Recall:** Packet Delay = 1 slot

• Evolution of Aol:

$$\mathbf{h}_{i}(k+1) = \begin{cases} \mathbf{1}, & \text{if } d_{i}(k) = 1 \\ h_{i}(k) + 1, & \text{otherwise} \end{cases}$$

Delivery of packets from sensor i to the BS



Network - Objective Function

• Expected Weighted Sum AoI when policy π is employed:

$$\mathbb{E}[J_{K}^{\pi}] = \frac{1}{KM} \mathbb{E}\left[\sum_{k=1}^{K} \sum_{i=1}^{M} \alpha_{i} h_{i}^{\pi}(k)\right], \text{ where } h_{i}^{\pi}(k) \text{ is the Aol of node i} \\ \text{ and } \alpha_{i} \text{ is the positive weight}$$

• Minimum Throughput Requirements:

$$\hat{q}_i^{\pi} := \lim_{K \to \infty} \frac{1}{K} \sum_{k=1}^K \mathbb{E}[\boldsymbol{d_i(k)}] \ge \boldsymbol{q_i}, \forall i \in \{1, 2, \dots, M\}, \text{ where set } \{\boldsymbol{q_i}\}_{i=1}^M \text{ is feasible.}$$

• Channel Interference: $\sum_{i=1}^{M} \boldsymbol{u}_{i}(\boldsymbol{k}) \leq 1, \forall k \in \{1, 2, ..., K\}$

Aol Optimization
$$OPT^* = \min_{\pi \in \Pi} \left\{ \lim_{K \to \infty} \frac{1}{KM} \mathbb{E} \left[\sum_{k=1}^{K} \sum_{i=1}^{M} \alpha_i h_i(k) \right] \right\}$$
 (8a)s.t. $\hat{q}_i^{\pi} \ge q_i$, $\forall i$; $\sum_{i=1}^{M} u_i(k) \le 1$, $\forall k$.

(Age of Information)

(Minimum Throughput)

(Channel Interference)

• Policy π^* that solves (8) is **Aol-optimal** and achieves OPT^*

• Policy $\eta \in \Pi$ that attains OPT_{η} is ψ -optimal when $OPT^* \leq OPT_{\eta} \leq \psi OPT^*$

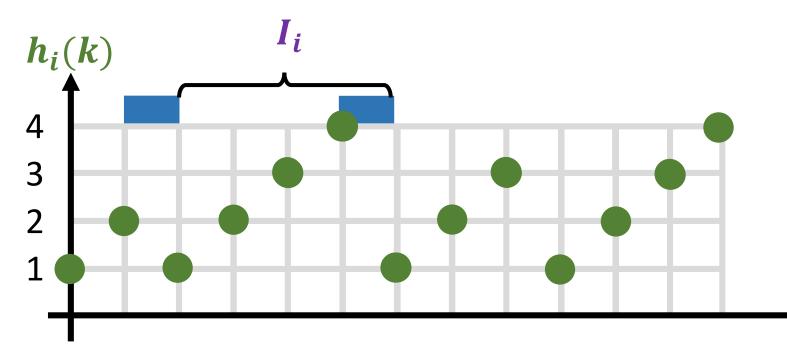
Summary of Results:

Scheduling Policy	Technique	Optimality Ratio	Simulation Result
Optimal Stationary Randomized Policy	Renewal Theory	2-optimal	~ 2-optimal
Max-Weight Policy	Lyapunov Optimization	4-optimal	close to optimal
Whittle's Index Policy	RMAB Framework	8-optimal	close to optimal

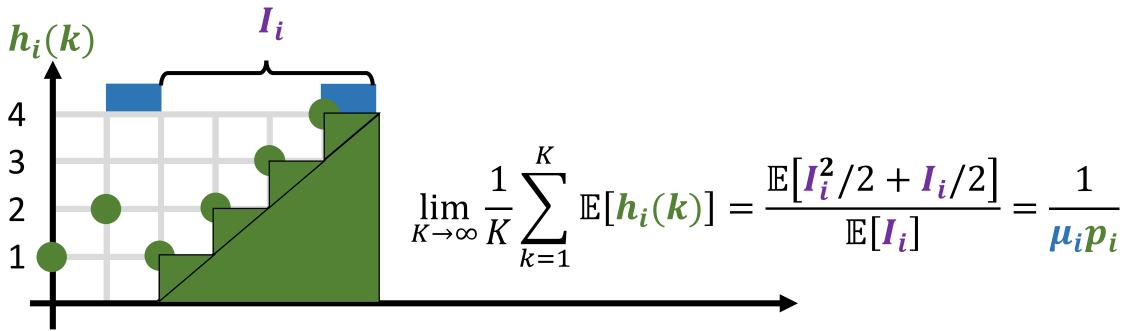
Summary of Results:

