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Abstract

The ability to predict, reason about, and act in the physical world is crucial for human survival, but

the cognitive systems that underlie these capabilities have been the subject of intense debate.

Some theories posit that reasoning about physical events is based on dynamic mental models that

approximately simulate underlying physical mechanisms (e.g., the forces incident on objects that

cause them to move); others argue for simpler heuristics that predict key physical outcomes

(e.g.,“objects fall straight down when dropped”). We argue that general physical reasoning

requires both simulation and rules, and propose a modeling framework for understanding the

interactions and trade-offs between these cognitive systems as resource-rational computations to

efficiently solve problems. We study these trade-offs using predictions about stability: judging

whether a balance beam will fall, and if so how. While prior research suggests that people often

use rules when solving balance beam tasks, these tasks are similar to others that have been found

to rely on mental simulation. