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Abstract
From building towers to picking an orange from a stack of fruit, assessing
support is critical for successfully interacting with the physical world. But
how do people determine whether one object supports another? In this paper
we develop the Counterfactual Simulation Model (CSM) of physical support.
The CSM predicts that people judge physical support by mentally simulat-
ing what would happen to a scene if the object of interest were removed.
Three experiments test the model by asking one group of participants to
judge what would happen to a tower if one of the blocks were removed, and
another group of participants how responsible that block was for the tower’s
stability. The CSM accurately captures participants’ predictions about what
would happen by running noisy simulations that incorporate different sources
of uncertainty. Participants’ responsibility judgments are closely related to
counterfactual predictions: the more likely the tower would be predicted to
fall if a block were removed, the more responsible this block was judged
for the tower’s stability. By construing physical support as preventing from
falling, the CSM provides a unified account across dynamic and static phys-
ical scenes of how causal judgments arise from the process of counterfactual
simulation.
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Introduction

Take a look around yourself, and you’ll notice something that’s at the same time both
perfectly ordinary and striking: most things don’t move. The computer monitor doesn’t
move, the table on which it rests doesn’t move, the floor on which the table stands doesn’t
move, and so on. Things don’t move because they are supported by other things. The
computer monitor is supported by the table, which is supported by the floor, which is
supported by the structure of the house, which is supported by its foundation, and so on.
But what does it mean for the monitor to be supported by the table? One intuitive answer
is that the table supports the monitor because the monitor is on the table. But what if the
monitor on the table was attached to a monitor arm that’s drilled into the wall? Does the
table still support the monitor in this case? Maybe support means something different.

In this paper, we explore the idea that people’s understanding of physical support
is intimately linked to their understanding of causation. One object A supports another
object B if A prevents B from moving (or falling). What does it mean for A to prevent
B from falling? The answer to this question involves a counterfactual: A prevents B from
falling when it is true that B would fall if A were removed. We develop a computational
model – the counterfactual simulation model (CSM) of physical support – that implements
this idea and test the model in three sets of experiments asking participants to evaluate
to what extent one object is responsible for the stability of other objects. We believe that
people solve this task by constructing a mental model of the scene, and by simulating what
would happen if the object of interest were removed.

Here is the road map for the paper: We first review prior work on people’s intuitive
understanding of the physical world, and on how people make causal judgments. We then
describe the CSM in detail and contrast it with an alternative account that predicts people’s
judgments about physical stability based on surface-level features of the scene. We test the
models in three experiments in which participants view towers of blocks that are stacked on
a table. We ask one group of participants to judge what would happen if a block of interest
were removed, and another group of participants how responsible that block is for all of the
other blocks’ staying on the table (Experiments 1 and 2), or for one specific other block
(Experiment 3). Across these experiments, we find that the counterfactual predictions of
one group of participants about what would happen if the block were removed are closely
related to the responsibility judgments of another group of participants. We also find that
the CSM accurately captures participants’ judgments, and that a model that only uses
surface-level features of the scene, such as the height of the tower and the location of the
to-be-removed block, doesn’t capture participants’ judgments as well. We conclude by
highlighting some limitations of the CSM, and some future challenges that lie ahead.

People’s intuitive understanding of the physical world

People generally have a good sense for how the physical world works. We catch balls,
stack stones, ride bikes, and build towers (Figure 1, top). While earlier work has documented
how people’s physical intuitions sometimes fail (McCloskey, 1983; McCloskey, Caramazza,
& Green, 1980; McCloskey, Washburn, & Felch, 1983), more recent work has emphasized
the successes (Kubricht, Holyoak, & Lu, 2017; Smith et al., under review). People can make
predictions about the future such as whether a tower will topple over (Battaglia, Hamrick,
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Figure 1 . Stacked towers. Top: Real-life examples of towers, built from different materials.
Left to right: Leaning tower of Pisa; a carefully balanced rock cairn; and a child stacking
toy blocks. Bottom: We illustrate the process and consequences of removing a block from
a tower in the Jenga game. Playing Jenga involves removing a block from a stable tower
of blocks while attempting not to cause the tower to fall, like it does here.

& Tenenbaum, 2013), or where a moving object will go next (Smith, Dechter, Tenenbaum,
& Vul, 2013; Smith & Vul, 2013). People make inferences about the past such as where a
ball was behind an occluder before it appeared (Smith & Vul, 2014), in which hole of a box
it was dropped based on where it landed and the sounds it made when it collided with the
obstacles in the box (Gerstenberg, Siegel, & Tenenbaum, 2021), or whether a person used
one or two hands to reconfigure a stack of blocks (Yildirim, Gerstenberg, Saeed, Toussant,
& Tenenbaum, 2017; Yildirim et al., 2019). People can also infer unobservable physical
properties such as the mass of different objects based on how they collided with one an-
other (Sanborn, Mansinghka, & Griffiths, 2013), or based on the fact that a tower consisting
of different objects is currently stable (Hamrick, Battaglia, Griffiths, & Tenenbaum, 2016).
And people give causal explanations of what happened by comparing what actually hap-
pened with the counterfactual of what would have happened if the candidate cause hadn’t
been present (Gerstenberg, Goodman, Lagnado, & Tenenbaum, 2021; Gerstenberg & Icard,
2020; Gerstenberg, Peterson, Goodman, Lagnado, & Tenenbaum, 2017).

Underlying these various success stories is a common human feat: people reason about
the physical world by building mental models (Craik, 1943; Gerstenberg & Tenenbaum,
2017; Sloman, 2005; Smith et al., under review; Ullman, Spelke, Battaglia, & Tenenbaum,
2017; Ullman & Tenenbaum, 2020). Prediction, inference, and explanation can be under-
stood as different operations over these mental models. For example, Battaglia et al. (2013)
model people’s judgments about whether or not a tower of blocks is going to fall by as-
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suming that people construct a mental model of the scene based on the perceived visual
input, and then make predictions by mentally simulating how the physical scene will unfold
(Schwartz & Black, 1999). While the physical world is deterministic – meaning there is a
single true answer to the question of whether (and how) a tower will fall – people don’t have
access to this ground truth. Instead, they have to use their mental model to simulate what
will happen. People’s predictions about what will happen are graded: they don’t know for
sure whether or not a tower is going to fall.

Battaglia et al.’s model accurately captures the gradedness in people’s responses by
assuming that people are uncertain about different aspects of the scene, and that this
uncertainty affects their mental simulations of what will happen. Specifically, the model
assumes that people have some perceptual uncertainty about where exactly the different
blocks are located, and some dynamic uncertainty about how exactly the scene is going to
unfold. The model predicts people’s judgments by starting with the actual configuration
of the blocks, randomly perturbing the location of each one, and then simulating what will
happen. To generate these simulations, the model uses the same physics engine that was
used to make the stimuli. This process of random perturbation plus forward simulation
is repeated multiple times to generate a distribution over possible future outcomes. This
distribution is then used to capture people’s graded judgments. For example, consider a
stable tower A and another tower B that is on the brink of falling. Tower A is unlikely to
fall even if each block’s location was randomly perturbed. Tower B, however, is likely to
fall when the block locations are perturbed. By taking the proportion of times in which a
tower falls across the noisy simulations, the model yields a graded prediction about whether
the tower will fall.

Block towers have emerged as somewhat of a drosophila for studying people’s intu-
itive understanding of physics (Battaglia et al., 2013; Cortesa et al., 2018; Fischer, Mikhael,
Tenenbaum, & Kanwisher, 2016; Gweon, Asaba, & Bennett-Pierre, 2017; Hamrick et al.,
2016; Mitko & Fischer, 2020; Yildirim et al., 2017, 2019). Recent work has proposed dif-
ferent ways for how people might learn to make predictions about block towers and about
other physical settings (Allen, Smith, & Tenenbaum, 2020; Baradel, Neverova, Mille, Mori,
& Wolf, 2019; Battaglia, Pascanu, Lai, Rezende, et al., 2016; Bear et al., 2021; Bram-
ley, Gerstenberg, Tenenbaum, & Gureckis, 2018; Chang, Ullman, Torralba, & Tenenbaum,
2017; Groth, Fuchs, Posner, & Vedaldi, 2018; Janner et al., 2019; Lerer, Gross, & Fergus,
2016; Ullman, Stuhlmüller, Goodman, & Tenenbaum, 2018; Wu, Yildirim, Lim, Freeman,
& Tenenbaum, 2015). Our work builds on the idea that people’s mental representation of
the physical scene is in important ways similar to how the scene would be constructed in
a physics engine of the kind that is used to make physically realistic animations in video
games (Gerstenberg & Tenenbaum, 2017; Smith et al., under review; Ullman et al., 2017,
but see Ludwin-Peery, Bramley, Davis, & Gureckis, 2021).

In the work presented here, we asked people to judge how responsible one block is for
the stability of the tower. To answer this question, we need to turn to causality.

People’s intuitive understanding of causality

People use their intuitive understanding of the physical world not only to make predic-
tions about the future (e.g. where will this ball land?), but also to explain what happened
(e.g. where did this ball come from, and who threw it?). While predictions and expla-
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nations may be operating on the same mental model, they require distinct computations
(Gerstenberg & Tenenbaum, 2017). For prediction, one only needs to unroll a simulation
of what will happen forward. Giving causal explanations, however, requires a comparison
of what actually happened with what would have happened otherwise (Gerstenberg, 2022).

But are such counterfactual comparisons really necessary? Maybe it’s sufficient to
just focus on what can directly be perceived? In the philosophical literature on causation,
there are two major families of theories for thinking about causation. According to process
theories, causation is understood in terms of a transfer of a property via a spatiotemporally
continuous process from cause to effect (Dowe, 2000; Salmon, 1994; Wolff, 2007). For
example, A caused B to move when A transferred momentum to B. According to dependence
theories, causation is understood as a form of dependence (Hume, 1748/1975; Lewis, 1973;
Mackie, 1974; Suppes, 1970). For example, according to a counterfactual theory (Lewis,
1973; Pearl, 2000; Woodward, 2003), A caused B to move when B wouldn’t have moved if
A had been removed from the scene. Process theories ground causation merely in terms of
what actually happened, whereas dependence theories involve a comparison between what
actually happened and what could have happened otherwise.

Drawing on both theoretical frameworks, Gerstenberg, Goodman, et al. (2021) de-
veloped the counterfactual simulation model (CSM) of how people make causal judgments
about dynamic physical events. In line with dependence theories, the CSM assumes that
judging whether ball A caused ball B to go through a gate requires comparing what actually
happened with what would have happened if ball A hadn’t been present in the scene. In
line with process theories, the CSM assumes that people’s understanding of the underlying
physical processes guides their mental simulations. Gerstenberg, Goodman, et al.’s (2021)
experiments show that people’s causal judgments are closely related to their beliefs about
what would have happened in the relevant counterfactual situation. The more certain peo-
ple are that the outcome would not have happened without ball A, the more they judge that
ball A caused the outcome. Gerstenberg et al. (2017) showed that people spontaneously
engage in counterfactual simulations when making causal judgments as evidenced by their
eye-movements. People don’t just look at what actually happened, they look toward where
ball B would have gone if ball A hadn’t been present in the scene (see also Gerstenberg,
2022).

Here, we build on this model and apply it to understanding people’s judgments of
physical support. Judging physical support is intimately related to judging causation. A
supporting block is a sustaining cause of the tower’s stability (Ross & Woodward, 2021). In
other words, what it means for one object to support another is to prevent it from falling
(or moving). If that’s correct, then judging physical support requires going beyond what
can be directly perceived, just like it does for judging causation. Judging physical support
requires mentally simulating what would happen if the object of interest were removed.
Judging causation and judging physical support thus rely on similar cognitive mechanisms.
However, there are also a number of important differences.

First, the inputs differ. In Gerstenberg, Goodman, et al. (2021) the inputs to people’s
judgments of causation were short video clips depicting dynamic interactions. The inputs to
people’s judgments of support in the experiments reported here are images of static scenes
(see Figure 4 for examples): they show block towers that are currently stable, but that
might collapse if one (or more) of the blocks were removed. Because the scenes are static
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and stable without outside intervention, process theories of causation cannot capture the
notion of physical support. Process theories rely on a transfer of a property, such as physical
force, from one object to another (Wolff, 2007). While physical forces are clearly at play
in keeping a block tower stable, they do not transfer between the objects as characterized
by process theories. Moreover, theories of causation generally take the causal relata to be
events: one event causes another event to happen (Schaffer, 2016). However, in the case of
physical support, there aren’t any events. The tower just stands still and nothing is moving.
The notion of physical support thus broadens the concept of causation: causation doesn’t
only happen between events, it also “happens” when nothing is happening. The CSM
provides a unifying framework for causal judgments across a variety of situations that span
different types of causal relationships. It applies to “event causation” where a candidate
cause event brings about some outcome event (Gerstenberg, Goodman, et al., 2021), to
“omissive causation” where an effect comes about because a potential event didn’t happen
(Gerstenberg & Stephan, 2021), as well as to “sustaining causation” where the presence of
the cause sustains the effect and where no events are happening at all.

Second, the different inputs require different kinds of computations (Beck, 2015).
When judging whether ball A caused ball B to go through the gate, people have to go back
in time to evaluate how things would have played out if ball A had been removed from the
scene. When judging physical support, there is no need to go back in time because nothing
is (or was) happening – the tower is just sitting still. Instead, one needs to imagine how a
possible future might play out in which certain aspects of the scene were changed.1

Third, different mental simulations are required when making causal judgments about
billiard balls versus block towers (cf. Freyd, Pantzer, & Cheng, 1988; Holmes & Wolff, 2010).
When judging whether ball A caused ball B to go into the goal, people need to mentally
simulate where ball B would have ended up if ball A hadn’t been present in the scene.
People may be uncertain about exactly what trajectory ball B would have taken in that
counterfactual situation. When judging how responsible one block is for a tower’s stability,
people need to simulate what would happen to the tower if that block were removed. Again,
there are multiple sources of uncertainty that may affect people’s simulations including
perceptual uncertainty about the position of each block, as well as dynamic uncertainty
about how the collisions would play out. We will compare several implementations of the
CSM that differ in how they capture people’s uncertainty about what would happen.

In our experiments, we don’t ask participants directly about physical support. In-
stead, we ask participants to judge the extent to which one block was responsible for other
blocks (or one specific block) to stay on a table on which the blocks are stacked. Ques-

1When judging causation in dynamic scenes, people need to consider what would have happened if
something in the past had been different, whereas when judging support in static scenes, people need to
consider what would happen if something in the present were different. The question we ask participants
in our experiments (“How many of the red bricks would fall off the table, if the black brick wasn’t there?”)
sits right in the middle between a future-directed hypothetical question (“How many of the red bricks will
fall off the table, if the black brick isn’t there?”) and a clearly counterfactual question (“How many of the
red bricks would have fallen off the table, if the black brick hadn’t been there?”). We believe that in our
setting, participants would give the same response to any of these three versions of the question. Because
of the static nature of the scene, counterfactual and hypothetical questions don’t come apart. To highlight
the continuity with our prior work (Gerstenberg, Goodman, et al., 2021), we chose to call our model the
counterfactual simulation model of physical support, rather than the hypothetical simulation model.
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tions of physical support may more naturally elicit binary responses (Does A support B?)
whereas asking for responsibility elicits a graded response. That said, we believe that in our
experiments, we would have observed very similar results if we had asked participants to
judge physical support instead of (causal) responsibility. We have shown in previous work
that in physical settings, responsibility judgments and causal judgments are closely related
(see Gerstenberg, Goodman, et al., 2021). However, there are situations in which judgments
about physical support and responsibility judgments could come apart. For example, if one
block A lies on top of another block B that’s positioned at the edge of a table, we might
say that A prevents B from falling off the table (and is thus responsible for its staying on
the table), but we would wouldn’t say that A supports B. We return to the question of how
exactly physical support and preventing from falling are related in the General Discussion.

To sum up, the main idea is that people judge physical support by considering whether
the candidate object prevents the others from falling. Doing so requires mentally simulating
what would happen if the object were removed. Judging physical support is like playing
Jenga in your mind (Figure 1, bottom).

The Counterfactual Simulation Model (CSM)

The CSM predicts people’s judgments about how responsible one object is for the
stability of another object, or several other objects. At the core of the CSM is a noisy
physics engine that supports interventions on the scene, such as removing an object, and
running stochastic simulations of what would happen (Sanborn & Chater, 2016). If all
the relevant physical parameters of the scene are fully specified (including the objects’ mass
and friction, their exact position and size, the elasticity that determines the “bounciness” of
collisions, etc.), and if there is no ambiguity about what it means to remove an object from
the scene (e.g. just making it disappear), then there is a deterministic ground truth answer
as to what would happen. However, people don’t have access to this ground truth. There are
various sources of uncertainty that affect people’s judgments (Battaglia et al., 2013; Smith
& Vul, 2013). What these sources of uncertainty are will depend on the characteristics of the
scene. In this paper, we consider block towers like the one shown in Figure 2. The question
is to what extent the black block is responsible for the stability of the tower. Notice that
our setup is different from Battaglia et al. (2013). In their experiments, participants viewed
a static scene but “physics was turned off”. The task was to predict what will happen once
physics is turned back on again. In our setting, participants know that the tower currently
is stable because physics is “on” and nothing is moving.

Sources of uncertainty in counterfactual simulation

We distinguish three sources of uncertainty: perceptual uncertainty about the position
of each object, intervention uncertainty about how the black block is removed, and dynamic
uncertainty about how the physical scene will unfold after the black block is removed.

Perceptual uncertainty. Participants know that the initial scene is stable. How-
ever, they may still be uncertain about the exact position of each block (Battaglia et al.,
2013; Smith & Vul, 2013). Figure 2a illustrates how this is implemented in our model: it
takes the ground truth configuration of blocks (shown faintly in the background) and then
applies a small horizontal perturbation to each block’s position, randomly moving some of
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Figure 2 . Schematic illustration of the counterfactual simulation model (CSM) applied
to a block tower. Given a scene as input (top left), the CSM answers the question of
how responsible the black block is for the red blocks staying on the table. It does so by
simulating counterfactual rollouts of what would happen if the black block were removed.
The CSM runs a large number of simulations, each time applying noise in several ways to
capture different types of uncertainty that the observer has about the scene. After each
simulation, the identities of the red blocks that have fallen off the table is recorded. The
CSM assumes that the extent to which the black block is responsible for the red blocks
staying on the table is linearly related to the average proportion of red blocks that would
fell off the table, across all simulations. The CSM considers three sources of uncertainty
that influence an observer’s mental simulations about what would happen. Each source of
uncertainty is modeled by introducing a small amount of random noise into the simulation.
a) Perceptual noise translates all blocks horizontally by a small amount. b) Intervention
noise applies impulses to blocks that are above the black block. c) Dynamic noise perturbs
the normal forces applied to blocks during collisions. For each source of uncertainty, one
free parameter (βp, βi, and βd) determines how much noise is applied. You can play around
with the CSM’s parameters and see it in action here: https://cicl-stanford.github.io/
mental_jenga/docs/interface

the blocks to the left, and some to the right. The magnitude of this perturbation is sampled
from a Gaussian distribution N (0, βp) independently for each block. Moving the blocks this
way will cause some shifting of relative positioning and contact points. To ensure that the
scene is still stable, we follow the method of Battaglia et al. (2013) and run the physics en-
gine for several steps after the blocks were moved to allow the scene to settle. After allowing

https://cicl-stanford.github.io/mental_jenga/docs/interface
https://cicl-stanford.github.io/mental_jenga/docs/interface
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the scene the settle, we put all of the blocks to “sleep” (see Ullman et al., 2017). The idea
is simple: if something isn’t moving, the physics engine doesn’t have to worry about it until
something makes it move. So rather than constantly simulating the positions, velocities,
and forces applied to all objects in a scene, the physics engine only tracks objects that are
currently in motion. Objects that are asleep are woken up by making contact with other
objects.2

Intervention uncertainty. In addition to uncertainty about the blocks’ positions,
the CSM also assumes uncertainty about how the counterfactual intervention would occur.
In our experiments, we ask participants to consider what would happen if the black block
weren’t there. Figure 2b illustrates how we implemented intervention uncertainty. First,
the black block is removed from the scene simply by making it disappear. Then, a random
impulse is applied to all the blocks that were above the black block. This captures the idea
that, like in Jenga, the blocks above the intervened-on block are most directly affected by
its removal. Figure 2b illustrates our criteria for whether one block is above another. In
this example, block A is above the black block because 1) the two blocks contact each other,
and 2) at the contact point between the two blocks, block A is on top of the black block.
This rule is then applied recursively to find all blocks that are above the black block. So in
this same example, blocks A, B and C are above the black block, and a random impulse is
applied to each of them after the black block is removed.

The magnitude of the impulses applied to each block are drawn independently from
Γ(βi, 1) where Γ(k, θ) is a Gamma distribution with shape parameter k and scale parameter
θ. The angles of impulses are drawn uniformly at random from [π4 ,

3π
4 ], with π

2 being
vertically upwards. This means that impulses are usually small and directed in a roughly
upwards direction, mimicking the disturbance that would be caused if the black block were
manually removed from the scene (see the dotted arrows in Figure 2b).

Dynamic uncertainty. After the black block is removed, the physics engine will
deterministically simulate the dynamics of how the scene will unfold. People, however are
uncertain about how exactly these dynamics will play out (Allen et al., 2020; Smith & Vul,
2013). The CSM models this by adding noise to collisions, illustrated in Figure 2c. Each
dotted arrow shows different samples of how the collision between the two blocks could
produce different resulting trajectories. By randomly altering the ground truth normal
force that results from two objects coming into contact with one another, we change how
the dynamics will play out with every collision. The model perturbs the magnitude of that
force: for a normal force expressed in polar coordinates as F = (F, θ), we alter it so that
F’ = (αF, θ) where α ∼ N (1, βd). This means that the noisy perturbation is proportional
to the original force magnitude.

We will show below that the CSM that includes these different sources of uncertainty
captures people’s judgments to a high degree of quantitative accuracy. Of course, this
doesn’t mean that these are the only plausible sources of uncertainty. For example, the
model doesn’t capture people’s uncertainty about underlying physical parameters such as
the level of friction, or the bounciness of the blocks. It is possible that an alternative

2Setting the objects to sleep also avoids artifacts in the physics engine that may arise from continuously
resolving collisions between objects. For example, initially stationary objects might start moving because
there is some randomness in how the contacts between the blocks are being resolved. Setting objects to
sleep prevents that from happening.



MENTAL JENGA 10

How responsible is the black brick for 
the red bricks staying on the table?

not at all very much

How many of the red bricks would fall 
off the table, if the black brick wasn’t 

there?

0 10

Please click on the red bricks that 
would fall off either side of the table if 

the black brick wasn’t there.

a) selection c) responsibilityb) prediction

Figure 3 . Schematic of the different experimental conditions in Experiments 1 and 2.
Participants were asked to either a) select which blocks would fall if the black block wasn’t
there by clicking on the blocks (selection), b) judge on a slider how many blocks would fall
(prediction), or c) judge on a slider how responsible the black block is for the red blocks
staying on the table (responsibility).

noisy simulation model captures participants’ judgments even better. However, our goal is
not so much to determine exactly what sources of noise best capture people’s predictions
about what would happen. Instead, our main focus is to establish the relationship between
counterfactual simulation and responsibility judgments. The model we illustrate here is just
one proposal for how these counterfactual simulations may play out. We will return to the
question of how other sources of uncertainty may affect people’s mental simulations in the
General Discussion.

From counterfactual simulations to predictions and responsibility

In our experiments, we probed participants’ physical scene understanding in three
different ways (see Figure 3). In the selection condition, participants selected which blocks
would fall off the table if the black block wasn’t there. In the prediction condition, partic-
ipants indicated how many blocks would fall off the table. In the responsibility condition,
participants judged to what extent the black block was responsible for the red blocks staying
on the table.

Figure 2 illustrates how the CSM yields graded predictions about how likely the
different blocks would fall off the table if the black block were removed. The model begins
with an accurate encoding of the scene.3 It then simulates the removal of the black block
under different sources of uncertainty as described above. Each noisy simulation yields a

3We start with an accurate encoding because we assume that visual encoding is roughly accurate (subject
to perceptual uncertainty), and use reasonable and constant values for properties such as density, friction,
elasticity, and gravity. We also familiarize participants with the world and blocks beforehand to allow them
to calibrate their assumptions. The full specification of the physical parameters can be accessed in the online
materials here: https://github.com/cicl-stanford/mental_jenga/blob/master/code/js/params.md

https://github.com/cicl-stanford/mental_jenga/blob/master/code/js/params.md
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different result. For example, in one simulation a particular block may fall off the table,
whereas in another simulation that same block may remain on the table. The model runs
many of these noisy simulations and records for each block in each simulation whether or
not it fell. The model’s graded prediction about whether a particular block will fall is then
simply the proportion of times in which this block fell across the noisy simulations (see
Figure 2, top right).

The CSM uses the proportion of times with which each block fell off the table across
the noisy simulations to predict which blocks participants will select in the selection con-
dition. To model participants’ predictions in the prediction condition, the CSM uses the
average number of blocks that fell across all of the simulations. Finally, to model partici-
pants’ responsibility judgments in the responsibility condition, the CSM considers a linear
mapping from the proportion of blocks that would fall off the table. So if 3 out of 4 remain-
ing blocks were to fall off the table, the removed block would be more responsible than in
a situation in which 4 out of 10 remaining blocks were to fall off.4

We fitted the noise parameters of the CSM (βp, βi, and βd) to participants’ selections
and tested the full model against lesioned versions that only include a subset of the noise
parameters, as well as a features model (described below) via cross-validation. The stimuli
were implemented with Box2D (https://www.npmjs.com/package/box2d) and visualized
with IvanK (http://lib.ivank.net). The physics simulations, including the removal of
the black block and addition of different types of noise, were performed with Box2D’s engine.
Further details about the implementation are available online at https://github.com/
cicl-stanford/mental_jenga.

Features model

As an alternative to the CSM, we consider a features model that captures participants’
judgments based on visual features of the scene. Instead of simulating what would happen if
the black block were removed, this model makes predictions about how likely individual red
blocks are to fall by fitting a logistic regression from a collection of features to participants’
responses. It then uses a linear mapping from the proportion of blocks that would fall off
the table to predict participants’ responsibility judgments, just like the CSM.

Table 1 shows what features the model uses to predict whether or not a red block
would fall if the black block were removed. There are three categories of features: Scene
features capture aspects of the whole scene such as how many blocks were present. Black
block features capture aspects about the black block such as its vertical position and how
many blocks are above it. Other block features capture aspects about the other (non-black)
blocks such as their distance from either edge of the table. Table 2 shows how well each of
the chosen features correlate with participants’ selections in Experiments 1 and 2, and with
participants’ predictions in Experiment 3 about a specific (white) block.

To compare the CSM and the features model with participants’ judgments across the
three experiments reported below, we fit each model’s parameters using cross-validation.
We provide details on how the cross-validation was implemented in a separate section just
before the General Discussion. When we report the experiment results below, we com-

4Using the proportion of blocks that would fall is consistent with Battaglia et al. (2013) who also mapped
the proportion of blocks that will fall across the simulations to people’s predictions about the tower’s stability.

https://www.npmjs.com/package/box2d
http://lib.ivank.net
https://github.com/cicl-stanford/mental_jenga
https://github.com/cicl-stanford/mental_jenga
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pare participants’ judgments with the versions of the CSM and the features model that
best accounted for participants’ judgments across the cross-validation runs that incorpo-
rate participants’ responses from all three experiments. By comparing the features model
and the CSM, we can assess whether mental simulation is necessary for capturing people’s
judgments in the tasks. If the CSM outperforms the features model, as we hypothesize,
then this would be consistent with the idea that people rely on mental simulations in their
judgments. On the other hand, if a features model manages to perform as well as the CSM
does, then this would suggest that people might arrive at their judgments without mental
simulation.

Experiment 1: Investigating general stability judgments

In this experiment, participants viewed a variety of block towers like the ones shown
in Figure 4. The experiment had two main goals. First, we wanted to test to what extent
the CSM and the features model can capture people’s beliefs about which blocks would
fall off the table if the black block weren’t there. The results of this comparison provide
insight into the role of mental simulation in people’s judgments. Second, we wanted to test
the purported relationship between counterfactual predictions and judgments of responsi-
bility. We predicted a close mapping between the counterfactual predictions of one group

Table 1
List of features used by the features model. The ‘type’ column indicates whether the feature
captures something about the scene, the black block, or the other blocks. The “other” blocks
refer to the red blocks in Experiment 1 & 2, and to the white block in Experiment 3. In
experiment 3, the “other” white block was always in the same pile as the black block.
type name description
scene n_blocks total number of non-black blocks in the tower

avg_y average vertical position of the blocks in the tower
avg_edge_dist average horizontal distance of each block from the nearest

table edge
avg_angle average angular deviation of each block from either a fully

horizontal or vertical position

black black_y vertical position of the black block
black_edge_dist horizontal distance of the black block from the nearest

table edge
black_angle angular deviation of the black block from either a fully

horizontal or vertical position
black_above number of blocks above the black block

other other_y vertical position of the block
other_edge_dist horizontal distance of the block from the nearest table edge

other_angle angular deviation of the block from either a fully horizontal
or vertical position

other_black_pile whether the block is in the same pile as the black block
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a) b) c) d) e) f) g)

Figure 4 . Experiment 1. Example stimuli. Red outlines indicate blocks that would fall
off the table if the black block weren’t there and black outlines indicate the blocks that
would stay on the table. The outlines were not shown in the experiment.

of participants, and the responsibility judgments from another group of participants. The
greater the proportion of blocks was predicted to fall if the black block weren’t there, the
more responsibility should be assigned to the black block.

Methods

All experiments reported in this paper have received approval by MIT’s institutional
review board (COUHES #0812003014: Learning and Reasoning with Words and Concepts).

Table 2
Correlation coefficients between individual features and participants’ selection judgments
for each of the three experiments. Note: The scene features, black block features, other
block features, and all features rows show how well regressions that combine these features
correlate with participants’ judgments. See Table 1 for a description of each feature.

Experiment 1 Experiment 2 Experiment 3 All

n_blocks −.03 −.13 .20 −.06
avg_edge_dist .12 −.05 −.07 .09

avg_angle .04 .12 −.04 .13
avg_y .16 −.01 .09 .08

scene features .23 .15 .23 .23
black_y −.02 −.31 −.17 −.23

black_edge_dist .03 .13 −.26 .10
black_angle .05 −.02 −.29 .05
black_above .10 .37 .05 .28

black block features .12 .39 .41 .30
other_y .68 .39 .57 .53

other_edge_dist −.08 −.27 −.21 −.13
other_angle .24 .00 .18 .16

other_black_pile .04 .19 - .17
other block features .75 .56 .78 .63

all features .78 .69 .84 .71
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Participants. 121 participants (Mage = 34, SDage = 12, 74 male, 47 female) were
recruited via Amazon Mechanical Turk using psiTurk (Gureckis et al., 2016) and randomly
assigned to one of the three experimental conditions: selection (N = 38), prediction (N =
42), and responsibility (N = 41). We excluded participants from further analysis based on
a catch trial which is described below. No participants failed the catch trial in the selection
condition, eleven participants failed in the prediction condition (leaving N = 31), and six
participants failed in the responsibility condition (leaving N = 35).

Design. Experiment 1 consisted of three conditions illustrated in Figure 3. In the
selection condition (Figure 3a), participants were asked to “Please click on the red bricks
that would fall off either side of the table if the black brick wasn’t there.” Participants were
free to select any number of blocks. They could also select no blocks if they believed that
none would fall. In the prediction condition (Figure 3b), participants were asked: “How
many of the red bricks would fall off the table, if the black brick wasn’t there?” Participants
provided their answer on a sliding scale ranging from 0 to the number of red blocks present
in the scene in steps of 1. For example, for the tower shown in Figure 4a the slider ranged
from 0 to 7 whereas for Figure 4c it ranged from 0 to 12. In the responsibility condition
(Figure 3c), participants were asked: “How responsible is the black brick for the red bricks
staying on the table?” They responded on a sliding scale that ranged from “not at all” to
“very much” (coded from 0 to 100 for the purpose of analysis).

Procedure. The procedure for all three conditions was largely identical. Partic-
ipants first received instructions about the task. They then saw a number of warm-up
animations that showed twenty blocks being dropped on the table from above. These ani-
mations were shown to familiarize participants with the relevant physical properties such as
gravity, the friction between the blocks and the table, and the elasticity that influences how
the block collisions play out. Participants proceed to the next stage once they had watched
at least five animations. In order to go to the main experiment phase, participants had to
successfully answer a comprehension check question about the task. If they answered the
comprehension check question incorrectly, they were redirected to the instructions.

After the instruction phase, participants saw 42 images of different towers of blocks
in randomized order (see Figure 4 for examples). The stimuli varied the number of blocks
on the table (mean = 13.7, SD = 3.3, range = 7 to 20), as well as the number of red
blocks that would fall off the table if the black block were removed according to ground
truth (mean = 2, SD = 1.9, range = 0 to 6). Participants’ tasks differed depending on
the condition as described above. The experiment included a catch trial in which the black
block was standing on its own (shown in Figure 4g) that we used as an exclusion criterion.
Participants were excluded from the analysis if they selected that one of the red blocks
would fall in that trial, if they predicted that one or more blocks would fall, or if they
assigned a responsibility value greater than 15. At the end of the experiment, participants
were asked to provide open-ended feedback about the task, and provided demographic
information. On average, the experiment took 15.71 minutes (SD = 8.31) to complete in
the selection condition, 9.86 minutes (SD = 6.49) in the prediction condition, and 8.88
minutes (SD = 8.90) in the responsibility condition.
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Figure 5 . Experiment 1: Participants’ selections of which blocks would fall (bottom row)
together with the predictions of the features model (middle row) and the counterfactual
simulation model (CSM, top row). The numbers on each block indicate the percentage of
participants who thought that this block would fall off the table if the black block were
removed (bottom row), or the predictions by the two different models (middle and top
row). The bottom row also shows (in text) the average number of blocks that participants
predicted would fall, and how responsible the black block was judged for the others to stay
on the table. Note: The color fill gradient of the blocks maps onto 0 (red) and 100 (white).
As in Figure 5, a red border indicates that a block would fall off the table according to the
ground truth. The outlines were not displayed in the experiment.

Results

Figure 5 shows participants’ responses for a selection of trials together with the pre-
dictions of the CSM and the features model. For each trial, the top row shows the CSM
predictions, the middle row shows the features model predictions, and the bottom row shows
aggregated participant responses. We will now discuss the results from each condition in
turn, using these trials as illustrative examples.
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Figure 6 . Experiment 1: Scatterplots showing the relationship between the CSM and
participants’ judgments at the top, and the relationship between the features model and
participants’ judgments at the bottom. The first column shows the results from the selection
condition. Here, each data point represents the probability that one particular block was
selected to fall off the table (523 blocks in total across 42 trials). The second column shows
the results from the prediction condition. Here, each data point represents the average
number of blocks that was predicted to fall in each trial. The third column shows the
results from the responsibility condition. Here, each data point represents the average
responsibility that was assigned to the black block in that trial. The blue line in each plot
indicates the best-fitting regression line, and the blue ribbon shows the 95% confidence
interval of the regression line. The error bars on the data points indicate 95% bootstrapped
confidence intervals.

Selection condition. In the selection condition, participants were asked to click
on each block that would fall off the table if the black block weren’t there. The numbers on
the blocks in the bottom row of Figure 5 shows the percentage of participants who selected
each of the different blocks for five of the trials. For example, in the trial shown in Figure 5a,
92% of the participants selected the block on the left edge of the table, and only 16% of
participants selected the block on the right side of the table. The top row in Figure 5 shows
the CSM’s predictions, and the middle row shows the predictions of the features model.
Both models capture participants’ responses in some trials, but not in others. For example,
in Figures 5a and 5b, the CSM’s predictions closely match participants’ selections while
the features model’s predictions aren’t as accurate. On the other hand, in Figure 5c, the
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CSM assigns a high probability that the block on top would fall, whereas participants don’t
believe so (and this is accurately captured by the features model). In Figure 5d both the
CSM and the features model closely match participants’ selections. In contrast, in Figure 5e
both models fail to match participants’ responses. The CSM assigns a high probability that
the blocks on the top left would fall whereas relatively fewer people think they would, while
the features model assigns a low probability that the blocks on the top right would fall
whereas relatively more people think they would.

Figures 6a and 6d show how well the CSM and the features model capture partic-
ipants’ selections across all of the trials. Overall, the CSM does a better job of fitting
participants’ selections than the features model. However, each model is somewhat biased
in its predictions about blocks that people think are unlikely to fall. There are a number
of blocks for which the CSM is certain that they wouldn’t fall but for which participants
believe have some chance of falling (see the black dots in the bottom left corner in Figure 6a
extending from y = 0% to y = 25%). In contrast, the features model tends to predict that
blocks would fall for which participants are fairly certain that they won’t (see the black dots
in the bottom left corner in Figure 6d extending from x = 0% to x = 25%).

To get a sense for how well participants were doing in the task, we calculated their
accuracy. The overall accuracy is given by the percentage of times in which a participant
correctly selected a block that falls, and didn’t select a block that didn’t fall. Participants’
selections were 77% accurate (67% for blocks that would fall, and 79% for blocks that
wouldn’t fall). The CSM’s accuracy was 79% (63% would fall, 83% wouldn’t fall) and the
features model’s accuracy was 72% (47% would fall, 77% wouldn’t fall).

Prediction condition. In the prediction condition, participants were asked to pre-
dict how many red blocks would fall off the table if the black block weren’t there. The CSM
which best accounted for participants’ selections, also captures participants’ judgments of
how many blocks would fall (Figure 6b). The features model does not capture participants’
prediction judgments as well (Figure 6e).5

Figure 7a shows the relationship between the average proportion of blocks that par-
ticipants selected in the selection condition and the proportion of blocks predicted to fall in
the prediction condition. Overall, the two ways of probing participants yielded very similar
results. However, participants in the prediction condition tended to predict that a larger
proportion would fall than participants in the selection condition selected (as indicated by
the fact that the regression line in Figure 7a is slightly above the the diagonal).

Responsibility condition. In the responsibility condition, participants were asked
to judge the extent to which the black block was responsible for the red blocks staying on
the table. To account for the fact that different scenes have a different number of blocks,
we used the proportion of blocks predicted to fall as a predictor for people’s responsibility
judgments. We calculate the proportion simply by dividing the number of blocks predicted
to fall by the total number of red blocks in the scene. Because it’s the proportion rather
than the absolute number that matters, this means that a block’s responsibility is greater
in a scene where, for example, three out of four blocks are predicted to fall compared to a
scene in which four out of ten blocks are predicted to fall.

5Instead of reporting frequentist statistics to compare the models here, in the ‘Parameter fitting and
model comparison’ section before the General Discussion, we report the results of a cross-validation that
compares how well the different models do across the three experiments in this paper.



MENTAL JENGA 18

r = 0.91
RMSE = 0.06

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

selection proportion

pr
ed

ic
tio

n 
pr

op
or

tio
n

a)
r = 0.84
RMSE = 6.58

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1

scaled prediction proportion

re
sp

on
si

bi
lit

y 
ju

dg
m

en
t

b)

Figure 7 . Experiment 1: Comparison between participants’ responses in the three condi-
tions. a) The proportion of blocks participants selected in the selection condition (x-axis)
is closely related to the proportion of blocks predicted to fall in the prediction condition
(y-axis). b) The (scaled) proportion of blocks predicted to fall in the prediction condition
(x-axis) is closely related to participants’ responsibility judgments (y-axis). The scaling
here is done via a simple regression that maps from the selection proportion (which ranges
between 0 and 1) to participants’ responsibility judgments (which ranges between 0 and
100). The greater the proportion of blocks is predicted to fall, the more responsible the
black block is judged to be. Note: The error bars indicate bootstrapped 95% confidence
intervals, and the blue ribbons show the 95% confidence interval of the regression lines.

We fit a linear regression from the proportion of blocks predicted to fall to participants’
responsibility judgments. Figure 7b shows that the counterfactual predictions from one
group of participants are closely related to the responsibility judgments from another group
of participants (r = .84). This result is consistent with the idea that when evaluating how
responsible the black block is, participants consider what proportion of other blocks would
fall if it were removed.

We apply the same linear transformation that maps from participants’ predictions to
responsibility judgments for both the CSM and the features model. Figure 6c shows how
well the CSM captures participants’ responsibility judgments, and Figure 6f shows the same
plot for the features model. Both models do a similarly good job in capturing participants’
judgments.

Discussion

The results of Experiment 1 reveal a close mapping between counterfactual predictions
and responsibility judgments. The greater the proportion of red blocks were predicted to
fall, the more responsible the black block was judged to be (Figure 7b).

We tested participants’ ability to simulate what would happen if the black block
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were removed in two different conditions (Figure 3a and 3b). In the selection condition,
participants clicked on each red block that they believed would fall if the black block weren’t
there. In the prediction condition, participants indicated how many red blocks would fall
if the black block was weren’t there. The number of blocks that participants selected and
the number of blocks they predicted to fall were highly correlated (Figure 7b).

Compared with the ground truth, participants in the prediction condition were less
accurate (RMSE = 2.64) than participants in the selection condition (RMSE = 2.29).
Having to decide for each block whether or not it’s going to fall is likely to lead to a
more careful consideration of what would happen than having to merely move a slider to
estimate how many blocks would fall. Participants in the selection condition also spent
considerably more time to complete the experiment compared with participants in the
prediction condition.

We compared participants’ responses to the predictions from both the CSM and
the features model. The CSM assumes that participants use their intuitive understanding
of physics to simulate what would happen to the red blocks if the black block weren’t
there (Figure 2). The features model assumes a direct mapping from visual features to
participants’ responses. We found that across the three conditions, the CSM was overall a
better fit to experimental data, suggesting that counterfactual simulations may be critical
for explaining participants’ judgments.

Even though the CSM performed better overall, it’s still possible that participants
may have mostly relied on perceptual features in their judgments. For example, the average
y-position of the blocks in the scene alone correlated highly with participants’ responsibility
judgments (r = .71, see Table A1 in the Appendix). To provide stronger evidence for the
role of mental simulation in people’s judgments about physical stability and to investigate
peoples’ judgments when scene features are controlled for, we constructed the block towers
differently in Experiment 2.

Experiment 2: Controlling for scene features

In Experiment 1, we tested participants’ judgments on a wide array of randomly
generated towers, and the features model captured participants’ responsibility judgments
quite well by considering global scene features, such as the average y-position of the blocks
in the scene. In Experiment 2, we used a more tightly controlled stimulus set. We wanted
to make sure that global scene features would not be highly correlated with the number of
blocks that would fall. We achieved this by first constructing a set of six different tower
configurations by hand. For each configuration, we then chose seven positions for the black
block such that removing it would result in different numbers of blocks falling off the table
in the ground truth setting.

Figure 8 shows a subset of the stimuli that we used in this experiment. Relying on
scene features to predict how many blocks would fall is now insufficient: in fact, the scene
features for any of the instances of a given tower configuration are identical (e.g. within any
of the Towers in Figure 8) as only the position of the black block varies. Furthermore, while
in Experiment 1 the blocks in each stimulus tended to form a single “stack” (see Figure 4),
in Experiment 2 we created some tower configurations with disjointed sets of blocks. For
example, Towers I, II, and IV in Figure 8 feature two sets of blocks that are disconnected
from one another. In the scene shown in Figure 8a, for instance, it is clear that the removal
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Figure 8 . Experiment 2. Example stimuli. We created six different tower configurations
(four shown), each of which was repeated seven times for different positions of the black
block (three shown). As before, red outlines indicate which blocks would fall off the table if
the black block weren’t there. Outlines were not visible to participants in the experiment.

of the black block should only affect the two red blocks above it. Overall, this new set of
stimuli provides a stronger test for the potential role of mental simulation in participants’
responsibility judgments.

Methods

Participants. 129 participants (Mage = 36, SDage = 11.3, 70 male, 59 female) were
recruited via Amazon Mechanical Turk with N = 44 in the selection condition, N = 42 in
the prediction condition, and N = 43 in the responsibility condition. We used the same
exclusion criteria as in Experiment 1 based on the same tower shown in Figure 4g. One
participant was excluded in the selection condition (leaving N = 43), two were excluded
in the prediction condition (leaving N = 40), and three were excluded in the responsibility
condition (leaving N = 40).

Design & Procedure. The design, procedure, and questions were identical to
those of Experiment 1. The main difference was the set of tower stimuli that we used this
time (compare Figure 8 with Figure 4). We reduced the table friction in the settings of
the physics engine so that it was possible for blocks to slide off the table. Participants saw
43 trials in randomized order where one trial served as a catch trial (see Figure 4g). On
average, the experiment took 13 minutes (SD = 6.87) to complete in the selection condition,
11.6 minutes (SD = 5.24) in the prediction condition, and 7.86 minutes (SD = 3.48) in the
responsibility condition.

Results

Figure 9 shows participant responses and model predictions for a selection of stimuli.
As before, the top row shows the CSM predictions, the middle row shows the features model
predictions, and the bottom row shows aggregated participant responses for each block in
the scene.
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Figure 9 . Experiment 2: Model predictions and participants’ judgments for a selection
of stimuli. Note: The number on each block indicates the percentage of participants who
thought that this block would fall if the black block weren’t there, and the predicted per-
centages for the models. The color fill gradient of the blocks maps onto 0 (red) and 100
(white). A red border indicates that a block would fall off the table, and a black border
indicates that a block would remain on the table. The outlines were not displayed in the
experiment.

Selection condition. As in Figure 5, the selection of stimuli in Figure 9 includes
examples where the models accurately capture participants’ selections as well as examples
where the models don’t perform as well. For example, in Figure 9a participants realized
that none of the blocks apart from the one immediately above the black block would fall
off the table if the black block weren’t there. The CSM captures participants’ selections
well here, whereas the features model doesn’t. The features model assigns a relatively high
probability that blocks in the middle of the scene would fall, and a low probability that the
block just above the black block would fall. More generally, the features model tends to
overestimate that blocks would fall which participants don’t select, and underestimate the
ones that participants do select.

Figure 9b shows an example where the block tower configuration is the same as in
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Figure 10 . Experiment 2: Scatterplots showing the probability with which a block was
selected on the y-axis and the predictions of the CSM (top) or the features model (bottom)
on the x-axis, for each of the three conditions. Each point in a) and d) represents one block
in one of the trials (630 blocks in total). Each point in the remaining panels represents one
trial (42 trials in total). The blue line in each plot indicates the best-fitting regression line,
and the blue ribbon shows the 95% confidence interval of the regression line. The error bars
on the data points indicate 95% bootstrapped confidence intervals.

Figure 9a, but the position of the black block is different. Naturally, the position of the black
block makes a big difference to participants’ selections, and the CSM correctly captures this.
However, the features model’s predictions about which blocks would fall are very similar in
Figure 9a and Figure 9b. Even though the black block features are changed between these
scenes, the global features, and the features about the red blocks are identical, leading the
model to make similar predictions in both cases (see Table 1).

Figure 9c shows an example where two sets of blocks are disconnected from one
another. Here participants didn’t think that the blocks on the right side would fall and
the CSM captures this correctly. In contrast, the features model assigns a high probability
that these blocks would fall. Figure 9d shows an example for which both the CSM and
the features model capture people’s selections well. In Figure 9e, the features model does
a better job than the CSM. The CSM assigns a high probability that the two blocks on
the top left would fall (which is what would happen according to ground truth). However,
participants didn’t think that these blocks would fall.

Figures 10a and d show how well the CSM and the features model capture partici-
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Figure 11 . Experiment 2: Comparison between participants’ responses in the three con-
ditions. a) The proportion of blocks participants selected in the selection condition was
compared with the proportion of blocks they judged to fall in the prediction condition. We
used the proportion because different stimuli consisted of different number of blocks. b)
The proportion of blocks predicted to fall in the prediction condition was then compared
with participant’s judgments in the responsibility condition. Note: the error bars indicate
bootstrapped 95% confidence intervals. The blue ribbon shows the 95% confidence interval
for the regression line.

pants’ selections across all of the trials. Like in Experiment 1, the CSM performs better
than the features model as evidenced by a higher correlation and a smaller error. Similarly,
the features model tends to predict that blocks would fall for which people are certain that
they wouldn’t (as indicated by the many black points along the x-axis in Figure 10d). Both
models tend to underestimate larger selection probabilities (the regression line is below the
diagonal in Figure 10a and 10d). Compared to ground truth, participants’ selections were
82% accurate (60% for blocks that would fall, and 88% for blocks that wouldn’t fall). The
CSM’s accuracy was also 82% (62% would fall, 86% wouldn’t fall), and the features model’s
accuracy was 73% (42% would fall, 82% wouldn’t fall).

Prediction condition. The relationship between model predictions and partici-
pants’ predictions about how many of the red blocks would fall if the black block weren’t
there are shown in Figures 10b and 10d. The CSM again does a better job of capturing
participants’ predictions. Figure 11a shows the relationship between the average propor-
tion of blocks that participants selected in the selection condition and the proportion of
blocks predicted to fall, just like in Figure 7a. Again, there was a very tight relationship
between selections and predictions, and participants predicted that more blocks would fall
on average than they selected (the regression line is above the diagonal).

Responsibility condition. Figures 10c and 10f show how well the CSM and the
features model account for participants’ responsibility judgments. Yet again, the CSM
does a better job in capturing participants’ judgments than the features model. Table 1
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shows the correlations between different features with participants’ responsibility judgments.
As expected, global scene features did not correlate well with participants’ responsibility
judgments because these features are insensitive to the black block’s position. This time,
a good predictor of participants’ responsibility judgments was the y-position of the black
block. The lower the black block was located in the scene, the more responsible it was
judged to be for the stability of the other blocks.

Figure 11b shows the relationship between participants’ predictions and responsibility
judgments. The responsibility judgments from one group of participants were well accounted
for by the proportion of blocks that another group of participants predicted would fall if
the black block weren’t there. The greater the proportion of blocks that were predicted to
fall, the more responsible the black block was judged.

Discussion

The results of Experiment 2 replicate and extend what we found in Experiment 1.
Again, participants’ predictions about what would happen if the black block weren’t there
were highly correlated with judgments about how responsible that block was for the others
staying on the table.

We constructed the stimuli in Experiment 2 differently from how we did in Experi-
ment 1. This time, we included sets of towers and manipulated within each set where the
black block was positioned, while keeping everything else constant (see Figure 8). Partici-
pants’ judgments in Experiment 1 were highly correlated with the average y-position of the
blocks in the scene. This new way of designing the stimuli made it such that the average
y-position of the red blocks was no longer a good cue because it doesn’t take into account
where the black block is positioned.

The scenes in Experiment 2 were also different in that they featured block towers
with disconnected sets of blocks. These scenes help tease apart to what extent people’s
judgments are sensitive to global scene features versus the more local consequences that
removing the block would have. The results showed that the CSM provided a good account
of participants’ judgments across all three experimental conditions, and that it outperformed
the features model in each condition.

Experiment 3: Investigating the relationship between block pairs

The results of Experiments 1 and 2 showed that the CSM accurately captures partici-
pants’ judgments about how responsible one block was for the tower’s overall stability. The
CSM also naturally makes predictions about the relationship between pairs of individual
blocks, by querying what would happen to just one block if another were removed. The
features model, in contrast, needs to be reconfigured for this novel task. In Experiment 3
we asked participants to judge how responsible one block was for another block’s staying on
the table. Figure 12 shows a selection of trials: each scene contained one black block, one
white block, and a varying number of red blocks. In the prediction condition, participants
were asked to judge how likely the white block would be to fall off the table if the black
block weren’t there. In the responsibility condition, participants judged to what extent the
black block was responsible for the white block staying on the table.
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This new task is similar to the way in which Gerstenberg, Goodman, et al. (2021)
probed causal judgments (see also Gerstenberg et al., 2017). In their studies, participants
were asked whether a candidate cause (e.g. ball A) caused another ball (e.g. ball B) to
go through a gate, or prevented it from going through. In our case here, the question is
whether the black block prevents the white block from falling off the table. Gerstenberg,
Goodman, et al. (2021) asked one group of participants to make counterfactual judgments
(e.g. “Would ball B have missed the gate if ball A had been removed?”) and another
group to make causal judgments (e.g. “Did ball A cause ball B to go through the gate?”).
The results showed a very close quantitative correspondence between the counterfactual
judgments of one group, and the causal judgments of another. The more certain partici-
pants were that the counterfactual outcome would have been qualitatively different from
what actually happened, the more they judged that the candidate caused the outcome.
Correspondingly, in our task, we expect that there will be a close mapping between the
counterfactual predictions and responsibility judgments. The more certain participants are
that the white block would fall if the black black weren’t there, the more responsible the
black block should be judged for the white block’s staying on the table.

Methods

Participants. 81 participants (Mage = 37.2, SDage = 12.1, 49 male, 32 female)
were recruited via Amazon Mechanical Turk with N = 41 in the prediction condition and
N = 40 in the responsibility condition. We used an exclusion trial in which the removal of
the black block clearly had no effect on the white block, similar to the trial in Figure 4g. 3
participants were excluded in the prediction condition (leaving N = 38), and 3 participants
were excluded in the responsibility condition (leaving N = 37).

Design & Procedure. The experiment instructions were largely identical to those
of Experiments 1 and 2. Because we only asked participants about two particular blocks
in each scene, this experiment did not include a selection condition. In the prediction
condition, participants were asked “Would the white brick fall off the table if the black
brick wasn’t there?” Participants provided their answer on a sliding scale ranging from
“definitely not” (0) to “definitely yes” (100). In the responsibility condition, participants
were asked “To what extent is the black brick responsible for the white brick staying on the
table?” Participants provided their answer on a sliding scale ranging from “not at all” (0)
to “very much” (100).

Participants saw 42 separate scenes which had been generated in the same way as in
Experiment 1 (see Figure 12 for a selection of scenes). We selected scenes such that the
CSM’s predictions of whether the white block would fall varied across the whole range from
being certain that it wouldn’t fall to being certain that it would. The number of blocks on
the table ranged between 12 and 19. The number of blocks that would fall if the black block
was removed according to the ground truth varied from 0 to 9. On average, participants
took 7.03 (SD = 5.04) minutes in the prediction condition and 6.73 (SD = 7.99) minutes in
the responsibility condition.
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e) f) g) h)

Figure 12 . Experiment 3: Example stimuli, along with experimental data and model
predictions. In the prediction condition, participants judged how likely the white block
would be to fall if the black block weren’t there. In the responsibility condition, participants
judged how responsible the black block was for the white block staying on the table. Note:
The number on the white block indicates participants’ mean prediction judgment for this
scene. The text at the top of each trial shows the CSM and the features model prediction of
how likely the white black would fall, as well as participants’ mean responsibility judgment.
The black and red outlines indicate whether each block would stay or fall off the table if
the black block weren’t there; outlines were not present in the experiment.

Results

Figure 12 shows participants’ responses and model predictions for a subset of the
trials. The number on the white block shows participants’ average prediction judgments.
The higher the number the more likely they believed on average that this block would fall
off the table if the black block were removed. The text at the top of each figure shows
the predictions of the CSM and the features model, as well as participants’ responsibility
judgments. We will discuss the results of the prediction condition and the responsibility
condition in turn.

Prediction condition. We asked participants how likely the white block would be
to fall off the table if the black block weren’t there. In Figure 12a, participants’ average
prediction for how likely the white block would fall off the table was 50%, which is matched
quite well by the CSM (42%) but less so by the features model (26%). The same is true
for Figure 12b, where the features model’s emphasis on the y-position of the black and red
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Figure 13 . Experiment 3: Scatterplots showing the performance of the CSM and the
features model on both conditions. In the prediction condition (a and c), participants
were asked how likely the white block was to fall, if the black block weren’t there. In the
responsibility condition (b and d), participants were asked how responsible the black block
was for the white block staying on the table.

block leads it to underpredict participants’ judgments.
However, the features model outperforms the CSM in other cases. In Figure 12c, the

white block is “shielded” from falling by the red blocks around it, but participants believed
that it had a relatively high chance of falling. In Figure 12d the CSM overestimates the
probability that the white block would fall compared to people’s judgments. In some of
the cases, both the CSM and the features model capture participants’ judgments (e.g.
Figure 12e). And sometimes, neither model fits participants’ judgments (Figure 12f, 12g).
Figure 12g is particularly interesting because the white block is directly under the black
block. Both models perform poorly in this case – they underestimate how likely people
judge that it would fall.

Figures 13a and 13c compare the predictions of the CSM and features model with
participants’ judgments across all 42 trials. The CSM does a better job than the features
model at capturing participants’ predictions. Notice that participants’ judgments are less
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Figure 14 . Experiment 3: Relationship between participants’ predictions of how likely
the white block would be to fall if the black block were removed (x-axis) and the extent
to which the black block was judged to be responsible for the white block staying on the
table (y-axis). Each point shows the averaged judgments for one trial, and the error bars
are 95% bootstrapped confidence intervals.

extreme than what the models predict (as indicated by the regression line being off the
diagonal). To get a sense for how accurate participants and the model were, we computed
the average probability with which participants (or the models) said that a block would
fall when it did, and that it wouldn’t fall when it didn’t. Participants’ prediction responses
were 61% accurate. The CSM and features model were 63% and 62% accurate, respectively.

Responsibility condition. Figure 14 shows the relationship between participants’
judgments in the prediction condition and in the responsibility condition. The results show
that there is a very close relationship between participants’ predictions about whether the
white block would fall if the black block weren’t there, and the extent to which the black
block was judged to be responsible for the white block staying on the table. The more
likely participants judged that the white block would fall if the black block weren’t there,
the more responsible the black block was judged.

Figures 13b and 13d show how well the CSM and features model capture participants’
responsibility judgments. Again, the CSM does a better job than the features model. Both
models, however, fail to capture some of the variance in participants’ responses.

Discussion

While Experiments 1 and 2 looked into how people judge the extent to which a
candidate object is responsible for the overall stability of the tower, Experiment 3 focused
on the relationship between individual blocks. We asked one group of participants to predict
whether a target block (the white block) would fall if the block block weren’t there, and
another group of participants how responsible the black block was for the white block staying
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on the table. We found that participants’ counterfactual predictions and responsibility
judgments were closely related (see Figure 14). The more likely participants thought that
the white block would fall the more responsible the black block was judged to be. There
were a few cases for which prediction and responsibility judgments differed. For example,
in the trial shown in Figure 12h, participants predicted that the white block would be 53%
likely to fall off the table, but assigned relatively little responsibility (18) to the black block.
One possibility for why the two types of judgments come apart here is that when people
judge responsibility, they not only care about the chances that the other block would fall,
but also about the causal chain of events by which the outcome would come about. So
when several other blocks are part of the chain of events that lead from the removal of the
black block to the white block falling off the table, there is a certain degree of diffusion
of responsibility (see Chockler & Halpern, 2004; Gerstenberg & Lagnado, 2010; Lagnado,
Gerstenberg, & Zultan, 2013; Langenhoff, Wiegmann, Halpern, Tenenbaum, & Gerstenberg,
2021; Zultan, Gerstenberg, & Lagnado, 2012, for how the causal structure affects diffusion
of responsibility between agents).

In Experiments 1 and 2, the responsibility question was somewhat ambiguous. We
had asked participants to judge to what extent the black block was responsible for the red
blocks staying on the table. We found that participants’ responsibility judgments correlated
highly with the proportion of blocks that would have fallen off the table. It’s possible though
that different participants interpreted the question differently, such that some believed that
it was the absolute number that mattered. In Experiment 3, participants had to judge how
responsible one block was for another one, thereby removing this ambiguity.

Experiment 3 also connects more closely with prior work on causal judgment (see
Gerstenberg, Goodman, et al., 2021). In work on causal judgment, researchers usually ask
to what extent one candidate caused a particular event to happen. For example, the question
might be whether a billiard ball A caused another billiard ball B to go through a gate. In
this case, participants consider what would have happened if ball A hadn’t been present in
the scene (Gerstenberg et al., 2017). The more certain they are that the outcome would
have been different in that case, the more they judge that ball A caused the outcome. In a
similar way, we ask here whether one candidate, the black block, is responsible for the white
block staying on the table. The results show that participants’ responsibility judgments are
consistent with the idea that they are mentally simulating what would happen if the black
block weren’t there.

The CSM again provided a good account of participants’ predictions and responsibility
judgments (see Figure 13). This further supports the idea that counterfactual simulation
and responsibility for stability are intimately related. The features model which tries to
predict participants’ judgments without relying on physical simulations doesn’t fare as well.
In Experiment 1, scene features, such as the average distance of block from the edge,
were a good predictor of participants’ responsibility judgments. In Experiment 2, features
associated with the black block, such as how many red blocks were above it, were a good
predictor. This time, in Experiment 3, it was features associated with the white block that
correlated highly with participants’ responsibility judgments. So overall, while there are
features in each experiment that are associated with participants’ judgments, what features
these are changes between experiments. In contrast, the CSM provides a unified account of
participants’ judgments across all experiments.
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Parameter fitting and model comparison

The CSM and the features model have a number of free parameters that need to
be fitted to the data. We fit the model parameters to one large dataset that combined
participants’ selections from Experiment 1 and 2, and their predictions from Experiment 3.
The selection data provides a strong test for the models as they need to predict for each
block whether participants think that it will fall or stay.

Parameter fitting

The CSM has up to three free parameters, one each for the perceptual noise, inter-
vention noise, and dynamic noise. For any given set of the model parameters (βp, βi, βd),
the CSM predicts how likely each of the red blocks would fall off the table (see Figure 2
top right). To obtain numerical predictions for each block, we ran 200 simulations for each
parameter setting. We fit the CSM’s parameters by maximizing the likelihood of the data,
using a grid search over a wide range of possible noise parameter values. To find the best-
fitting parameters for the features model, we performed a logistic regression. The features
model has thirteen free parameters: one for each of the features, plus one for the intercept.

Model comparison

The full CSM includes three sources of uncertainty that affect people’s predictions
about what would happen. To evaluate whether all three of these components are required
to accurately account for people’s judgments, we compared the full model with simpler
models that only consider one, or two sources of uncertainty. For example, one such model
“turns off” intervention uncertainty by setting the intervention noise parameter βi to 0.

Table 3
Cross-validation results for different versions of the counterfactual simulation model (CSM)
as well as the features model. The r column shows the correlation between model predictions
and participants’ responses. The RMSE column shows the root mean squared error between
model prediction and participants responses. The ∆RMSE column shows the difference in
RMSE between the full CSM and the other models. Note: Each column shows the me-
dian and the 10% and 90% quantiles across the 200 cross-validation runs of the respective
measure.

model r RMSE ∆RMSE

CSM (p, i, d) .84 [.82, .85] 2.95 [2.71, 3.18] -
CSM (p, i) .81 [.79, .82] 3.45 [3.14, 3.79] 0.50 [0.30, 0.68]
CSM (p, d) .76 [.74, .78] 4.26 [3.94, 4.55] 1.31 [0.99, 1.61]
CSM (i, d) .81 [.79, .83] 3.55 [3.22, 3.88] 0.60 [0.32, 0.88]
CSM (p) .75 [.73, .77] 4.34 [4.01, 4.64] 1.39 [1.08, 1.68]
CSM (i) .80 [.77, .81] 3.75 [3.44, 4.13] 0.80 [0.53, 1.08]
CSM (d) .68 [.66, .71] 6.84 [6.29, 7.33] 3.89 [3.36, 4.42]
features .72 [.70, .74] 4.34 [4.04, 4.63] 1.39 [1.03, 1.70]
p = perceptual noise, i = intervention noise, d = dynamic noise.
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There are six such models (three models with two sources of noise, and three models with
one source of noise).

To evaluate how well the different versions of the CSM and the features model account
for participants’ responses, we performed split-half cross-validation on the combined data
from all three experiments. We randomly selected half of all of the blocks in all three
experiments as a training set and found the best-fitting parameters for each model on the
training set using the parameter fitting procedure described above. We then evaluated the
model’s performance on the held-out test set comprised of the other half of the blocks. For
each model, we performed 200 split-half cross-validation runs. Table 3 shows the results of
this analysis.

The full CSM model outperforms all of the lesioned models: it correlates higher with
participants’ responses in the held-out test sets, and has lower error. The cross-validation
results also give a sense of how much the different sources of uncertainty affect the model’s
performance. For example, models that don’t include intervention noise generally fare worse
than those that don’t include perceptual noise. The full CSM also outperforms the features
model. The features model achieves a high correlation with participants’ judgments when
fitted separately to the different experiments (see Table 2). However, there is no single
parameter setting that works well across all three of the experiments. Which features
matter most differs between the experiments.

General Discussion

How do people judge whether one object supports another? In this paper, we devel-
oped the counterfactual simulation model (CSM) of physical support. The CSM predicts
that people judge physical support by mentally simulating what would happen if the object
of interest were removed. Similar to how people spontaneously consider counterfactuals
when judging causation (Gerstenberg et al., 2017), the CSM assumes that people play
“Jenga in their mind” when judging responsibility for physical support. The more cer-
tain people are that the object(s) of interest would have fallen if a target object had been
removed, the more responsible that target object is for their stability.

