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Abstract—Age of Information (AoI) is a performance metric
that captures the freshness of the information from the per-
spective of the destination. The AoI measures the time that
elapsed since the generation of the packet that was most recently
delivered to the destination. In this paper, we consider a single-
hop wireless network with a number of nodes transmitting time-
sensitive information to a Base Station and address the problem of
minimizing the Expected Weighted Sum AoI of the network while
simultaneously satisfying timely-throughput constraints from the
nodes.

We develop four low-complexity transmission scheduling poli-
cies that attempt to minimize AoI subject to minimum throughput
requirements and evaluate their performance against the optimal
policy. In particular, we develop a randomized policy, a Max-
Weight policy, a Drift-Plus-Penalty policy and a Whittle’s Index
policy, and show that they are guaranteed to be within a factor
of two, four, two and eight, respectively, away from the minimum
AoI possible. Simulation results show that Max-Weight and Drift-
Plus-Penalty outperform the other policies, both in terms of AoI
and throughput, in every network configuration simulated, and
achieve near optimal performance.

Index Terms—Age of Information, Throughput, Scheduling,
Optimization, Quality of Service, Wireless Networks.

I. INTRODUCTION

THE Age of Information (AoI) is a performance metric
that measures the time that elapsed since the generation

of the packet that was most recently delivered to the desti-
nation. This metric captures the freshness of the information
from the perspective of the destination. Consider a cyber-
physical system such as an automated industrial plant, a
smart house or a modern car, where a number of sensors
are transmitting time-sensitive information to a monitor over
unreliable wireless channels. Each sensor samples information
from a physical phenomena (e.g. pressure of the tire, quantity
of fuel, proximity to obstacles and engine rotational speed)
and transmits this data to the monitor. Ideally, the monitor
receives fresh information about every physical phenomena
continuously. However, due to limitations of the wireless
channel, this is often impractical. In such cases, the system has
to manage the use of the available channel resources in order
to keep the monitor updated. In this paper, we develop four
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low-complexity transmission scheduling policies and analyze
their performance in terms of the freshness of the information
at the monitor, namely the Age of Information.

Let every packet be time-stamped with the time it was
generated. Denote by τi[m] the time-stamp of the mth packet
delivered by sensor i to the monitor. Assume that at time t, the
mth packet delivered by sensor i is the most recent. Then, the
Age of Information associated with sensor i at time t is given
by hi(t) = t− τi[m]. While the monitor does not receive new
packets from sensor i, the value of hi(t) increases linearly with
t, representing the information getting older. As soon as the
monitor receives a new packet from sensor i, the corresponding
time-stamp is instantaneously updated from τi[m] to τi[m+1],
reducing the value of hi(t) by τi[m+ 1]− τi[m]. Notice that
at the moment packet (m+ 1) is delivered to the monitor, the
value of hi(t) matches the delay of the packet. This makes
sense because, at that moment, the information at the monitor
is as old as the information contained in packet (m + 1). It
follows naturally that a good AoI performance is achieved
when packets with low delay are delivered regularly.

In order to provide good AoI performance, the scheduling
policy must control how the channel resources are allocated
to the different sensors in the network. Depending on the
channel conditions and network configuration, this can mean
that some sensors get to transmit repeatedly, while other
sensors less often. The frequency at which information is
delivered to the monitor is of particular importance in sensor
networks. Clearly, a sensor that measures the quantity of fuel
requires a lower update frequency (i.e. throughput) than a
sensor that is measuring the proximity to obstacles in order
to avoid collisions. For capturing this attribute, we associate
a minimum timely-throughput requirement with each sensor
in the network. Hence, in addition to providing good AoI
performance, the scheduling policies should also fulfill timely-
throughput constraints from the individual sensors.

A framework for modeling wireless networks with timely-
throughput requirements was proposed in [2] together with
two debt-based scheduling policies that fulfill any feasible re-
quirements. Generalizations of this model to different network
configurations were proposed in [3]–[5]. Scheduling policies
that maximize throughput and also provide service regularity
in wireless networks were studied in [6]–[8]. The problem
of minimizing AoI was introduced in [9]–[11]. In [11]–[18],
different queueing systems are analyzed and the optimal server
utilization with respect to AoI is found. In [19]–[22], the
authors optimize the process of generating information updates
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in order to minimize AoI. The design of scheduling policies
based on AoI is considered in [23]–[35].

Most relevant to our paper are [6], [25], [27], [31]–[34]. In
[6], the Time-Since-Last-Delivery1 (TSLD) is introduced as a
measure of service regularity and a Max-Weight scheduling
policy based on TSLD and queue length is developed and
analyzed. In [25], a Greedy policy, which transmits the packet
with highest current age, is shown to be AoI optimal for
symmetric network and a scheduling policy based on the
Whittle’s Index is developed. This work is extended in [32],
where the authors develop and analyze a stationary randomized
policy and a Max-Weight policy based on AoI. In [27], the AoI
minimization problem is formulated as a Markov Decision
Process and structural properties of the optimal scheduling
policy are obtained. In [31], a round-robin policy and a
stationary randomized policy are optimized in terms of AoI. In
[34], a stationary randomized policy is optimized with respect
to average AoI and peak AoI.

In this paper, we develop policies that minimize AoI
subject to minimum throughput requirements, where timely-
throughput is modeled as in [2], and evaluate their perfor-
mance against an AoI lower bound. To the best of our knowl-
edge, this is the first work to consider AoI-based policies that
provably satisfy throughput constraints of multiple destinations
simultaneously.

An important observation is that high throughput does
not guarantee low AoI. Next, we provide two examples that
illustrate the importance of low delay and service regularity.
Example 1: consider an M/M/1 queue with high arrival rate
and low service rate. In this system, the queue is often filled,
resulting in high throughput and high packet delay. This
high delay means that packets being served contain outdated
information. Hence, despite the high throughput, the AoI may
still be high. Example 2: consider a network with two nodes
sharing the wireless channel during a given time-interval. The
scheduling policy selects which node is allowed to transmit
packets at any given time. Policy A selects node 1 repeatedly
in the first half of the interval and node 2 in the second half.
Policy B alternates between nodes 1 and 2 throughout the
entire interval. Despite the fact that both policies have the
same throughput, policy B may outperform policy A in terms
of AoI due to its superior service regularity.

In this paper, we assume that nodes can generate a new
packet with fresh information when scheduled. This assump-
tion is motivated by applications in which end nodes can
generate (or sample) information on-demand. This assumption
allows us to gain insight into the scheduling problem. It is
important to notice that the techniques employed in this paper
may be applicable to related models with stochastic packet
arrivals and buffering.

The remainder of this paper is outlined as follows. In Sec. II,
the network model and performance metrics are formally
presented. Then, in Sec. III, four low-complexity scheduling
policies are proposed and analyzed. In Sec. IV, those policies
are simulated and compared to the state-of-the-art in the
literature. The paper is concluded in Sec. V.

1Notice that TSLD is similar to AoI.

II. SYSTEM MODEL
Consider a single-hop wireless network with a base station

(BS) receiving time-sensitive information from M nodes. Let
the time be slotted, with slot index k ∈ {1, 2, · · · ,K}, and
consider a wireless channel that allows at most one packet
transmission per slot. In each slot k, the BS either idles or
selects a node i ∈ {1, 2, · · · ,M} for transmission. Let ui(k)
be the indicator function that is equal to 1 when the BS selects
node i during slot k, and ui(k) = 0 otherwise. When ui(k) =
1, node i samples fresh information, generates a new packet
and sends this packet over the wireless channel. The packet
from node i is successfully received by the BS with probability
pi ∈ (0, 1] and a transmission error occurs with probability
1−pi. The probability pi does not change with time, but may
differ between nodes.

The transmission scheduling policy controls the decision
of the BS in each slot k, which is represented by the set of
values {ui(k)}Mi=1. The interference constraint associated with
the wireless channel imposes that∑M

i=1 ui(k) ≤ 1, ∀k ∈ {1, · · · ,K} , (1)

meaning that at any given slot k, the scheduling policy can
select at most one node for transmission. Let di(k) be the
random variable that indicates when a packet from node i
is delivered to the BS. If node i transmits a packet during
slot k, i.e. ui(k) = 1, then di(k) = 1 with probability pi
and di(k) = 0 with probability 1 − pi. On the other hand, if
node i does not transmit, i.e. ui(k) = 0, then di(k) = 0 with
probability one. It follows that E [di(k) |ui(k) ] = piui(k) and,
applying the law of iterated expectations

E [di(k)] = piE [ui(k)] . (2)

In this paper, we consider non-anticipative scheduling poli-
cies, i.e. policies that do not use future knowledge in making
decisions. Denote by Π the class of non-anticipative policies
and let π ∈ Π be an arbitrary admissible policy. Our goal
is to design low-complexity scheduling policies that belong
to Π, provide close to optimal AoI performance and, at the
same time, guarantee a minimum throughput level for each
individual destination. Next, we formally introduce both per-
formance metrics, throughput and AoI, and define a measure
for “closeness to optimality”.

A. Minimum Throughput Requirement

Let qi be a strictly positive real value that represents the
minimum throughput requirement of node i. Using the random
variable dπi (k), we define the long-term throughput of node i
when policy π is employed as

q̂πi := lim
K→∞

1

K

K∑
k=1

E[dπi (k)] . (3)

Then, we express the minimum throughput constraint of each
individual node as

q̂πi ≥ qi ,∀i ∈ {1, · · · ,M} . (4)

In this paper, we assume that {qi}Mi=1 is a feasible set of
minimum throughput requirements, i.e. there exists a policy
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π ∈ Π that satisfies all K interference constraints in (1) and
all M throughput constraints in (4) simultaneously. As shown
in [2, Lemma 5], the inequality

M∑
i=1

qi
pi
≤ 1 , (5)

is a necessary and sufficient condition for the feasibility of
{qi}Mi=1. Throughout this paper, we assume that (5) is satisfied
with strict inequality. Next, we present the AoI metric.

B. Age of Information

The Age of Information depicts how old the information
is from the perspective of the BS. Let hi(k) be the positive
integer that represents the AoI associated with node i at the
beginning of slot k. If the BS does not receive a packet from
node i during slot k, then hi(k + 1) = hi(k) + 1, since the
information at the BS is one slot older. In contrast, if the BS
receives a packet from node i during slot k, then hi(k+1) = 1,
because the received packet was generated at the beginning of
slot k. The evolution of hi(k) follows

hi(k + 1) =

{
1 , if di(k) = 1 ;

hi(k) + 1 , otherwise. (6)

The average AoI of node i during the first K slots is cap-
tured by E

[∑K
k=1 hi(k)

]
/K, where the expectation is with

respect to the randomness in the channel and the scheduling
policy. For measuring the freshness of the information of
the entire network when policy π is employed, we use the
Expected Weighted Sum AoI

E [JπK ] =
1

KM
E

[
K∑
k=1

M∑
i=1

αihi(k)
∣∣∣ ~h(1)

]
, (7)

where ~h(1) = [h1(1), · · · , hM (1)]T is the vector of initial AoI
in (6) and αi > 0 is the weight of node i. For simplicity, we
assume that hi(1) = 1,∀i, and omit ~h(1) henceforth.

C. Optimization Problem

With the definitions of AoI and throughput, we present the
optimization problem that is central to this paper.

AoI Optimization

OPT∗ = min
π∈Π

{
lim
K→∞

1

KM
E

[
K∑
k=1

M∑
i=1

αihi(k)

]}
(8a)

s.t. q̂πi ≥ qi ,∀i ; (8b)∑M
i=1 ui(k) ≤ 1 ,∀k . (8c)

The minimum throughput constraints are depicted in (8b) and
the interference constraints are in (8c). The scheduling policy
that results from (8a)-(8c) is referred to as AoI-optimal.

For a given network setup (M,pi, qi, αi), let OPT∗ be the
Expected Weighted Sum AoI achieved by the AoI-optimal
policy π∗. Similarly, let OPTη be the AoI achieved by some
policy η ∈ Π. The optimality ratio of η is given by

ψη =
OPTη
OPT∗

, (9)

and we say that policy η is ψη-optimal. Naturally, the lower the
value of ψη , the better is the AoI performance of policy η. The
lowest ψη achievable by a policy η that satisfies (8b) and (8c)
is ψη = 1. In general, if policy η does not satisfy (8b) or (8c),
then ψη could be lower than unity. The optimality ratio ψη is
used in the upcoming sections to compare the performance of
different scheduling policies.

III. SCHEDULING POLICIES

In this section, we propose four low-complexity scheduling
policies with strong AoI performances. The first three provably
satisfy the throughput constraints for every feasible set {qi}Mi=1

and the fourth accounts for the throughput constraints, but
provides no guarantee. To evaluate the AoI performance of
each policy, we find their corresponding optimality ratio ψη .
Moreover, in Sec. IV, we simulate and compare these policies
to the state-of-the-art in the literature.

Prior to introducing the policies, we obtain a lower bound to
the AoI optimization (8a)-(8c) which is used in the derivation
of the optimality ratios ψη . Then, we present four scheduling
policies: 1) Optimal Stationary Randomized policy; 2) Max-
Weight policy; 3) Drift-Plus-Penalty policy; and 4) Whittle’s
Index policy. The first is obtained by solving the AoI opti-
mization (8a)-(8c) over the class of Stationary Randomized
Policies. The second and third policies are derived using
Lyapunov Optimization [36]. The fourth policy is obtained
by using the Restless Multi-Armed Bandit framework [37].

A. Lower Bound

In this section, we use a sample path argument to derive a
lower bound to the AoI optimization (8a)-(8c).

Theorem 1. The optimization problem in (10a)-(10c) provides
a lower bound LB to the AoI optimization (8a)-(8c), namely
LB ≤ OPT∗ for every network setup (M,pi, qi, αi).

Lower Bound

LB = min
π∈Π

{
1

2M

M∑
i=1

αi

(
1

q̂πi
+ 1

)}
(10a)

s.t. q̂πi ≥ qi ,∀i ; (10b)∑M
i=1 ui(k) ≤ 1 ,∀k . (10c)

Proof. Consider a scheduling policy π ∈ Π that satisfies all
throughput and interference constraints running on a network
for the time-horizon of K slots. Let Ω be the sample space
associated with this network and let ω ∈ Ω be a sample
path. For a given sample path ω, the total number of packets
delivered by node i during the K slots is denoted Di(K) =∑K
k=1 di(k) and the inter-delivery time associated with each

of those deliveries is denoted Ii[m]. In particular, let Ii[m] be
the number of slots between the (m − 1)th and mth packet
deliveries from node i, ∀m ∈ {1, · · · , Di(K)}2. After the last

2Naturally, Ii[1] is the number of slots between the first packet delivery
from node i and the first slot k = 1.
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packet delivery from node i, the number of remaining slots is
Ri. Hence, the time-horizon can be written as

K =

Di(K)∑
m=1

Ii[m] +Ri ,∀i ∈ {1, 2, · · · ,M} . (11)

According to the evolution of hi(k) in (6), the slot that
follows the (m−1)th packet delivery from node i has an AoI
of hi(k) = 1. Since the mth packet is delivered only after
Ii[m] slots, we know that hi(k) evolves as {1, 2, · · · , Ii[m]}.
This pattern is repeated throughout the entire time-horizon,
including the last Ri slots. As a result, the time-average Age
of Information of node i can be expressed as

1

K

K∑
k=1

hi(k) =
1

K

Di(K)∑
m=1

(Ii[m] + 1)Ii[m]

2
+

(Ri + 1)Ri
2


=

1

2

Di(K)

K

1

Di(K)

Di(K)∑
m=1

I2
i [m] +

R2
i

K
+ 1

 , (12)

where the last equality uses (11) to replace the two linear terms
by K.

Define the operator M̄[x] that computes the sample mean
of any set x. In particular, let the sample mean of Ii[m] and
I2
i [m] be

M̄[Ii] =
1

Di(K)

Di(K)∑
m=1

Ii[m] ; (13)

M̄[I2
i ] =

1

Di(K)

Di(K)∑
m=1

I2
i [m] . (14)

Substituting M̄[I2
i ] into (12) and then applying Jensen’s in-

equality, yields

1

K

K∑
k=1

hi(k) ≥ 1

2

(
Di(K)

K

(
M̄[Ii]

)2
+
R2
i

K
+ 1

)
, (15)

combining (11) into (13) and then substituting the result in
(15), gives

1

K

K∑
k=1

hi(k) ≥ 1

2

(
1

K

(K −Ri)2

Di(K)
+
R2
i

K
+ 1

)
. (16)

By minimizing the LHS of (16) analytically with respect to
the variable Ri, we have

1

K

K∑
k=1

hi(k) ≥ 1

2

(
K

Di(K) + 1
+ 1

)
. (17)

Taking the expectation of (17) and applying Jensen’s inequal-
ity, yields

1

K

K∑
k=1

E [hi(k)] ≥ 1

2

 1

E
[
Di(K)

K

]
+

1

K

+ 1

 . (18)

Applying the limit K → ∞ to (18) and using the definition
of throughput in (3), gives

lim
K→∞

1

K

K∑
k=1

E [hi(k)] ≥ 1

2

(
1

q̂πi
+ 1

)
. (19)

Combining (19) and the objective function in (7), yields

lim
K→∞

E [JπK ] = lim
K→∞

1

M

M∑
i=1

αi
K

K∑
k=1

E [hi(k)]

≥ 1

2M

M∑
i=1

αi

(
1

q̂πi
+ 1

)
. (20)

Finally, substituting (20) into the AoI optimization (8a)-(8c)
gives the Lower Bound (10a)-(10c). �

To obtain the expression in (20), we applied Jensen’s in-
equality twice and minimized (16) analytically with respect to
Ri. Each of those steps could have led to a loose lower bound
LB . However, in the next section, we use this lower bound
to obtain a tight optimality ratio, ψR < 2, for a Stationary
Randomized policy. Moreover, we evaluate the tightness of
LB using numerical results in Sec. IV.

B. Optimal Stationary Randomized policy

Denote by ΠR the class of Stationary Randomized Policies
and let R ∈ ΠR be a scheduling policy that, in each slot
k, selects node i with probability µi ∈ (0, 1] and idles with
probability µidle. Each policy in ΠR is fully characterized
by the set of scheduling probabilities {µi}Mi=1, where µi =
E[ui(k)],∀i,∀k and µidle = 1 −

∑M
i=1 µi. Next, we find the

Optimal Stationary Randomized policy R∗ that solves the AoI
optimization (8a)-(8c) over the class ΠR ⊂ Π and derive the
associated optimality ratio ψR.

Proposition 2. Consider a policy R ∈ ΠR with scheduling
probabilities {µi}Mi=1. The long-term throughput and the ex-
pected time-average AoI of node i can be expressed as

q̂Ri = piµi ; (21)

lim
K→∞

1

K

K∑
k=1

E[hi(k)] =
1

piµi
. (22)

Proof. In any given slot k, the BS receives a packet from
node i if this node is scheduled and the corresponding packet
transmission is successful. The probability of this event is piµi.
Moreover, the inter-delivery times Ii[m] of node i are i.i.d.
with P{Ii[m] = n} = piµi(1− piµi)n−1,∀n ∈ {1, 2, · · · }.

Clearly, under policy R, the sequence of packet deliveries
is a renewal process. Thus, we can use renewal theory to
derive (21) and (22). In particular, by the definition of long-
term throughput (3) and the expression for the expected time-
average AoI of node i, we have

q̂Ri = lim
K→∞

1

K

K∑
k=1

E[di(k)]
(a)
=

1

E[Ii[m]]
= piµi ; (23)

lim
K→∞

1

K

K∑
k=1

E[hi(k)]
(b)
=

E[I2
i [m]]

2E[Ii[m]]
+

1

2
=

1

piµi
. (24)

where (a) follows from the elementary renewal theorem and
(b) from its generalization for renewal-reward processes [38,
Sec. 5.7]. �
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Substituting both expressions from Proposition 2 into the
AoI optimization (8a)-(8c) gives the equivalent optimization
problem over the class ΠR presented below.

Optimization over Randomized policies

OPTR∗ = min
R∈ΠR

{
1

M

M∑
i=1

αi
piµi

}
(25a)

s.t. piµi ≥ qi ,∀i ; (25b)∑M
i=1 µi ≤ 1 . (25c)

Notice that under the class ΠR, conditions (25c) and (8c) are
equivalent. The Optimal Stationary Randomized policy R∗ is
characterized by the set {µ∗i }Mi=1 that solves (25a)-(25c).

Theorem 3 (Optimality Ratio for R∗). The optimality ratio
of R∗ is such that ψR < 2, namely the Optimal Stationary
Randomized policy is 2-optimal for every network setup.

Proof. Let q̂Li be the throughput associated with the policy that
solves the Lower Bound (10a)-(10c). Consider the policy R ∈
ΠR with long-term throughput q̂Ri = piµi = q̂Li for each node
i. Since q̂Ri = q̂Li , it follows that R satisfies all throughput
constraints. Comparing LB in (10a) with the objective function
associated with R, namely OPTR, yields

OPTR
2

< LB → ψR =
OPTR∗

OPT∗
≤ OPTR

LB
< 2 , (26)

where OPT∗ comes from (8a) and OPTR∗ from (25a). Recall
that LB ≤ OPT∗ ≤ OPTR∗ ≤ OPTR. �

Corollary 4. The Optimal Stationary Randomized policy R∗

is also the solution for the Lower Bound problem (10a)-(10c).

Proof. Using the same argument as in the proof of Theorem 3,
in particular q̂Ri = piµi = q̂Li , it follows that the scheduling
policy that solves the Optimization over Randomized policies
(25a)-(25c) also solves the Lower Bound (10a)-(10c). �

Theorem 5 (Optimal Stationary Randomized policy). The
scheduling probabilities {µ∗i }Mi=1 that result from Algorithm 1
are the unique solution to (25a)-(25c) and, thus, characterize
the Optimal Stationary Randomized policy R∗.

Algorithm 1 Unique solution to KKT Conditions
1: γi ← αipi/Mq2

i ,∀i ∈ {1, 2, · · · ,M}
2: γ ← maxi{γi}
3: µi ← (qi/pi) max{ 1 ;

√
γi/γ } ,∀i

4: S ← µ1 + µ2 + · · ·+ µM
5: while S < 1 do
6: decrease γ slightly
7: repeat steps 3 and 4 to update µi and S
8: end while
9: µ∗i = µi,∀i, and γ∗ = γ

10: return (µ∗1, µ
∗
2, · · · , µ∗M , γ∗)

Proof. To find the set of scheduling probabilities {µ∗i }Mi=1

that solve the optimization problem (25a)-(25c), we analyze
the KKT Conditions. Let {λi}Mi=1 be the KKT multipliers

associated with the relaxation of (25b) and γ be the multiplier
associated with the relaxation of (25c). Then, for λi ≥ 0,∀i,
γ ≥ 0 and µi ∈ [qi/pi, 1],∀i, we define

L(µi,λi, γ) =
1

M

M∑
i=1

αi
piµi

+

+

M∑
i=1

λi (qi − piµi) + γ

(
M∑
i=1

µi − 1

)
, (27)

and, otherwise, we define L(µi, λi, γ) = +∞. Then, the KKT
Conditions are

(i) Stationarity: ∇µiL(µi, λi, γ) = 0;
(ii) Complementary Slackness: γ(

∑M
i=1 µi − 1) = 0;

(iii) Complementary Slackness: λi(qi − piµi) = 0,∀i;
(iv) Primal Feasibility: piµi ≥ qi ,∀i, and

∑M
i=1 µi ≤ 1;

(v) Dual Feasibility: λi ≥ 0,∀i, and γ ≥ 0.
Since qi is strictly positive, the function L(µi, λi, γ) is convex
on the interval of interest µi ∈ [qi/pi, 1]. Therefore, if
there exists a vector ({µ∗i }Mi=1, {λ∗i }Mi=1, γ

∗) that satisfies all
KKT Conditions, then this vector is unique. As a result, the
scheduling policy R∗ ∈ ΠR that optimizes (25a)-(25c) is also
unique and is characterized by {µ∗i }Mi=1. Next, we find the
vector ({µ∗i }Mi=1, {λ∗i }Mi=1, γ

∗).
To assess stationarity, ∇µi

L(µi, λi, γ) = 0, we calculate the
partial derivative of L(µi, λi, γ) with respect to µi. It follows
from the derivative that

αi
Mpiµ2

i

+ λipi = γ , ∀i . (28)

From complementary slackness, γ(
∑M
i=1 µi − 1) = 0, we

know that either γ = 0 or
∑M
i=1 µi = 1. Equation (28) shows

that the value of γ can only be zero if λi = 0 and µi → ∞,
which violates µi ∈ [qi/pi, 1]. Hence, we obtain

γ > 0 and
M∑
i=1

µi = 1 . (29)

Notice that
∑M
i=1 µi = 1 implies in µidle = 0.

Based on dual feasibility, λi ≥ 0, we can separate nodes
i ∈ {1, · · · ,M} into two categories: nodes with λi > 0 and
nodes with λi = 0.
Category 1) node i with λi > 0. It follows from complemen-
tary slackness, λi(qi − piµi) = 0, that

µi =
qi
pi
. (30)

Plugging this value of µi into (28) gives the inequality λipi =
γ − γi > 0, where we defined the constant

γi :=
αipi
Mq2

i

. (31)

Category 2) node i with λi = 0. It follows from (28) that

γ = γi

(
qi
piµi

)2

→ µi =
qi
pi

√
γi
γ
. (32)

In summary, for any fixed value of γ > 0, the scheduling
probability of node i is

µi =
qi
pi

max

{
1;

√
γi
γ

}
. (33)
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Notice that for a decreasing value of γ, the probability µi
remains fixed or increases. Our goal is to find the value of γ∗

that gives {µ∗i }Mi=1 satisfying the condition
∑M
i=1 µ

∗
i = 1.

Proposed algorithm to find γ∗: start with γ = max{γi}.
Then, according to (33), all nodes have µi = qi/pi and, by
the feasibility condition in (5), it follows that

M∑
i=1

µi =

M∑
i=1

qi
pi
≤ 1 . (34)

Now, by gradually decreasing γ and adjusting {µi}Mi=1 ac-
cording to (33), we can find the unique γ∗ that fulfills∑M
i=1 µ

∗
i = 1. The solution γ∗ exists since γ → 0 implies

in
∑M
i=1 µi → ∞. The uniqueness of γ∗ follows from the

monotonicity of µi with respect to γ. This process is described
in Algorithm 1 and illustrated in Fig. 1.

Algorithm 1 outputs the set of scheduling probabilities
{µ∗i }Mi=1 and the parameter γ∗. The set {λ∗i }Mi=1 is obtained
using (28). Hence, the unique vector ({µ∗i }Mi=1, {λ∗i }Mi=1, γ

∗)
that solves the KKT Conditions is found. �

In order to fulfill the throughput constraints (25b), every
scheduling policy in ΠR must allocate at least µi ≥ qi/pi to
each node i. What differentiates policies in ΠR is how they
distribute the remaining resources, 1 −

∑M
i=1 qi/pi, between

nodes. According to Algorithm 1, the Optimal Stationary Ran-
domized policy R∗ supplies additional resources, µ∗i > qi/pi,
to nodes with high value of γi, namely nodes with a high
priority αi or a low value of qi/pi. Notice that if a node
with low qi/pi was given the minimum required amount of
resources, it would rarely transmit and its AoI would be
high. In contrast, policy R∗ allocates the minimum required,
µ∗i = qi/pi, to nodes with low priority αi or high qi/pi.

The policies R ∈ ΠR discussed in this section are as
simple as possible. They select nodes randomly, according to
fixed scheduling probabilities {µi}Mi=1 calculated offline by
Algorithm 1. Despite their simplicity, it was shown that R∗ is
2-optimal regardless of the network setup (M,pi,qi, αi).
In the following sections, we develop scheduling policies
that take advantage of additional information, such as the
current AoI of each node, for selecting nodes in an adaptive
manner.

Fig. 1. Illustration of Algorithm 1 in a network with 3 nodes. On the left,
the initial configuration with γ = max{γi}. On the right, the outcome γ∗
implies that under policy R∗ node 2 will operate with minimum required
scheduling probability µ2 = q2/p2, while the other two nodes will operate
with a scheduling probability that is larger than the minimum.

C. Max-Weight policy
Using techniques from Lyapunov Optimization [36, chapter

3], we derive the Max-Weight policy associated with the AoI
optimization (8a)-(8c). Max-Weight is a scheduling policy
designed to reduce the expected increase in the Lyapunov
Function. The Lyapunov Function outputs a positive scalar
that is large when the network is in undesirable states,
namely when nodes have high AoI or less throughput than
the minimum required qi. Intuitively, the Max-Weight policy
keeps the network in desirable states by controlling the growth
of the Lyapunov Function. Prior to presenting the Max-Weight
policy, we introduce the notions of throughput debt, network
state, Lyapunov Function and Lyapunov Drift.

Let xi(k) be the throughput debt associated with node i at
the beginning of slot k. The throughput debt evolves as

xi(k + 1) = kqi −
∑k
t=1 di(t) . (35)

The value of kqi can be interpreted as the minimum number
of packets that node i should have delivered by slot k+ 1 and∑k
t=1 di(t) is the total number of packets actually delivered in

the same interval. Define the operator (.)+ = max{(.), 0} that
computes the positive part of a scalar. Then, the positive part
of the throughput debt is given by x+

i (k) = max{xi(k); 0}.
A large debt x+

i (k) indicates to the scheduling policy π ∈ Π
that node i is lagging behind in terms of throughput. In fact,
strong stability of the process x+

i (k), namely

lim
K→∞

1

K

∑K
k=1 E[x+

i (k)] <∞ , (36)

is sufficient to establish that the minimum throughput con-
straint, q̂πi ≥ qi, is satisfied [36, Theorem 2.8].

Denote by Sk = (hi(k), x+
i (k))Mi=1 the network state at the

beginning of slot k and define the Lyapunov Function by

L(Sk) :=
1

2

∑M
i=1

(
αih

2
i (k) + V

[
x+
i (k)

]2)
, (37)

where V is a strictly positive real value that depicts the
importance of the throughput constraints. Observe that L(Sk)
is large when nodes have high AoI or high throughput debt. To
measure the expected change in the Lyapunov Function from
one slot to the next, we define the Lyapunov Drift

∆(Sk) := E {L (Sk+1)− L (Sk) |Sk } . (38)

The Max-Weight policy is designed to keep L(Sk) small
by reducing ∆(Sk) in every slot k. Next, we present an upper
bound on ∆(Sk) that can be readily used to design the Max-
Weight policy. The derivation of this upper bound is centered
around the evolution of hi(k) in (6) and the evolution of x+

i (k)
in (35). The complete derivation can be found in Appendix A
and the upper bound follows

∆(Sk) ≤−
M∑
i=1

E {ui(k) |Sk }Wi(k) +B(k) , (39)

where Wi(k) and B(k) are given by

Wi(k) =
αipi

2
hi(k)[hi(k) + 2] + V pix

+
i (k) ; (40)

B(k) =

M∑
i=1

{
αi

[
hi(k) +

1

2

]
+ V

[
x+
i (k)qi +

1

2

]}
. (41)
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Both Wi(k) and B(k) are fully characterized by the network
state Sk and network setup (M,pi, qi, αi). Hence, both can be
used by admissible policies for making scheduling decisions.
However, notice that the term B(k) in (39) is not affected by
the choice of ui(k). Thus, for minimizing the upper bound in
(39), the Max-Weight policy selects, in each slot k, the node
with highest value of Wi(k), with ties being broken arbitrarily.
Denote the Max-Weight policy as MW .

Theorem 6. The Max-Weight policy satisfies any feasible set
of minimum throughput requirements {qi}Mi=1.

Theorem 7 (Optimality Ratio for MW ). For any given
network setup (M,pi, qi, αi), the optimality ratio of MW is
such that

ψMW ≤ 4 +
1

LB

[
V − 2

M

M∑
i=1

αi

]
. (42)

In particular, for every network with V ≤ 2
∑M
i=1 αi/M , the

Max-Weight policy is 4-optimal.

The proofs of Theorems 6 and 7 are provided in Appendices
B and C, respectively. Both theorems follow from the analysis
of the expression in (39).

Recall that the Optimal Stationary Randomized policy R∗

selects nodes randomly, according to fixed scheduling prob-
abilities {µ∗i }Mi=1. In contrast, the Max-Weight policy MW
uses feedback from the network, namely hi(k) and x+

i (k),
to guide scheduling decisions. Despite the added complexity,
we expect the feedback loop to improve the performance of
MW . In fact, numerical results in Sec. IV demonstrate
that MW outperforms R∗ in every network configuration
simulated. However, by comparing Theorems 3 and 7, it
might seem that R∗ yields a better performance than MW.
This is because the analysis associated with MW is more
challenging, leading to an optimality ratio ψMW that is
less tight than ψR. Next, we develop a policy called Drift-
Plus-Penalty policy and show that it is 2-optimal.

D. Drift-Plus-Penalty policy
The Drift-Plus-Penalty policy is derived using a similar

technique as the Max-Weight policy. The main difference
between these two policies is that the Drift-Plus-Penalty is
designed to reduce the sum of the Lyapunov Drift and a
Penalty Function, while the Max-Weight policy reduces only
the Lyapunov Drift. As we will see, this difference will
improve the optimality ratio of the Drift-Plus-Penalty policy
significantly.

Based on the AoI minimization (8a), we define the Penalty
Function as follows

P ′(Sk) :=
1

2

M∑
i=1

βiE[hi(k + 1)|Sk] , (43)

where Sk = (hi(k), x+
i (k))Mi=1 is the network state at the

beginning of slot k and βi is a positive real value associated
with node i. Observe that P ′(Sk) is large when nodes have
high AoI. Similarly to (38), we define the Lyapunov Drift as

∆′(Sk) := E {L′ (Sk+1)− L′ (Sk) |Sk } , (44)

with associated Lyapunov Function

L′(Sk) :=
V ′

2

M∑
i=1

[
x+
i (k)

]2
, (45)

where V ′ is a strictly positive real value that represents
the importance of the throughput constraints. Notice that, as
opposed to the Lyapunov Function in (37), the expression in
(45) does not contain the term with hi(k). This is because the
AoI term is already present in the Penalty Function.

The Drift-Plus-Penalty policy is designed to minimize an
upper bound on ∆′(Sk) + P ′(Sk) at every slot k. The upper
bound is derived in Appendix D of the supplementary material
by manipulating (43)-(45). The expression for the upper bound
follows

∆′(Sk)+P ′(Sk) ≤

≤−
M∑
i=1

E {ui(k) |Sk }W ′i (k) +B′(k) , (46)

where W ′i (k) and B′(k) are given by

W ′i (k) =
βipi

2
hi(k) + V ′pix

+
i (k) ; (47)

B′(k) =

M∑
i=1

{
βi
2

[hi(k) + 1] + V ′x+
i (k)qi +

V ′

2

}
. (48)

The values of W ′i (k) and B′(k) can be easily calculated
by any admissible policy and thus can be used for making
scheduling decisions. For minimizing the upper bound in (46),
the Drift-Plus-Penalty policy selects, in each slot k, the node
with highest value of W ′i (k), with ties being broken arbitrarily.
Denote the Drift-Plus-Penalty policy as DPP .

