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Outline
• Age of Information and Motivation

• Network Model

• Scheduling Policies and Performance Guarantees
• Stationary Randomized Policy
• Max-Weight Policy
• Whittle’s Index Policy

• Numerical Results
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AoI: time elapsed since the 
most recently delivered packet 
was generated.

Relation between AoI, delay 
and interdelivery time?

Age of Information (AoI)
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• Example: (M/M/1): (∞/FIFO) system
Controllable arrival rate 𝜆𝜆 and fixed service rate 𝜇𝜇 = 1 packet per second.

Minimum throughput requirement DOES NOT guarantee regular deliveries.

AoI, Delay and Interdelivery time
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Server (𝝁𝝁)
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[1] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should one update?”, 2012.

𝜆𝜆 𝔼𝔼[𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑] 𝔼𝔼[𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. ] Average AoI
0.01 1.01 100.00
0.53 2.13 1.89
0.99 100.00 1.01



• Example: (M/M/1): (∞/FIFO) system
Controllable arrival rate 𝜆𝜆 and fixed service rate 𝜇𝜇 = 1 packet per second.

Low time-average AoI when packets with low delay are delivered regularly.

AoI, Delay and Interdelivery time

9[1] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should one update?”, 2012.
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Network - Example
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Monitoring System

Wireless Rearview Camera



Network - Description
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1

M
𝜶𝜶𝟏𝟏

𝜶𝜶𝑴𝑴
Sensors / Nodes

𝒒𝒒𝟏𝟏

𝒒𝒒𝑴𝑴

𝒑𝒑𝟏𝟏
𝒑𝒑𝑴𝑴

Central Monitor

1) Low network-wide AoI

2) Weights 𝜶𝜶𝒊𝒊 represent priority

3) Minimum throughput requirement, 𝒒𝒒𝒊𝒊

4) Channel is shared and unreliable, 𝒑𝒑𝒊𝒊

Values of M,𝜶𝜶𝒊𝒊,𝒒𝒒𝒊𝒊,𝒑𝒑𝒊𝒊 are fixed and known



Network - Scheduling Policy 𝜋𝜋
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During slot k:

1) BS selects a single node i [𝑢𝑢𝑖𝑖 𝑘𝑘 = 1]

2) Selected node samples new data and 
then transmits

3) Packet is successfully delivered to the 
BS with probability 𝒑𝒑𝒊𝒊 [𝑑𝑑𝑖𝑖 𝑘𝑘 = 1]

4) Packet Delay = 1 slot

Class of non-anticipative policies Π. Arbitrary policy 𝝅𝝅 ∈ 𝚷𝚷.

Central Monitor
Running policy 𝝅𝝅
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• Age of Information associated with node i
at the beginning of slot k is given by 𝒉𝒉𝒊𝒊(𝒌𝒌).

• Recall: Packet Delay = 1 slot

• Evolution of AoI:

Network - Age of Information
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Slots

Slots

Delivery of packets from 
sensor i to the BS

3
2
1

𝐡𝐡𝐢𝐢(𝒌𝒌 + 𝟏𝟏) = �
𝟏𝟏,

𝒉𝒉𝒊𝒊 𝒌𝒌 + 1,

if 𝑑𝑑𝑖𝑖 𝑘𝑘 = 1

otherwise

𝒉𝒉𝒊𝒊(𝒌𝒌)



Network - Objective Function

• Expected Weighted Sum AoI when policy 𝜋𝜋 is employed:

• Minimum Throughput Requirements:

• Channel Interference:
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𝔼𝔼 𝐽𝐽𝐾𝐾𝜋𝜋 =
1
𝐾𝐾𝐾𝐾

𝔼𝔼 �
𝑘𝑘=1

𝐾𝐾

�
𝑖𝑖=1

𝑀𝑀

𝜶𝜶𝒊𝒊𝒉𝒉𝒊𝒊𝝅𝝅(𝒌𝒌) ,  where 𝒉𝒉𝒊𝒊𝝅𝝅 𝒌𝒌 is the AoI of node i  
and 𝜶𝜶𝒊𝒊 is the positive weight

�𝑞𝑞𝑖𝑖𝜋𝜋: = lim
𝐾𝐾→∞

1
𝐾𝐾�
𝑘𝑘=1

𝐾𝐾

𝔼𝔼[𝒅𝒅𝒊𝒊(𝒌𝒌)] ≥ 𝒒𝒒𝒊𝒊 ,∀𝑖𝑖 ∈ {1,2, … ,𝑀𝑀},  where set 𝒒𝒒𝒊𝒊 𝑖𝑖=1
𝑀𝑀 is feasible.

�
𝑖𝑖=1

𝑀𝑀

𝒖𝒖𝒊𝒊(𝒌𝒌) ≤ 1 ,∀𝑘𝑘 ∈ {1,2, … ,𝐾𝐾}



• Policy 𝜋𝜋∗ that solves (8) is AoI-optimal and achieves 𝑂𝑂𝑂𝑂𝑇𝑇∗

• Policy 𝜂𝜂 ∈ Π that attains 𝑂𝑂𝑂𝑂T𝜂𝜂 is 𝜓𝜓-optimal when
16

(Age of Information)

(Minimum Throughput)

(Channel Interference)

Scheduling Policies

𝑂𝑂𝑂𝑂𝑇𝑇∗ ≤ 𝑂𝑂𝑂𝑂T𝜂𝜂 ≤ 𝜓𝜓𝑂𝑂𝑂𝑂𝑇𝑇∗



Summary of Results:
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Scheduling Policies

Scheduling Policy Technique Optimality 
Ratio Simulation Result

Optimal Stationary 
Randomized Policy Renewal Theory 2-optimal ~ 2-optimal

Max-Weight Policy Lyapunov
Optimization 4-optimal close to optimal

Whittle’s Index Policy RMAB Framework 8-optimal close to optimal



Summary of Results:

18

Scheduling Policies

Scheduling Policy Technique Optimality 
Ratio Simulation Result

Optimal Stationary 
Randomized Policy Renewal Theory 2-optimal ~ 2-optimal

Max-Weight Policy Lyapunov
Optimization 4-optimal close to optimal

Whittle’s Index Policy RMAB Framework 8-optimal close to optimal



Stationary Randomized Policies

• Policy R: in each slot k, select node i with probability 𝝁𝝁𝒊𝒊 ∈ 0,1 .

• Packet deliveries from node i is a renewal process with 𝑰𝑰𝒊𝒊~ 𝐺𝐺𝐺𝐺𝐺𝐺(𝝁𝝁𝒊𝒊𝒑𝒑𝒊𝒊)
• Sum of 𝒉𝒉𝒊𝒊 𝒌𝒌 over time is a renewal-reward process.
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Stationary Randomized Policies

• Policy R: in each slot k, select node i with probability 𝝁𝝁𝒊𝒊 ∈ 0,1 .

• Packet deliveries from node i is a renewal process with 𝑰𝑰𝒊𝒊~ 𝐺𝐺𝐺𝐺𝐺𝐺(𝝁𝝁𝒊𝒊𝒑𝒑𝒊𝒊)
• Sum of 𝒉𝒉𝒊𝒊 𝒌𝒌 over time is a renewal-reward process.
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𝒉𝒉𝒊𝒊(𝒌𝒌)

4
3
2
1

lim
𝐾𝐾→∞

1
𝐾𝐾
�
𝑘𝑘=1

𝐾𝐾

𝔼𝔼 𝒉𝒉𝒊𝒊(𝒌𝒌) =
𝔼𝔼 𝑰𝑰𝒊𝒊𝟐𝟐/2 + 𝑰𝑰𝒊𝒊/2

𝔼𝔼 𝑰𝑰𝒊𝒊
=

1
𝝁𝝁𝒊𝒊𝒑𝒑𝒊𝒊

𝑰𝑰𝒊𝒊



Stationary Randomized Policies

• Policy R: in each slot k, select node i with probability 𝝁𝝁𝒊𝒊 ∈ 0,1 .

• Packet deliveries from node i is a renewal process with 𝑰𝑰𝒊𝒊~ 𝐺𝐺𝐺𝐺𝐺𝐺(𝝁𝝁𝒊𝒊𝒑𝒑𝒊𝒊)
• Sum of 𝒉𝒉𝒊𝒊 𝒌𝒌 over time is a renewal-reward process.
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Stationary Randomized Policies

• Policy R: in each slot k, select node i with probability 𝝁𝝁𝒊𝒊 ∈ 0,1 .

• Packet deliveries from node i is a renewal process with 𝑰𝑰𝒊𝒊~ 𝐺𝐺𝐺𝐺𝐺𝐺(𝝁𝝁𝒊𝒊𝒑𝒑𝒊𝒊)
• Sum of 𝒉𝒉𝒊𝒊 𝒌𝒌 over time is a renewal-reward process.

• Optimal Stationary Randomized Policy R* uses probabilities 𝝁𝝁𝒊𝒊∗ i=1
M that can 

be obtained offline with Algorithm 1 (omitted in this presentation).
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Stationary Randomized Policies

• Policy R: in each slot k, select node i with probability 𝝁𝝁𝒊𝒊 ∈ 0,1 .

• Packet deliveries from node i is a renewal process with 𝑰𝑰𝒊𝒊~ 𝐺𝐺𝐺𝐺𝐺𝐺(𝝁𝝁𝒊𝒊𝒑𝒑𝒊𝒊)
• Sum of 𝒉𝒉𝒊𝒊 𝒌𝒌 over time is a renewal-reward process.

• Optimal Stationary Randomized Policy R* uses probabilities 𝝁𝝁𝒊𝒊∗ i=1
M that can 

be obtained offline with Algorithm 1 (omitted in this presentation).

Theorem: for any network configuration, policy R* is 2-optimal.
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Summary of Results:
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Scheduling Policy Technique Optimality 
Ratio Simulation Result

Optimal Stationary 
Randomized Policy Renewal Theory 2-optimal ~ 2-optimal

Max-Weight Policy Lyapunov
Optimization 4-optimal close to optimal

Whittle’s Index Policy RMAB Framework 8-optimal close to optimal



Max-Weight Policy

• Minimum Throughput Requirements:

• Throughput debt:

• Lyapunov Function:

25

𝒙𝒙𝒊𝒊(𝒌𝒌 + 𝟏𝟏) = 𝑘𝑘𝒒𝒒𝒊𝒊 −�
𝑡𝑡=1

𝑘𝑘

𝒅𝒅𝒊𝒊(𝒕𝒕)

�𝑞𝑞𝑖𝑖𝜋𝜋: = lim
𝐾𝐾→∞

1
𝐾𝐾�
𝑘𝑘=1

𝐾𝐾

𝔼𝔼[𝒅𝒅𝒊𝒊(𝒌𝒌)] ≥ 𝒒𝒒𝒊𝒊 ,∀𝑖𝑖 ∈ {1,2, … ,𝑀𝑀},  where set 𝒒𝒒𝒊𝒊 𝑖𝑖=1
𝑀𝑀 is feasible.

𝐿𝐿 𝑘𝑘 ≔
1
2�
𝑖𝑖=1

𝑀𝑀

𝜶𝜶𝒊𝒊𝒉𝒉𝒊𝒊𝟐𝟐 𝒌𝒌 + 𝑉𝑉 𝑥𝑥𝑖𝑖+(𝑘𝑘) 2 ,  where V is a constant

and 𝑥𝑥𝑖𝑖+ 𝑘𝑘 = max 0, 𝑥𝑥𝑖𝑖(𝑘𝑘)



Max-Weight Policy

• Max-Weight is designed to reduce the Lyapunov Drift.

• Lyapunov Function:

• Lyapunov Drift:

• Policy MW: in each slot k, select the node with highest value of 𝑊𝑊𝑖𝑖(𝑘𝑘), where:
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𝑊𝑊𝑖𝑖 𝑘𝑘 =
𝜶𝜶𝒊𝒊𝒑𝒑𝒊𝒊

2
𝒉𝒉𝒊𝒊 𝒌𝒌 𝒉𝒉𝒊𝒊(𝒌𝒌) + 2 + 𝑉𝑉𝒑𝒑𝒊𝒊𝑥𝑥𝑖𝑖+(𝑘𝑘)

𝐿𝐿 𝑘𝑘 ≔
1
2�𝑖𝑖=1

𝑀𝑀
𝜶𝜶𝒊𝒊𝒉𝒉𝒊𝒊𝟐𝟐 𝒌𝒌 + 𝑉𝑉 𝑥𝑥𝑖𝑖+(𝑘𝑘) 2

∆ 𝑘𝑘 ≤ −�
𝑖𝑖=1

𝑀𝑀
𝔼𝔼 𝒖𝒖𝒊𝒊 𝒌𝒌 𝒉𝒉𝒊𝒊 𝒌𝒌 , 𝑥𝑥𝑖𝑖 𝑘𝑘 𝑖𝑖=1

𝑀𝑀 𝑊𝑊𝑖𝑖 𝑘𝑘 + 𝐵𝐵𝑖𝑖(𝑘𝑘)

∆ 𝑘𝑘 ≔ 𝔼𝔼 𝐿𝐿 𝑘𝑘 + 1 − 𝐿𝐿 𝑘𝑘 𝒉𝒉𝒊𝒊 𝒌𝒌 , 𝑥𝑥𝑖𝑖(𝑘𝑘) 𝑖𝑖=1
𝑀𝑀



Max-Weight Policy

• Policy MW: in each slot k, select the node with highest value of 𝑊𝑊𝑖𝑖(𝑘𝑘), where:

Theorem: MW satisfies ANY feasible set of throughput requirements 𝒒𝒒𝒊𝒊 𝑖𝑖=1
𝑀𝑀

Theorem: for every network with 𝑉𝑉 ≤ 2∑𝑖𝑖=1𝑀𝑀 𝜶𝜶𝒊𝒊 /𝑀𝑀, the MW is 4-optimal.
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𝑊𝑊𝑖𝑖 𝑘𝑘 =
𝜶𝜶𝒊𝒊𝒑𝒑𝒊𝒊

2
𝒉𝒉𝒊𝒊 𝒌𝒌 𝒉𝒉𝒊𝒊(𝒌𝒌) + 2 + 𝑉𝑉𝒑𝒑𝒊𝒊𝑥𝑥𝑖𝑖+(𝑘𝑘)



Max-Weight Policy vs Whittle’s Index Policy

• Policy MW: in each slot k, select the node with highest value of 𝑊𝑊𝑖𝑖(𝑘𝑘), where:

Theorem: MW satisfies ANY feasible set of throughput requirements 𝒒𝒒𝒊𝒊 𝑖𝑖=1
𝑀𝑀

Theorem: for every network with 𝑉𝑉 ≤ 2∑𝑖𝑖=1𝑀𝑀 𝜶𝜶𝒊𝒊 /𝑀𝑀, the MW is 4-optimal.

• Policy Whittle: in each slot k, select the node with highest value of 𝐶𝐶𝑖𝑖(𝑘𝑘), 
where:

28

𝑊𝑊𝑖𝑖 𝑘𝑘 =
𝜶𝜶𝒊𝒊𝒑𝒑𝒊𝒊

2
𝒉𝒉𝒊𝒊 𝒌𝒌 𝒉𝒉𝒊𝒊(𝒌𝒌) + 2 + 𝑉𝑉𝒑𝒑𝒊𝒊𝑥𝑥𝑖𝑖+(𝑘𝑘)

𝐶𝐶𝑖𝑖 𝑘𝑘 =
𝜶𝜶𝒊𝒊𝒑𝒑𝒊𝒊

2
𝒉𝒉𝒊𝒊 𝒌𝒌 𝒉𝒉𝒊𝒊 𝒌𝒌 +

2
𝒑𝒑𝒊𝒊
− 1 + 𝜽𝜽𝒊𝒊



Summary of Results:
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Numerical Results

• Metric:
• Expected Weighted Sum AoI : 𝔼𝔼 𝐽𝐽𝐾𝐾𝜋𝜋

• Network Setup with M nodes. Node i has:
• channel reliability 𝒑𝒑𝒊𝒊 = 𝑖𝑖/𝑀𝑀 [increasing]
• weight 𝜶𝜶𝒊𝒊 = (𝑀𝑀 + 1 − 𝑖𝑖)/𝑀𝑀 [decreasing]
• throughput requirement 𝒒𝒒𝒊𝒊 = 𝜖𝜖𝒑𝒑𝒊𝒊/M, where 𝜖𝜖 in 0; 1

• Each simulation runs for 𝐾𝐾 = 𝑀𝑀 × 106 slots
• Each data point is an average over 10 simulations

30
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𝝐𝝐 = 𝟎𝟎.𝟗𝟗
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𝑴𝑴 = 𝟑𝟑𝟑𝟑
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Final Remarks
• In this presentation:

• Age of Information and Network Model
• Three low-complexity scheduling policies
• Performance guarantees
• Numerical Results: Max-Weight has superior performance

• In the paper: 
• Derive Universal Lower Bound on Age of Information
• Discuss Indexability and Whittle’s Index Policy
• Additional simulation results

• Recent result not in the paper: Drift-Plus Penalty Policy is 2-optimal
33

1

M
𝜶𝜶𝟏𝟏

𝜶𝜶𝑴𝑴

𝒒𝒒𝟏𝟏

𝒒𝒒𝑴𝑴

𝒑𝒑𝟏𝟏
𝒑𝒑𝑴𝑴

𝝅𝝅


	Optimizing Age of Information in Wireless�Networks with Throughput Constraints
	Outline
	Age of Information (AoI)
	Age of Information (AoI)
	Age of Information (AoI)
	Age of Information (AoI)
	Age of Information (AoI)
	AoI, Delay and Interdelivery time
	AoI, Delay and Interdelivery time
	Network - Example
	Network - Description
	Network - Scheduling Policy 𝜋
	Network - Age of Information
	Network - Objective Function
	Scheduling Policies
	Scheduling Policies
	Scheduling Policies
	Stationary Randomized Policies
	Stationary Randomized Policies
	Stationary Randomized Policies
	Stationary Randomized Policies
	Stationary Randomized Policies
	Scheduling Policies
	Max-Weight Policy
	Max-Weight Policy
	Max-Weight Policy
	Max-Weight Policy vs Whittle’s Index Policy
	Scheduling Policies
	Numerical Results
	Slide Number 31
	Slide Number 32
	Final Remarks