We tested the CSM across three experiments in which participants made judgments
about towers of blocks stacked on a table. In Experiments 1 and 2, the CSM accurately
captured participants’ selections of which other blocks would fall off the table if the black
block weren’t there, their predictions of how many of the blocks would fall, as well as
their judgments of how responsible the black block was for the other blocks staying on the
table. In Experiment 3, the CSM captured participants’ graded beliefs about whether one
particular block of interest would fall of the table if the black block weren’t there. All three
experiments showed how the counterfactual predictions of one group of participants closely
matched the responsibility judgments of another group.

We contrasted the CSM with a features model that predicts participants’ judgments
via a direct mapping from visual features. For example, the features model predicts that
more blocks will fall when the tower is taller. The features model wasn’t able to capture
participants’ selections, predictions, and responsibility judgments as well as the CSM did.
Which individual features best correlated with participants’ judgments varied across the
different experiments. In contrast, the CSM provides a unified account of participants’
judgments across a wide variety of situations and tasks.
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A unified account of causal judgments across different types of causation

The CSM explains people’s causal judgments as arising from a comparison between
the actual situation, and a counterfactual situation in which the candidate cause was imag-
ined to have been different. The CSM has been shown to provide an accurate model of
how people make causal judgments about physical events (Beller, Bennett, & Gerstenberg,
2020; Gerstenberg, 2022; Gerstenberg, Goodman, et al., 2021; Gerstenberg et al., 2017). In
this standard kind of “event causation”, one candidate cause event brings about an effect
event of interest, such as when the rock hitting the window causes the window to shatter.
Most philosophical theories of causality take the causal relata to be events (Paul & Hall,
2013; Schaffer, 2016).

Treating events as the units of a causal relationship, however, makes it difficult to
handle omissions as causes. When our plants die while we were away because our neighbor
forgot to water them (even though they had promised to do so), there is no event that
we could attribute the outcome to (Beebee, 2004; Henne, Pinillos, & De Brigard, 2017;
Livengood & Machery, 2007; McGrath, 2005). Gerstenberg and Stephan (2021) have shown
that the CSM naturally handles “omissive causation”. The CSM simulates what would have
happened if the event of interest had taken place, and then comparing that counterfactual
outcome to what actually happened. For example, when asked whether ball B went through
the gate because ball A didn’t hit it, the CSM simulates what would have happened if the
collision had taken place, and how likely the outcome would then have been different.

In omissive causation, there is no cause event. In the case of physical support, there
aren’t any events at all – at least no events in the psychological sense where events mark
changes of state (Glymour et al., 2010; Lewis, 1986a; Zacks & Tversky, 2001). Nothing
changes in a stable block tower, it just sits there . Again, the CSM naturally extends to
this type of causation that we may call “sustaining causation” (see Ross & Woodward,
2021, for relevant work in philosophy). A sustaining cause brings about an effect due to
its continuing presence. In our case, an individual block in a tower is a sustaining cause
of the tower’s stability. Sustaining causation reveals itself by the counterfactual simulation
of what would have happened if the sustaining cause had been removed. In other words,
a block sustains the tower’s stability because the tower would collapse if the block were
removed.

The CSM provides a principled and general framework for understanding people’s
causal judgments across a variety of types of causal relationships that include “event cau-
sation” (Gerstenberg, Goodman, et al., 2021), “causation by omission” (Gerstenberg &
Stephan, 2021), and “sustaining causation”. Psychological theories that rely on events to
explain causal judgments have trouble with causation by omission, and don’t apply to in-
stances of sustaining causation such as physical support (e.g. Wolff, 2007; Wolff, Barbey, &
Hausknecht, 2010). The CSM assumes that people build a mental model of the world, and
that different kinds of causal judgments can all be understood as counterfactual operations
on this mental model. More work is required to better understand the cognitive processes
that underlie causal judgments according to the CSM. In the remainder of the discussion, we
will highlight some limitations of the CSM as it applies to capturing judgments of physical
support, and suggest directions for future research.
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The nature of mental simulation

The CSM assumes that people judge an object to be the cause of stability by men-
tally simulating what would happen if that object was not there. To do so, the CSM
employs a physics engine for representing the scene and for simulating what would happen
(Smith et al., under review; Ullman et al., 2017). To capture the gradedness in participants’
judgments, the CSM incorporates different sources of uncertainty including perceptual un-
certainty about the position of the blocks, intervention uncertainty about the removal of
the block, and dynamic uncertainty about how the scene would unfold. With these sources
of uncertainty, the CSM accurately captures participants’ judgments.

The fact that these sources of uncertainty are sufficient for capturing participants’
judgments does of course not mean that they are necessary. It’s very plausible that there are
other aspects of the scene that participants are uncertain about, and that alternative noise
models would also accurately capture participants’ judgments. For example, participants
may be unsure about the degree of friction between the blocks, or the coefficient of resti-
tution which determines how elastic the collisions are. It’s also possible that participants
consider a different counterfactual intervention from the one that the CSM implements. For
example, instead of imagining what would happen if the block weren’t there, they might
imagine what would happen if the block was perturbed (without removing it). Although
the CSM captures participants’ judgments well, we do not claim that people are running
counterfactual simulations in exactly that way. We do believe, however, that mental simula-
tion, in some form, is critical for understanding physical support. The fact that the features
model failed to capture participants’ judgments as well as the CSM did, lends some sup-
port for this claim. Recent work has demonstrated that even primates engage in mental
simulation in a physical prediction task (Rajalingham, Piccato, & Jazayeri, 2021).

The counterfactual simulations that are required to assess what would happen to the
towers if the black block were removed are fairly complex. We are not arguing that mental
simulation must act on a perfectly faithful representation of the world – there are clear
limitations to what aspects of a scene people can represent and simulate. Ludwin-Peery
et al. (2021) argue that people display errors in physical judgments that are at odds with
simulation over a full representation of complex scenes. For instance, they show that when
people choose one of four possible end states of a falling tower, they will often choose scenes
in which one block has been removed or added. If people were representing each block
individually, like a physics engine does, then such errors should have been unlikely. We
believe that it’s plausible that people construct a simplified mental representation of the
scene, and that they then run mental simulations over that representation. Future work
is required to better understand how people combine what they know about the physical
world with what they see in a particular situation, to build a mental representation of the
scene that is tailored to the task at hand (Ullman et al., 2017).

A related question is whether physical support needs to be inferred (via mental sim-
ulation), or whether it can be directly perceived (Little & Firestone, 2021). There is a
rich literature on the perception of causality. Simple events, such as the classic Michottean
launching event (Michotte, 1946/1963), look causal to us and it doesn’t feel like we’re engag-
ing in mental simulation when judging that the first ball caused the second ball to move.
What role physical knowledge plays in such simple situations is disputed (Bechlivanidis,
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Schlottmann, & Lagnado, 2019; Kominsky et al., 2017). Judgments about more complex
cases, however, feel more inferential. For example, when judging whether one ball caused
another ball to go into a hole, people spontaneously simulate what would have happened in
the relevant counterfactual situation (Gerstenberg et al., 2017).

Where does physical support stand? Sometimes, it feels like we can directly see
support relations. We see that the legs support the table top, and that the pillars support
the roof. In more complex cases like the ones that we consider in this paper, it feels more like
we have to engage our inferential abilities to make judgments about support (see Pramod,
Cohen, Tenenbaum, & Kanwisher, 2021, for evidence of abstract representations of physical
stability in the brain). It is plausible that in our experiments, participants relied on a
combination of more general visual features and mental simulation. Smith et al. (2013)
have shown that participants’ predictions about whether a moving ball will first hit a red
or green patch in a maze are generally well-accounted for by a noisy simulation model.
However, there were also some trials in which participants’ responded more rapidly than
the model did. For example, participants realized that when the red patch was outside of
an area that physically contained the ball and the green patch, the ball had to eventually
hit the green patch (and it was impossible to hit the red patch). So participants seemed
to draw both on more general topological information (such as containment) to make rapid
inferences about what was possible, as well as on mental simulation to make predictions
about what was probable (see also Smith, de Peres, Vul, & Tenenbaum, 2017). In a similar
way, people may have learned visual shortcuts that are reliable predictors for stability in
many situations.

Future work is required to delineate more clearly how visual features and mental
simulation contribute to participants’ physical predictions. We focused here on judgments
of physical support but hypothetical simulations are also critical for planning and decision-
making (Allen et al., 2020; Bapst et al., 2019; Baradel et al., 2019; Hamrick et al., 2018;
Yildirim et al., 2017). For example, when deciding which block to pick in Jenga, a player
needs to mentally simulate what will happen. Future work may ask people to take actions
so as to make a tower more robust, or, conversely, to remove an object that is most likely
to make the tower fall.

Supporting versus preventing from falling

In our experiments we didn’t ask participants directly about physical support. Instead
we asked them to judge how responsible one block was for the other blocks staying on the
table (Experiments 1 and 2), or for one particular block (Experiment 3). We conceptualized
the notion of responsibility as preventing from falling. A block is responsible to the extent
that removing it from the scene would result in the other blocks falling from the table.
While physical support and prevention from falling (or moving) often go together, there are
also situations where these two notions intuitively come apart.

Figure 15a and b show two examples in which the black block is responsible for the
white block staying on the table. In both situations, the white block would fall off the table
if the black block weren’t there. However, while it feels right in Figure 15a to say that the
black block supports the white block, it doesn’t feel quite right to say so in Figure 15b.
“Physically supporting” is subtly different from “preventing from falling”. The Oxford
Dictionary defines “to support” as “bear all or part of the weight of; hold up”, and give the
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Figure 15 . Example scenes. In a) and b), the black block is responsible for the white block
staying on the table. The white block would fall off the table if the black block weren’t
there. However, only in a) but not in b) does it seem appropriate to say that the black
block supports the white block, suggesting that the notion of “physically supporting” is
different from the notion of “preventing from falling”. In c) three black blocks are jointly
responsible for the white block not moving. However, even if block A hadn’t been there,
the white block still wouldn’t have moved. Only if at least two of the black blocks were
removed, would the white block move.

example of “the dome was supported by a hundred white columns”. So it seems like for one
object to support another, it needs to be positioned underneath. Future work is required
to say more about how exactly the notions of responsibility for stability, prevention from
falling (or moving), and physical support are related to one another.

Overdetermination

The CSM captures people’s responsibility judgments by considering what would hap-
pen if the target object were removed. The black object is responsible for the white object
if the white object would fall without the black object. However, it’s easy to conceive of
situations in which removing the black object wouldn’t make the white object fall but where
we nevertheless feel that the black object carries some responsibility for the white object’s
stability. Consider the situation in Figure 15c. The three black blocks A, B, and C support
the white block that rests on top of them. To what extent is each block responsible for the
white block’s stability (not considering here whether it would fall off the table, but instead
whether it would fall at all)? Intuitively, each of the black blocks is somewhat responsible
for the white block’s stability. However, none of the blocks individually makes a difference.
Even if block A hadn’t been there, the white block would still have stayed exactly where it
is.

In the literature on causation, a scenario like the one depicted in Figure 15c is known
as an instance of overdetermination (Gerstenberg, Goodman, et al., 2021; Gerstenberg &
Lagnado, 2010; Lagnado et al., 2013; Paul & Hall, 2013). Cases of overdetermination
trouble theories that aim to explain causal relationships in terms of simple counterfactual
dependence. To deal with such situations, counterfactual theories have been expanded to
consider not only whether the candidate cause would have made a difference in the actual
situation, but also whether it could have made a difference in another possible situation
(Halpern, 2016; Halpern & Pearl, 2005; Woodward, 2003). For example, block A would
make a difference to the white block’s stability in a situation in which either block B or
block C had been removed. Based on this idea, Chockler and Halpern (2004) developed
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a model according to which responsibility reduces the greater the distance is between the
actual situation and a situation in which the candidate cause would have made a difference
to the outcome (where distance is defined in terms of the number of variables whose values
would need to be changed). So block A would still be responsible for supporting the white
block to some degree because if either block B or block C wouldn’t have been there, then
block A would have been pivotal.

The current version of the CSM might assign some responsibility to each of the black
blocks because it’s possible that the white block would fall off due to different sources of
simulation noise. Another way to capture the fact that each of the black blocks carries some
responsibility is by imagining that external forces might perturb the scene. For example, in
the current setup, the white block is likely to stay supported even if the table was bumped.
But if one of the black blocks were removed then it would be more likely that a bump to
the table would topple the white block over. Here again, the extent to which a block is
responsible for another would not just be a function of the actual situation, but also take
into account whether it would make a difference in other possible situations (see Grinfeld,
Lagnado, Gerstenberg, Woodward, & Usher, 2020; Lewis, 1986b; Vasilyeva, Blanchard, &
Lombrozo, 2018; Woodward, 2006). More research is needed to better understand how
people assign responsibility in such cases of overdetermined stability.

Conclusion

Humans have a remarkable grasp on the physical world. We believe that this under-
standing is achieved by building mental models of the world that support the simulation of
counterfactual possibilities. The counterfactual simulation model captures people’s causal
judgments about events (Gerstenberg, Goodman, et al., 2021) and omissions (Gerstenberg
& Stephan, 2021), and it also naturally handles people’s judgments about physical support.
A block supports a tower by preventing it from falling. While most existing causal theo-
ries only apply to event causation, the CSM provides a unifying framework that explains
people’s causal judgments across a variety of different kinds of causal relationships.
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of external forces: Ná’ıve beliefs about the motion of objects. Science, 210 (4474),
1138–1141.

McCloskey, M., Washburn, A., & Felch, L. (1983). Intuitive physics: The straight-down
belief and its origin. Journal of Experimental Psychology: Learning, Memory, and

https://doi.org/10.1016%2Fj.tics.2017.06.002


MENTAL JENGA 41

Cognition, 9 (4), 636–649.
McGrath, S. (2005). Causation by omission: A dilemma. Philosophical Studies, 123 (1),

125–148.
Michotte, A. (1946/1963). The perception of causality. Basic Books.
Mitko, A., & Fischer, J. (2020). When it all falls down: the relationship between intuitive

physics and spatial cognition. Cognitive research: principles and implications, 5 ,
1–13.

Paul, L. A., & Hall, N. (2013). Causation: A user’s guide. Oxford University Press.
Pearl, J. (2000). Causality: Models, reasoning and inference. Cambridge, England: Cam-

bridge University Press.
Pramod, R., Cohen, M. A., Tenenbaum, J. B., & Kanwisher, N. G. (2021). Invariant

representation of physical stability in the human brain. bioRxiv.
Rajalingham, R., Piccato, A., & Jazayeri, M. (2021). The role of mental simula-

tion in primate physical inference abilities. bioRxiv. Retrieved from https://
www.biorxiv.org/content/early/2021/01/17/2021.01.14.426741 doi: 10.1101/
2021.01.14.426741

Ross, L. N., & Woodward, J. (2021). Irreversible (one-hit) and reversible (sustaining)
causation.

Salmon, W. C. (1994). Causality without counterfactuals. Philosophy of Science, 61 (2),
297–312.

Sanborn, A. N., & Chater, N. (2016). Bayesian brains without probabilities. Trends in
Cognitive Sciences, 20 (12), 883–893.

Sanborn, A. N., Mansinghka, V. K., & Griffiths, T. L. (2013). Reconciling intuitive physics
and newtonian mechanics for colliding objects. Psychological Review, 120 (2), 411–
437.

Schaffer, J. (2016). The metaphysics of causation. In E. N. Zalta (Ed.), The
Stanford encyclopedia of philosophy (Fall 2016 ed.). Metaphysics Research Lab,
Stanford University. https://plato.stanford.edu/archives/fall2016/entries/
causation-metaphysics/.

Schwartz, D. L., & Black, T. (1999). Inferences through imagined actions: Knowing
by simulated doing. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 25 (1), 116–136.

Sloman, S. A. (2005). Causal models: How people think about the world and its alternatives.
Oxford University Press, USA.

Smith, K. A., Dechter, E., Tenenbaum, J., & Vul, E. (2013). Physical predictions over time.
In M. Knauff, M. Pauen, N. Sebanz, & I. Wachsmuth (Eds.), Proceedings of the 35th
annual meeting of the cognitive science society (pp. 1342–1347).

Smith, K. A., de Peres, F. A. B., Vul, E., & Tenenbaum, J. B. (2017). Thinking inside
the box: Motion prediction in contained spaces using simulation. In G. Gunzelmann,
A. Howes, T. Tenbrink, & E. Davelaar (Eds.), Proceedings of the 39th Annual Confer-
ence of the Cognitive Science Society (pp. 3209–3214). Austin, TX: Cognitive Science
Society.

Smith, K. A., Hamrick, J. B., Sanborn, A. N., Battaglia, P. W., Gerstenberg, T., Ullman,
T. D., & Tenenbaum, J. B. (under review). Probabilistic models of physical reasoning.
In T. L. Griffiths, N. Chater, & J. B. Tenenbaum (Eds.), Reverse engineering the mind:

https://www.biorxiv.org/content/early/2021/01/17/2021.01.14.426741
https://www.biorxiv.org/content/early/2021/01/17/2021.01.14.426741
https://plato.stanford.edu/archives/fall2016/entries/causation-metaphysics/
https://plato.stanford.edu/archives/fall2016/entries/causation-metaphysics/


MENTAL JENGA 42

Probabilistic models of cognition.
Smith, K. A., & Vul, E. (2013). Sources of uncertainty in intuitive physics. Topics in

Cognitive Science, 5 (1), 185–199.
Smith, K. A., & Vul, E. (2014). Looking forwards and backwards: Similarities and dif-

ferences in prediction and retrodiction. In P. Bello, M. Guarini, M. McShane, &
B. Scassellati (Eds.), Proceedings of the 36th Annual Conference of the Cognitive Sci-
ence Society (pp. 1467–1472). Austin, TX: Cognitive Science Society.

Suppes, P. (1970). A probabilistic theory of causation. Amsterdam: North-Holland.
Ullman, T. D., Spelke, E., Battaglia, P., & Tenenbaum, J. B. (2017, sep). Mind games:

Game engines as an architecture for intuitive physics. Trends in Cognitive Sciences,
21 (9), 649–665. Retrieved from https://doi.org/10.1016%2Fj.tics.2017.05.012
doi: 10.1016/j.tics.2017.05.012

Ullman, T. D., Stuhlmüller, A., Goodman, N. D., & Tenenbaum, J. B. (2018). Learning
physical parameters from dynamic scenes. Cognitive Psychology, 104 , 57–82.

Ullman, T. D., & Tenenbaum, J. B. (2020). Bayesian models of conceptual development:
Learning as building models of the world. Annual Review of Developmental Psychol-
ogy, 2 , 533–558.

Vasilyeva, N., Blanchard, T., & Lombrozo, T. (2018, Apr). Stable causal relationships
are better causal relationships. Cognitive Science, 42 (4), 1265–1296. Retrieved from
http://dx.doi.org/10.1111/cogs.12605 doi: 10.1111/cogs.12605

Wolff, P. (2007). Representing causation. Journal of Experimental Psychology: General,
136 (1), 82–111.

Wolff, P., Barbey, A. K., & Hausknecht, M. (2010). For want of a nail: How absences cause
events. Journal of Experimental Psychology: General, 139 (2), 191–221.

Woodward, J. (2003). Making things happen: A theory of causal explanation. Oxford,
England: Oxford University Press.

Woodward, J. (2006). Sensitive and insensitive causation. The Philosophical Review,
115 (1), 1–50.

Wu, J., Yildirim, I., Lim, J. J., Freeman, B., & Tenenbaum, J. (2015). Galileo: Perceiving
physical object properties by integrating a physics engine with deep learning. In
Advances in neural information processing systems (pp. 127–135).

Yildirim, I., Gerstenberg, T., Saeed, B., Toussant, M., & Tenenbaum, J. B. (2017). Physical
problem solving: Joint planning with symbolic, geometric, and dynamic constraints.
In G. Gunzelmann, A. Howes, T. Tenbrink, & E. Davelaar (Eds.), Proceedings of the
39th Annual Conference of the Cognitive Science Society (pp. 3584–3589). Austin,
TX: Cognitive Science Society.

Yildirim, I., Saeed, B., Bennett-Pierre, G., Gerstenberg, T., Tenenbaum, J. B., & Gweon,
H. (2019). Explaining intuitive difficulty judgments by modeling physical effort and
risk. Proceedings of the 41st Annual Conference of the Cognitive Science Society.

Zacks, J. M., & Tversky, B. (2001). Event structure in perception and conception. Psycho-
logical bulletin, 127 (1), 3–21.

Zultan, R., Gerstenberg, T., & Lagnado, D. A. (2012). Finding fault: Counterfactuals and
causality in group attributions. Cognition, 125 (3), 429–440.

https://doi.org/10.1016%2Fj.tics.2017.05.012
http://dx.doi.org/10.1111/cogs.12605


MENTAL JENGA 43

Appendix

Table A1
Correlation coefficients between individual features and participants’ responsibility judg-
ments for each of the three experiments. Note: The scene features, black block features,
other block features, and all features columns show how well regressions that combine these
features correlate with participants’ responsibility judgments. other block refers to the white
block in Experiment 3. See Table 1 for a description of each feature. The table shows that
which features work best differs between the experiments. Scene features are most important
for Experiment 1, black block features for Experiment 2, and other block features (i.e. the
features of the white block) for Experiment 3.

Experiment 1 Experiment 2 Experiment 3 All

n_blocks .13 −.03 .12 .05
avg_edge_dist .37 −.08 −.04 .03
avg_angle −.15 .00 -.04 −.05
avg_y .71 .07 .09 .28
scene features .77 .15 .18 .31
black_y −.21 −.74 −.27 −.64
black_edge_dist −.04 .12 −.26 .07
black_angle .04 −.05 −.30 −.03
black_above .55 .84 .14 .70
black block features .58 .87 .43 .75
other_y - - .64 -
other_edge_dist - - −.01 -
other_angle - - .20 -
other_black_pile - - - -
other block features - - .75 -
all features .84 .89 .83 .80
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