Theorem 8. The DPP policy satisfies any feasible set of
minimum throughput requirements {qi}Mi=1.

Theorem 9 (Optimality Ratio for DPP ). For any given
network setup (M,pi, qi, αi), by choosing the constant βi =
αi/µ

∗
i pi, the optimality ratio of DPP is such that

ψDPP ≤ 2 +
1

LB

[
V ′ − 1

M

M∑
i=1

αi

]
. (49)

In particular, for every network with V ′ ≤
∑M
i=1 αi/M , the

Drift-Plus-Penalty policy is 2-optimal.

The proofs of Theorems 8 and 9 are provided in Appen-
dices E and F of the supplementary material, respectively. The
Lyapunov Function (45) with a quadratic term in x+

i (k) has
a central role in showing that the DPP policy satisfies any
feasible requirements {qi}Mi=1. Notice that this is also true for
MW . The Penalty Function (43) with a linear term in hi(k)
is central to show that the DPP policy is 2-optimal. Recall
that the MW policy with a quadratic hi(k) was shown to be
4-optimal. Comparing Theorems 7 and 9, we can clearly
see this improvement in the optimality ratio. However,
this improvement is limited to the mathematical analysis.
Numerical results in Sec. IV suggest that DPP and MW
have similar performances. Next, we develop an index policy
based on Whittle’s Index [37] that is surprisingly similar to
MW .
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E. Whittle’s Index policy

To find Whittle’s Index, we transform the AoI optimization
(8a)-(8c) into a relaxed Restless Multi-Armed Bandit (RMAB)
problem. This is possible because every node in the network
evolves as a restless bandit. To obtain the relaxed RMAB
problem, we first substitute the K interference constraints in
(8c) by the single time-averaged constraint

1

K

K∑
k=1

M∑
i=1

E[ui(k)] ≤ 1 . (50)

Next, we relax this time-averaged constraint, by placing (50)
into the objective function (8a) together with the associated La-
grange Multiplier C ≥ 0. The resulting optimization problem
is called relaxed RMAB and its solution lays the foundation
for the design of Whittle’s Index. A detailed description of
this method can be found in [37], [39].

One of the challenges associated with this method is that
Whittle’s Index is only defined for problems that are indexable.
Unfortunately, it can be shown that due to the throughput
constraints, q̂πi ≥ qi, the relaxed RMAB resulting from
the transformation of the AoI optimization is not indexable.
To overcome this, we relax the throughput constraints (8b),
placing them into the objective function of (8a)-(8c) as follows

Relaxed AoI Optimization

ÕPT
∗

= min
π∈Π

{
lim
K→∞

1

KM

K∑
k=1

M∑
i=1

[
αiE [hi(k)] +

+ θi

(
qi
pi
− E[ui(k)]

)]}
(51a)

s.t. θi ≥ 0 ,∀i ; (51b)
M∑
i=1

ui(k) ≤ 1 ,∀k . (51c)

Each Lagrange Multiplier θi is associated with a relaxation
of q̂πi ≥ qi. These multipliers are called throughput incentives
for they represent the penalty incurred by scheduling policies
that deviate from the corresponding throughput constraint.
Applying the transformation described at the beginning of this
section to the relaxed AoI optimization (51a)-(51c) yields

Doubly relaxed RMAB

ÕPTD = min
π∈Π

{
lim
K→∞

1

KM

K∑
k=1

M∑
i=1

[
αiE [hi(k)] +

+ (C − θi)E [ui(k)]− C

M
+
θiqi
pi

]}
(52a)

s.t. θi ≥ 0 ,∀i ; (52b)
C ≥ 0 . (52c)

Next, we solve the doubly relaxed RMAB, establish that the
relaxed AoI optimization is indexable and obtain a closed-form
expression for the Whittle’s Index.

The doubly relaxed RMAB is separable and thus can be
solved for each individual node. Observe that a scheduling

policy running on a network with a single node i can only
choose between selecting node i for transmission during slot
k or idling. The scheduling policy that optimizes (52a)-(52c)
for a given node i is characterized next.

Proposition 10 (Threshold policy). Consider the doubly re-
laxed RMAB problem (52a)-(52c) associated with a single
node i. The optimal scheduling policy is a Threshold policy
that, in each slot k, selects node i when hi(k) ≥ Hi and idles
when 1 ≤ hi(k) < Hi. For positive fixed values of C and θi,
if C > θi, the expression for the threshold is

Hi =

3

2
− 1

pi
+

√(
1

pi
− 1

2

)2

+
2(C − θi)
piαi

 . (53)

Otherwise, if C ≤ θi, the threshold is Hi = 1.

Proposition 10 follows from [25, Propostion 4]. Next, we
define the condition for indexability and establish that the
relaxed AoI optimization is indexable. For a given value of
C, let Ii(C) = {hi(k) ∈ N|hi(k) < Hi} be the set of
states hi(k) in which the Threshold policy idles. The doubly
relaxed RMAB associated with node i is indexable if the set
Ii(C) increases monotonically from ∅ to N, as the value of
C increases from 0 to +∞. Furthermore, the relaxed AoI
optimization is indexable if this condition holds for all nodes.
The condition on Ii(C) follows directly from Proposition 10
and is true for all nodes i. Thus, we establish that the relaxed
AoI optimization (51a)-(51c) is indexable.

Given indexability, we define Whittle’s Index. Let Ci(hi(k))
be the Whittle’s Index associated with node i in state hi(k).
By definition, Ci(hi(k)) is the infimum value of C that makes
both scheduling decisions (transmit or idle) equally desirable
to the Threshold policy while in state hi(k). The scheduling
decisions are equally desirable when the multiplier C is such
that Hi = hi(k) + 1. Using (53) to solve this equation for the
value of C gives the following expression for the Index

Ci(hi(k)) =
αipi

2
hi(k)

[
hi(k) +

2

pi
− 1

]
+ θi . (54)

After establishing indexability and obtaining the expression
for Ci(hi(k)), we define Whittle’s Index policy. The Whittle’s
Index policy selects, in each slot k, the node with highest
value of Ci(hi(k)), with ties being broken arbitrarily. Denote
the Whittle’s Index policy as WI .

Theorem 11 (Optimality Ratio for WI). For any given
network setup (M,pi, qi, αi), the optimality ratio of WI is
such that

ψWI ≤ 8 +
1

LB

[
1

M

M∑
i=1

θi −
7

2M

M∑
i=1

αi

]
. (55)

In particular, for every network with
∑M
i=1 θi ≤ 7

∑M
i=1 αi/2,

the Whittle’s Index policy is 8-optimal.

The proof of Theorem 11 is provided in Appendix G of the
supplementary material. The arguments used for deriving ψWI

are analogous to the ones for deriving ψMW in Theorem 7.
Those similarities come from the fact that policies MW and
WI are almost identical. Comparing the expressions for Wi(k)
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and Ci(hi(k)), in (40) and (54), respectively, we can see that
both have the term αipih

2
i (k)/2 and both have an isolated

throughput term: Wi(k) has V pix+
i (k) and Ci(hi(k)) has θi.

Naturally, we expect the performance of both policies to be
similar in terms of AoI. The key difference between MW
and WI lies in the throughput term. While the term
Vpix

+
i (k) guarantees that MW satisfies the throughput

constraint, q̂πi ≥ qi, the positive scalar θi represents an
incentive for WI to comply with the constraint, but
provides no guarantee. The benefit of using a fixed θi is
that there is no need to keep track of x+

i (k) for each node
and at every slot k.

The results in this section hold for any given set of positive
throughput incentives {θi}Mi=1. Next, we propose an algorithm
that finds the values of θi which maximize a lower bound on
the Lagrange Dual problem associated with the relaxed AoI
optimization (51a)-(51c). Observe that ÕPTD in (52a) is the
Lagrange Dual function associated with (51a)-(51c). Thus, we
can define the Lagrange Dual problem as maxC,θi{ÕPTD}
subject to C ≥ 0 and θi ≥ 0,∀i. Since this dual problem is
challenging to address, we consider a lower bound:

max
C,χi

{L̃(C,χi)} ≤ max
C,θi
{ÕPTD} ≤ OPT∗ . (56)

subject to χi = C − θi, C ≥ 0 and θi ≥ 0 for all nodes i,
where

L̃(C,χi) =
1

M

M∑
i=1

αi
pi
− C

M

[
1−

M∑
i=1

qi
pi

]
+ (57)

+

M∑
i=1

αi
M

√ 2χi
αipi

+

[
1

pi
− 1

2

]2

− χiqi
αipi

− 1

pi
− 1

2

 .
The throughput incentives θi that result from the maximiza-

tion of L̃(C,χi) are given by Algorithm 2. They are used in the
next section to simulate the Whittle’s Index policy. Simulation
results show that the values of {θ∗i }Mi=1 from Algorithm 2
reduce the throughput debt when compared to θi = 0.

Algorithm 2 Throughput Incentives
1: χi ← αipi[(1/qi)

2 − (1/pi − 1/2)2]/2 ,∀i
2: C ← maxi{χi}
3: φ−1

i ← pi
√

2 min{C;χi}/(αipi) + (1/pi − 1/2)2 ,∀i
4: S ← φ1 + φ2 + · · ·+ φM
5: while S < 1 do
6: decrease C slightly
7: repeat steps 3 and 4 to update φi and S
8: end while
9: C∗ = C and χ∗i = min{C∗;χi} and θ∗i = C∗ − χ∗i ,∀i

10: return (θ∗1 , θ
∗
2 , · · · , θ∗M )

IV. SIMULATION RESULTS

In this section, we simulate six transmission scheduling
policies: 1) Optimal Randomized, R∗; 2) Max-Weight, MW ;
3) Drift-Plus-Penalty, DPP ; 4) Whittle’s Index with θ∗i , WI;
5) Whittle’s Index with θi = 0, WP ; and 6) Largest Weighted-
Debt First, LD. The first four policies are developed in Sec. III

and the last two are proposed in [25] and [2], respectively.
Policy WP was proposed in [25] for minimizing the AoI in
broadcast wireless networks without throughput requirements.
It is analogous to WI but with θi = 0,∀i. Policy LD selects,
in each slot k, the node with highest value of xi(k)/pi, where
xi(k) is the throughput debt (35). It was shown in [2] that LD
satisfies any set of feasible throughput requirements {qi}Mi=1.
Notice that LD does not account for AoI.

We simulate a network with M nodes, each having different
parameters. Node i has weight αi = (M + 1− i)/M , channel
reliability pi = i/M and minimum throughput requirement
qi = εpi/M , where ε ∈ [0, 1) represents the hardness of
satisfying the throughput constraints q̂πi ≥ qi. The larger the
value of ε, the more challenging are the constraints. Notice
that ε < 1 is necessary for the feasibility of {qi}Mi=1. The
values of V and V ′ represent the importance of the throughput
constraints for MW and DPP , respectively. A lower value
of V (or V ′) reduces the priority of the throughput debt and
increases the priority of AoI minimization. Recall that for any
positive V and V ′, both MW and DPP are guaranteed to
satisfy any feasible throughput requirements in the long run.
Policies R∗, WI , WP and LD are not affected by V nor V ′.

Two performance metrics are used to evaluate scheduling
policies. Figs. 2, 4 and 6 measure the Expected Weighted
Sum AoI, E[JπK ], defined in (7) and compare it with the lower
bound LB in (10a). Figs. 3 and 5 measure the maximum nor-
malized throughput debt, defined as maxi{x+

i (K + 1)/Kqi}.
Figs. 2 and 3 display the evolution over time, for K ∈
{104, 5 ∗ 104, 105, 5 ∗ 105, 106, 15 ∗ 106}, of a network with
M = 15, ε = 0.9 and V = V ′ = 1. Each data point in Figs. 2
and 3 is an average over the results of 108/K simulations.
Figs. 4 and 5 show simulations of networks with different
sizes, namely M ∈ {5, 10, · · · , 25, 30}, and fixed ε = 0.9 and
V = V ′ = M2. Fig. 6 shows networks with varying through-
put constraints, namely ε ∈ {0.7, 0.75, · · · , 0.95, 0.999}, and
fixed M = 30 and V = V ′ = M2. Each data point in Figs. 4,
5 and 6 is an average over the results of 10 simulations and
each simulation runs for a total of K = M ∗ 106 slots.

Figs. 2 and 3 show the effects of low V and V ′ on MW
and DPP . A lower value of V (or V ′) gives lower priority
to the throughput debt and, as a result, the network may take
longer to achieve the desired throughput, especially when the

Fig. 2. Performance of a network with size M = 15 over time. Notice that
the abscissa is scaled logarithmically.
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number of nodes M and/or ε are large. This convergence time
is illustrated in Fig. 3. The advantage of having low V is the
(slight) improvement in EWSAoI. Comparing MW and DPP
in Figs. 2 and 4, it can be seen that when V = V ′ goes from
152 to 1, the EWSAoI of MW decreases from 16.93 to 16.50
and DPP decreases from 17.26 to 16.61, i.e. less than 5%
improvement when V and V ′ are decreased by a factor of 225.

Simulations clearly support the theoretical results and
discussions in Sec. III. Specifically, i) Figs. 2, 4 and 6 show
that the performance of R∗ is a factor of 2 away from the
lower bound, while the performance of MW , DPP , WI and
WP are comparable to the lower bound in every network
configuration simulated; and ii) Figs. 3 and 5 show that by

Fig. 3. Performance of a network with size M = 15 over time. Notice that
the abscissa is scaled logarithmically.

Fig. 4. Simulation of networks with varying size M .

Fig. 5. Simulation of networks with varying size M .

changing the throughput incentive from θ = 0 (WP ) to the
optimal θ∗ (WI), the throughput debt is reduced but is still
not zero. Hence, as expected, WI and WP are not guaranteed
to satisfy the throughput requirements. From (i) and (ii) we
conclude that MW and DPP have superior performance in
terms of both AoI and throughput.

V. CONCLUDING REMARKS
In this paper, we considered a single-hop wireless network

with a number of nodes transmitting time-sensitive information
to a base station over unreliable channels. We addressed the
problem of minimizing the Expected Weighted Sum AoI of the
network while satisfying minimum throughput requirements
from the individual nodes. Four low-complexity scheduling
policies were developed: Optimal Stationary Randomized pol-
icy, Max-Weight policy, Drift-Plus-Penalty policy, and Whit-
tle’s Index policy. The performance of each policy was eval-
uated both analytically and through simulation. The Max-
Weight policy and the Drift-Plus-Penalty policy demonstrated
the best performance in terms of both AoI and throughput.
Interesting related models that can be analyzed using similar
techniques include single-hop networks in which i) packets
arrive to each node according to a stochastic process and are
enqueued in separated (per node) queues; or ii) some links can
be activated simultaneously and scheduling decisions are for
subsets of links.

APPENDIX A
UPPER BOUND ON THE LYAPUNOV DRIFT OF MW

In this appendix, we obtain the expressions in (39)-(41),
which represent an upper bound on the Lyapunov Drift. Con-
sider the network state Sk = (hi(k), x+

i (k))Mi=1, the Lyapunov
Function L(Sk) in (37) and the Lyapunov Drift ∆(Sk) in (38).
Substituting (37) into (38), we get

∆(Sk) =
1

2

M∑
i=1

αiE
{
h2
i (k + 1)− h2

i (k) |Sk
}

+ (58)

+
V

2

M∑
i=1

E
{

[x+
i (k + 1)]2 − [x+

i (k)]2 |Sk
}
.

Next, we find expressions for [x+
i (k + 1)]2 − [x+

i (k)]2 and
h2
i (k + 1)− h2

i (k) which are then substituted into (58).

Fig. 6. Simulation of networks with varying hardness ε.
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To obtain the expression associated with the throughput
debt, we use the following recursion

xi(k + 1) = xi(k)− di(k) + qi ,∀k , (59)

with xi(1) = 0. Notice that (59) is equivalent to (35). Squaring
x+
i (k + 1), yields[

x+
i (k + 1)

]2
= [max{xi(k)− di(k) + qi; 0}]2

≤
[
max{x+

i (k)− di(k) + qi; 0}
]2

≤ [x+
i (k)− di(k) + qi]

2 . (60)

Manipulating (60), gives

[x+
i (k + 1)]2 − [x+

i (k)]2 ≤ −2x+
i (k)[di(k)− qi] + 1 . (61)

Finally, by taking the conditional expectation of (61) and
applying (2), we get the upper bound

E
{

[x+
i (k + 1)]2 − [x+

i (k)]2
∣∣Sk} ≤ (62)

≤ −2x+
i (k) (piE{ui(k)|Sk} − qi) + 1 .

To obtain the expression associated with the AoI, we
calculate E{h2

i (k + 1)|Sk} using the evolution of hi(k) in
(6). It follows that

E
{
hi(k + 1)2

∣∣Sk} = piE {ui(k) |Sk }+

+ (hi(k) + 1)2 (1− piE {ui(k) |Sk }) . (63)

Manipulating (63), we get

E
{
hi(k + 1)2 − hi(k)2

∣∣Sk} = (64)
= −piE {ui(k) |Sk }hi(k) [hi(k) + 2] + 2hi(k) + 1 .

Substituting (62) and (64) into the Lyapunov Drift in (58),
yields the expressions in (39)-(41).

APPENDIX B
PROOF OF THEOREM 6

Theorem 6. The Max-Weight policy satisfies any feasible set
of minimum throughput requirements {qi}Mi=1.

Proof. The expression for the Lyapunov Drift (39) is central
to the analysis in this appendix and is rewritten below for
convenience.

∆(Sk) ≤−
M∑
i=1

E {ui(k) |Sk }Wi(k) +B(k) ,

where Wi(k) and B(k) are given by

Wi(k) =
αipi

2
hi(k)[hi(k) + 2] + V pix

+
i (k) ;

B(k) =

M∑
i=1

{
αi

(
hi(k) +

1

2

)
+ V

(
x+
i (k)qi +

1

2

)}
.

Recall that the Max-Weight policy minimizes the RHS of
(39) by selecting i = arg max{Wi(k)} in every slot k. Hence,
any other policy π ∈ Π yields a lower (or equal) RHS.
Consider a Stationary Randomized Policy R ∈ ΠR that, in
each slot k, selects node i with probability µi ∈ (0, 1]. Then,
it follows that

M∑
i=1

E {ui(k) |Sk }Wi(k) ≥
M∑
i=1

µiWi(k) . (65)

Substituting (65) into the equation of the Lyapunov Drift gives

∆(Sk) ≤ −
M∑
i=1

µiWi(k) +B(k)

≤−
M∑
i=1

αipiµi
2

[
hi(k)− 1

piµi
+ 1

]2

+

M∑
i=1

αi
2piµi

+

+
VM

2
− V

M∑
i=1

(µipi − qi)x+
i (k) . (66)

Consider the Cauchy-Schwarz inequality{
M∑
i=1

αipiµi

[
hi(k)− 1

piµi
+ 1

]2
}{

M∑
i=1

αi
piµi

}
≥

≥

{
M∑
i=1

αi

∣∣∣∣hi(k)− 1

piµi
+ 1

∣∣∣∣
}2

. (67)

Applying this inequality to (66) yields

∆(Sk) ≤
M∑
i=1

αi
2piµi

− V
M∑
i=1

(µipi − qi)x+
i (k)+ (68)

+
VM

2
− 1

2

{
M∑
i=1

αi
piµi

}−1{ M∑
i=1

αi

∣∣∣∣hi(k)− 1

piµi
+ 1

∣∣∣∣
}2

and rearranging the terms{
M∑
i=1

2V αi
piµi

}{
M∑
i=1

(µipi − qi)x+
i (k)

}
+

+

{
M∑
i=1

αi

∣∣∣∣hi(k)− 1

piµi
+ 1

∣∣∣∣
}2

≤ −

{
M∑
i=1

2αi
piµi

}
∆(Sk)+

+

{
M∑
i=1

αi
piµi

}{
M∑
i=1

αi
piµi

+ VM

}
. (69)

For simplicity of exposition, we divide inequality (69)
into four terms LHS1 + LHS2 ≤ RHS1 + RHS2. Taking
their expectation with respect to Sk, summing them over
k ∈ {1, 2, · · · ,K} and then dividing them by KM , gives

LHS1 = (70)

=

{
M∑
i=1

2V αi
piµi

}{
1

KM

M∑
i=1

K∑
k=1

(µipi − qi)E
[
x+
i (k)

]}

LHS2 = (71)

=
1

KM

K∑
k=1

E

{ M∑
i=1

αi

∣∣∣∣hi(k)− 1

piµi
+ 1

∣∣∣∣
}2


RHS1 = −

{
M∑
i=1

2αi
piµi

}
1

KM

K∑
k=1

E [∆(Sk)] (72)

RHS2 =
1

M

{
M∑
i=1

αi
piµi

}{
M∑
i=1

αi
piµi

+ VM

}
. (73)
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From the definition of Lyapunov Drift (38) and the fact that
the Lyapunov Function (37) is non-negative, the expression of
RHS1 can be simplified as follows

RHS1 ≤

{
M∑
i=1

2αi
piµi

}
L(S1)

KM
, (74)

recall that hi(1) = 1 and xi(1) = 0. Hence, the Lyapunov
Function L(S1) is a positive finite constant.

Since LHS2 is non-negative, it follows that the inequality
can be reduced to LHS1 ≤ RHS1 +RHS2. Using (74) and
applying the limit K →∞ yields

M∑
i=1

{
(µipi − qi) lim

K→∞

1

K

K∑
k=1

E
[
x+
i (k)

]}
≤

≤ 1

2V

{
M∑
i=1

αi
piµi

+ VM

}
(75)

Hence, by rearranging the terms, we can show that for any
given node i, we have strong stability

lim
K→∞

1

K

K∑
k=1

E
[
x+
i (k)

]
<∞ , (76)

what establishes condition (36). �

APPENDIX C
PROOF OF THEOREM 7

Theorem 7 (Optimality Ratio for MW ). For any given
network setup (M,pi, qi, αi), the optimality ratio of MW is
such that

ψMW ≤ 4 +
1

LB

[
V − 2

M

M∑
i=1

αi

]
. (77)

In particular, for every network with V ≤ 2
∑M
i=1 αi/M , the

Max-Weight policy is 4-optimal.

Proof. Consider the analysis in Appendix B. In particular, the
inequality LHS1 + LHS2 ≤ RHS1 + RHS2 presented in
(70)-(73). Applying Jensen’s inequality twice to LHS2, yields

1

M

{
1

K

K∑
k=1

E

[
M∑
i=1

αi

(
hi(k)− 1

piµi
+ 1

)]}2

≤ LHS2

M

{
E
[
JMW
K

]
− 1

M

M∑
i=1

αi

(
1

piµi
− 1

)}2

≤ LHS2 .

(78)

Since LHS1 is non-negative, it follows that the inequality
can be reduced to LHS2 ≤ RHS1 +RHS2. Using equations
(74) and (78), and then applying the limit K →∞ yields

lim
K→∞

{
E
[
JMW
K

]
− 1

M

M∑
i=1

αi

(
1

piµi
− 1

)}2

≤

≤ 1

M2

{
M∑
i=1

αi
piµi

}{
M∑
i=1

αi
piµi

+ VM

}
lim
K→∞

E
[
JMW
K

]
≤

1

M

M∑
i=1

αi
piµi

+
1

M

√√√√( M∑
i=1

αi
piµi

)(
M∑
i=1

αi
piµi

+ VM

)

OPTMW ≤
2

M

M∑
i=1

αi
piµi

+ V (79)

Analogously to the proof of Theorem 3, let q̂Li be the long-
term throughput associated with the policy that solves the
Lower Bound optimization (10a)-(10c). Then, evaluating LB
from (10a) gives

LB =
1

2M

M∑
i=1

αi
q̂Li

+
1

2M

M∑
i=1

αi . (80)

Now, for each node i, we impose the following scheduling
probability µi = q̂Li /pi. Then, evaluating (79) gives

OPTMW ≤
2

M

M∑
i=1

αi
q̂Li

+ V . (81)

Comparing (80) and (81), yields

LB ≤ OPTMW ≤ 4LB +

[
V − 2

M

M∑
i=1

αi

]
, (82)

what establishes the expression in (42). �
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APPENDIX D
UPPER BOUND ON THE LYAPUNOV DRIFT OF DPP

In this appendix, we derive the expressions in (46)-(48),
which represent an upper bound on ∆′(Sk) + P ′(Sk). This
derivation is similar to the one in Appendix A.

First, we analyze the Lyapunov Drift (44). Substituting the
Lyapunov Function (45) into the Drift gives

∆′(Sk) =
V ′

2

M∑
i=1

E
{

[x+
i (k + 1)]2 − [x+

i (k)]2 |Sk
}
. (83)

Then, from the bound in (62), results

∆′(Sk) ≤ −V ′
M∑
i=1

x+
i (k) (piE{ui(k)|Sk} − qi) + V ′M/2 .

(84)

Now, we analyze the Penalty Function (43) by utilizing the
evolution of hi(k) in (6) and the expression in (2). It follows
that

P ′(Sk) :=
1

2

M∑
i=1

βiE[hi(k + 1)|Sk]

=
1

2

M∑
i=1

βi{hi(k) + 1− hi(k)E[di(k)|Sk]}

=
1

2

M∑
i=1

βi{hi(k) + 1− pihi(k)E[ui(k)|Sk]} . (85)

Substituting (84) and (85) into ∆′(Sk) +P ′(Sk) yields the
expressions in (46)-(48).

APPENDIX E
PROOF OF THEOREM 8

Theorem 8. The DPP policy satisfies any feasible set of
minimum throughput requirements {qi}Mi=1.

Proof. The expression of the upper bound in (46) is central
to the analysis in this appendix and is rewritten below for
convenience.

∆′(Sk)+P ′(Sk) ≤

≤−
M∑
i=1

E {ui(k) |Sk }W ′i (k) +B′(k) ,

where W ′i (k) and B′(k) are given by

W ′i (k) =
βipi

2
hi(k) + V ′pix

+
i (k) ;

B′(k) =

M∑
i=1

{
βi
2

[hi(k) + 1] + V ′x+
i (k)qi +

V ′

2

}
.

Recall that the Drift-Plus-Penalty policy is designed to
minimize the RHS of (46). Hence, a Stationary Randomized
Policy R ∈ ΠR that, in each slot k, selects node i with
probability µi ∈ (0, 1] yields a lower (or equal) RHS, i.e.

M∑
i=1

E {ui(k) |Sk }W ′i (k) ≥
M∑
i=1

µiW
′
i (k) . (86)

Substituting (86) into the RHS of (46) gives

∆′(Sk) + P ′(Sk) ≤ −
M∑
i=1

µiW
′
i (k) +B′(k)

≤−
M∑
i=1

V ′x+
i (k)[µipi − qi] +

1

2

M∑
i=1

[V ′ + βi]+

+
1

2

M∑
i=1

βihi(k)[1− µipi] , (87)

and by substituting the expression of P ′(Sk) and rearranging
the terms, we get

M∑
i=1

V ′x+
i (k)[µipi − qi] +

1

2

M∑
i=1

βihi(k)µipi ≤

≤ 1

2

M∑
i=1

[V ′ + βi]−∆′(Sk)+

− 1

2

M∑
i=1

βiE[hi(k + 1)− hi(k)|Sk] , (88)

For simplicity of exposition, we divide inequality (88) into
five terms LHS′1 +LHS′2 ≤ RHS′1 +RHS′2 +RHS′3. Taking
their expectation with respect to Sk, summing them over k ∈
{1, 2, · · · ,K} and then dividing them by KM , gives

LHS′1 =
1

M

M∑
i=1

(µipi − qi)
V ′

K

K∑
k=1

E[x+
i (k)] (89)

LHS′2 =
1

2M

M∑
i=1

(βiµipi)
1

K

K∑
k=1

E[hi(k)] (90)
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RHS′1 =
1

2M

M∑
i=1

[V ′ + βi] (91)

RHS′2 =
V ′

2MK

M∑
i=1

E
{

[x+
i (1)]2 − [x+

i (K + 1)]2
}

(92)

RHS′3 =
1

2MK

M∑
i=1

βiE[hi(1)− hi(K + 1)] . (93)

Notice that the expression of the Lyapunov Drift (83) was
utilized in RHS′2. Since hi(K + 1) and x+

i (K + 1) are non-
negative, the expression of RHS′2 +RHS′3 can be simplified
as follows

RHS′2+RHS′3 ≤
1

2MK

M∑
i=1

E
{
V ′[x+

i (1)]2 + βihi(1)
}
(94)

Recall that hi(1) = 1 and xi(1) = 0. Hence, in the limit
K →∞, we have RHS′2 +RHS′3 ≤ 0.

Since LHS′2 is non-negative, it follows that the inequality
can be reduced to LHS′1 ≤ RHS′1 + RHS′2 + RHS′3.
Applying the limit K →∞ and using (94) yields

M∑
i=1

(µipi − qi) lim
K→∞

V ′

K

K∑
k=1

E[x+
i (k)] ≤ 1

2

M∑
i=1

[V ′ + βi]

(95)

By rearranging the terms, it is easy to see that strong stability
holds for any given node i, i.e.

lim
K→∞

1

K

K∑
k=1

E
[
x+
i (k)

]
<∞ , (96)

what establishes condition (36). �
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Theorem 9 (Optimality Ratio for DPP ). For any given
network setup (M,pi, qi, αi), by choosing the constant βi =
αi/µ

∗
i pi, the optimality ratio of DPP is such that

ψDPP ≤ 2 +
1

LB

[
V ′ − 1

M

M∑
i=1

αi

]
. (97)

In particular, for every network with V ′ ≤
∑M
i=1 αi/M , the

Drift-Plus-Penalty policy is 2-optimal.

Proof. Consider the analysis in Appendix E. In particular,
the inequality LHS′1 + LHS′2 ≤ RHS′1 + RHS′2 + RHS′3
presented in (89)-(93). Given that LHS′1 is non-negative,
it follows that the inequality can be reduced to LHS′2 ≤
RHS′1 + RHS′2 + RHS′3. Applying the limit K → ∞ and
using (94) yields

M∑
i=1

(βiµipi) lim
K→∞

1

K

K∑
k=1

E[hi(k)] ≤
M∑
i=1

[V ′ + βi] (98)

Analogously to the proof of Theorem 3, let q̂Li be the long-
term throughput associated with the policy that solves the

Lower Bound optimization (10a)-(10c). Then, evaluating LB
from (10a) gives

LB =
1

2M

M∑
i=1

αi
q̂Li

+
1

2M

M∑
i=1

αi . (99)

Now, for each node i, we impose the following scheduling
probability µi = q̂Li /pi and constant βi = αi/q̂

L
i . Then,

evaluating (98) gives

OPTDPP ≤
1

M

M∑
i=1

αi
q̂Li

+ V ′ . (100)

Comparing (99) and (100), yields

LB ≤ OPTDPP ≤ 2LB +

[
V ′ − 1

M

M∑
i=1

αi

]
; (101)

ψDPP ≤ 2 +
1

LB

[
V ′ − 1

M

M∑
i=1

αi

]
. (102)

Recall from Corollary 4 that q̂Li = µ∗i pi. Hence, we know that
βi = αi/µ

∗
i pi,∀i. The proof is complete. �
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Theorem 11 (Optimality Ratio for WI). For any given
network setup (M,pi, qi, αi), the optimality ratio of WI is
such that

ψWI ≤ 8 +
1

LB

[
1

M

M∑
i=1

θi −
7

2M

M∑
i=1

αi

]
.

In particular, for every network with
∑M
i=1 θi ≤ 7

∑M
i=1 αi/2,

the Whittle’s Index policy is 8-optimal.

Proof. Whittle’s Index policy selects, in each slot k, the node
with highest value of Ci(hi(k)). It is easy to see that this
choice maximizes

M∑
i=1

E {ui(k) |Sk }Ci(hi(k)) ,

in every slot k. From this perspective, the difference between
WI and MW is only the tern multiplying E {ui(k) |Sk }.
Thus, if we find an upper bound to the Lyapunov Drift ∆(Sk)
that has the Whittle’s Index policy as its minimizer, then
similar arguments as the ones utilized in Appendix C can be
used to derive an optimality ratio for WI .

The upper bound associated with the Max-Weight policy
(39) is rewritten below for V = 0

∆(Sk) ≤−
M∑
i=1

E {ui(k) |Sk }Wi(k) +B(k) ,

where Wi(k) and B(k) are given by

Wi(k) =
αipi

2
hi(k)[hi(k) + 2] ;

B(k) =

M∑
i=1

αihi(k) +
1

2

M∑
i=1

αi .
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We can manipulate this upper bound as follows

∆(Sk) ≤−
M∑
i=1

E {ui(k) |Sk }Ci(hi(k)) +B(k)+

+

M∑
i=1

E {ui(k) |Sk } [Ci(hi(k))−Wi(k)] , (103)

where

Ci(hi(k))−Wi(k) =
αipi

2
hi(k)

[
2

pi
− 2

]
+ θi −

αipi
2
hi(k)

≤ αihi(k)[1− pi] + θi . (104)

Substituting (104) into (103), gives

∆(Sk) ≤−
M∑
i=1

E {ui(k) |Sk }Ci(hi(k))+

+B(k) +

M∑
i=1

(αihi(k)[1− pi] + θi)

∆(Sk) ≤−
M∑
i=1

E {ui(k) |Sk }Ci(hi(k))+

+

M∑
i=1

αihi(k)[2− pi] +

M∑
i=1

θi +
1

2

M∑
i=1

αi . (105)

Observe that Whittle’s Index policy minimizes the RHS of
(105). Using similar arguments as the ones in Appendix C,
we obtain

lim
K→∞

E
[
JWI
K

]
= OPTWI ≤

≤ 4

M

M∑
i=1

αi
q̂Li

+
1

M

{
M∑
i=1

θi +
1

2

M∑
i=1

αi

}
. (106)

Comparing the expression of LB in (80) with (106), yields

LB ≤ OPTWI ≤ 8LB −
4

M

M∑
i=1

αi+

+
1

M

{
M∑
i=1

θi +
1

2

M∑
i=1

αi

}
. (107)

Therefore

ψWI ≤ 8 +
1

LBM

{
M∑
i=1

θi −
7

2

M∑
i=1

αi

}
, (108)

which is the expression in (55). �


	INTRODUCTION
	SYSTEM MODEL
	Minimum Throughput Requirement
	Age of Information
	Optimization Problem

	SCHEDULING POLICIES
	Lower Bound
	Optimal Stationary Randomized policy
	Max-Weight policy
	Drift-Plus-Penalty policy
	Whittle's Index policy

	SIMULATION RESULTS
	CONCLUDING REMARKS
	Appendix A: Upper bound on the Lyapunov Drift of MW
	Appendix B: Proof of Theorem 6
	Appendix C: Proof of Theorem 7
	References
	Biographies
	Igor Kadota
	Abhishek Sinha
	Eytan Modiano

	Appendix D: Upper bound on the Lyapunov Drift of DPP
	Appendix E: Proof of Theorem 8
	Appendix F: Proof of Theorem 9
	Appendix G: Proof of Theorem 11