Scheduling Policy	Technique	Optimality Ratio	Simulation Result
Optimal Stationary Randomized Policy	Renewal Theory	2-optimal	~ 2-optimal
Max-Weight Policy	Lyapunov Optimization	4-optimal	close to optimal
Whittle's Index Policy	RMAB Framework	8-optimal	close to optimal

- Policy R: in each slot k, select node i with probability $\mu_i \in (0,1]$.
- Packet deliveries from node i is a renewal process with $I_i \sim Geo(\mu_i p_i)$
- Sum of *h_i(k)* over time is a **renewal-reward process.**



- Policy R: in each slot k, select node i with probability $\mu_i \in (0,1]$.
- Packet deliveries from node i is a renewal process with $I_i \sim Geo(\mu_i p_i)$
- Sum of *h_i(k)* over time is a **renewal-reward process.**



- Policy R: in each slot k, select node i with probability $\mu_i \in (0,1]$.
- Packet deliveries from node i is a renewal process with $I_i \sim Geo(\mu_i p_i)$
- Sum of *h_i(k)* over time is a **renewal-reward process.**

Optimization over Randomized policies
$$OPT_{R^*} = \min_{R \in \Pi_R} \left\{ \frac{1}{M} \sum_{i=1}^M \frac{\alpha_i}{p_i \mu_i} \right\}$$
(25a)(Age of Information)s.t. $p_i \mu_i \ge q_i$, $\forall i$;(25b)(Minimum Throughput) $\sum_{i=1}^M \mu_i \le 1$, $\forall k$.(25c)(Probability)

- Policy R: in each slot k, select node i with probability $\mu_i \in (0,1]$.
- Packet deliveries from node i is a renewal process with $I_i \sim Geo(\mu_i p_i)$
- Sum of *h_i(k)* over time is a **renewal-reward process.**
- Optimal Stationary Randomized Policy \mathbf{R}^* uses probabilities $\{\boldsymbol{\mu}_i^*\}_{i=1}^{M}$ that can be obtained offline with Algorithm 1 (omitted in this presentation).

- Policy R: in each slot k, select node i with probability $\mu_i \in (0,1]$.
- Packet deliveries from node i is a renewal process with $I_i \sim Geo(\mu_i p_i)$
- Sum of *h_i(k)* over time is a **renewal-reward process.**
- Optimal Stationary Randomized Policy \mathbb{R}^* uses probabilities $\{\mu_i^*\}_{i=1}^M$ that can be obtained offline with Algorithm 1 (omitted in this presentation).

Theorem: for **any** network configuration, policy **R*** is **2-optimal**.

Summary of Results:

Scheduling Policy	Technique	Optimality Ratio	Simulation Result
Optimal Stationary Randomized Policy	Renewal Theory	2-optimal	~ 2-optimal
Max-Weight Policy	Lyapunov Optimization	4-optimal	close to optimal
Whittle's Index Policy	RMAB Framework	8-optimal	close to optimal

Max-Weight Policy

• Minimum Throughput Requirements:

$$\hat{q}_i^{\pi} := \lim_{K \to \infty} \frac{1}{K} \sum_{k=1}^K \mathbb{E}[\boldsymbol{d_i(k)}] \ge \boldsymbol{q_i}, \forall i \in \{1, 2, \dots, M\}, \text{ where set } \{\boldsymbol{q_i}\}_{i=1}^M \text{ is feasible.}$$

• Throughput debt:
$$x_i(k + 1) = kq_i - \sum_{t=1}^k d_i(t)$$

• Lyapunov Function:
$$L(k) \coloneqq \frac{1}{2} \sum_{i=1}^{M} (\alpha_i h_i^2(k) + V[x_i^+(k)]^2)$$
, where V is a constant
and $x_i^+(k) = \max\{0, x_i(k)\}$

Max-Weight Policy

• Max-Weight is designed to reduce the Lyapunov Drift.

• Lyapunov Function:
$$L(k) \coloneqq \frac{1}{2} \sum_{i=1}^{M} \left(\alpha_i h_i^2(k) + V[x_i^+(k)]^2 \right)$$

• Lyapunov Drift: $\Delta(k) \coloneqq \mathbb{E}\left\{L(k+1) - L(k) \mid (\boldsymbol{h}_{i}(\boldsymbol{k}), \boldsymbol{x}_{i}(\boldsymbol{k}))_{i=1}^{M}\right\}$

$$\Delta(k) \leq -\sum_{i=1}^{M} \mathbb{E}\left\{ \frac{\boldsymbol{u}_{i}(\boldsymbol{k})}{\boldsymbol{h}_{i}(\boldsymbol{k}), \boldsymbol{x}_{i}(\boldsymbol{k})} \right\}_{i=1}^{M} W_{i}(k) + B_{i}(k)$$

• **Policy MW**: in each slot k, select the node with highest value of $W_i(k)$, where:

$$W_i(k) = \frac{\alpha_i p_i}{2} h_i(k) [h_i(k) + 2] + V p_i x_i^+(k)$$

Max-Weight Policy

• **Policy MW**: in each slot k, select the node with highest value of $W_i(k)$, where:

$$W_i(k) = \frac{\alpha_i p_i}{2} h_i(k) [h_i(k) + 2] + V p_i x_i^+(k)$$

Theorem: MW satisfies ANY feasible set of throughput requirements $\{q_i\}_{i=1}^M$

Theorem: for every network with $V \le 2 \sum_{i=1}^{M} \alpha_i / M$, the **MW** is **4-optimal**.

Max-Weight Policy vs Whittle's Index Policy

• **Policy MW**: in each slot k, select the node with highest value of $W_i(k)$, where:

$$W_i(k) = \frac{\alpha_i p_i}{2} h_i(k) [h_i(k) + 2] + V p_i x_i^+(k)$$

Theorem: MW satisfies ANY feasible set of throughput requirements $\{q_i\}_{i=1}^M$

Theorem: for every network with $V \le 2 \sum_{i=1}^{M} \alpha_i / M$, the **MW** is **4-optimal**.

• Policy Whittle: in each slot k, select the node with highest value of $C_i(k)$, where:

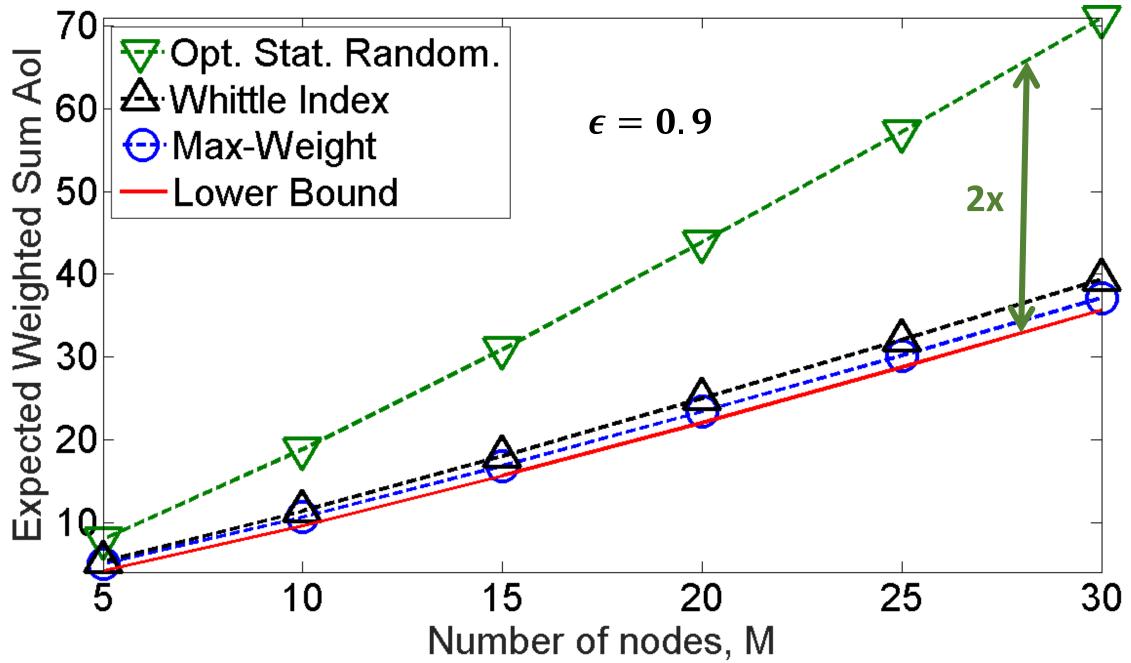
$$C_i(k) = \frac{\alpha_i p_i}{2} h_i(k) \left[h_i(k) + \frac{2}{p_i} - 1 \right] + \theta_i$$

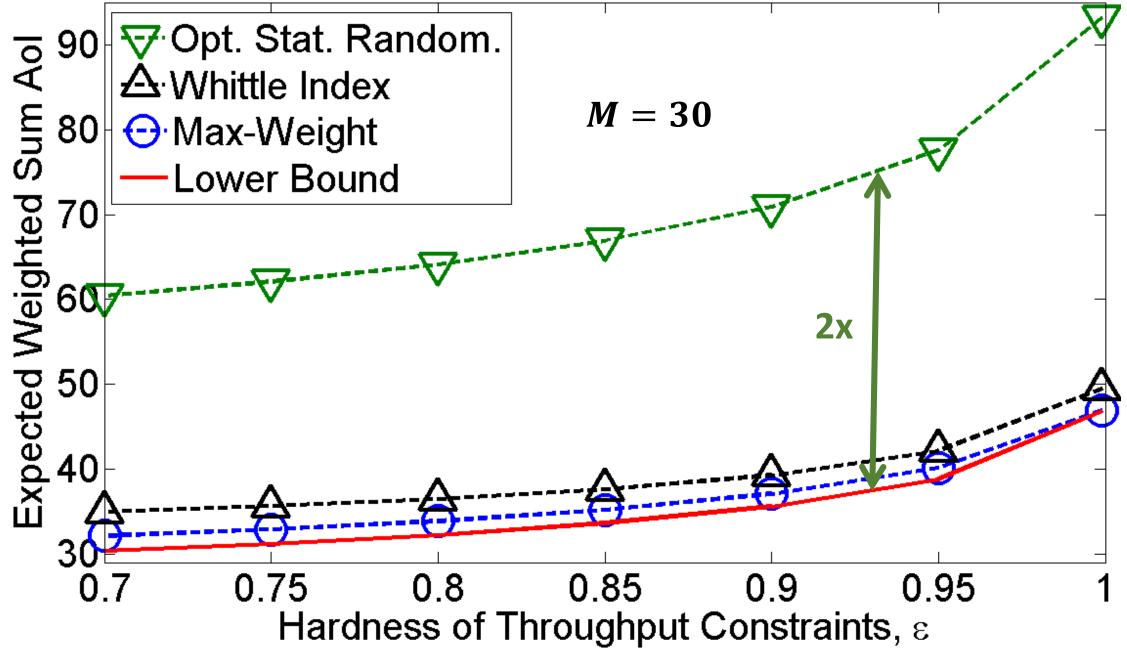
Summary of Results:

Scheduling Policy	Technique	Optimality Ratio	Simulation Result
Optimal Stationary Randomized Policy	Renewal Theory	2-optimal	~ 2-optimal
Max-Weight Policy	Lyapunov Optimization	4-optimal	close to optimal
Whittle's Index Policy	RMAB Framework	8-optimal	close to optimal

Numerical Results

- Metric:
 - Expected Weighted Sum Aol : $\mathbb{E}[J_K^{\pi}]$
- Network Setup with M nodes. Node i has:
 - channel reliability $p_i = i/M$ [increasing]
 - weight $\alpha_i = (M + 1 i)/M$ [decreasing]
 - throughput requirement $\mathbf{q}_i = \epsilon \mathbf{p}_i / M$, where ϵ in [0; 1)
- Each simulation runs for $K = M \times 10^6$ slots
- Each data point is an average over 10 simulations





Final Remarks

- In this presentation:
 - Age of Information and Network Model
 - Three low-complexity scheduling policies
 - Performance guarantees
 - Numerical Results: Max-Weight has superior performance
- In the paper:
 - Derive Universal Lower Bound on Age of Information
 - Discuss Indexability and Whittle's Index Policy
 - Additional simulation results
- Recent result not in the paper: Drift-Plus Penalty Policy is 2-optimal

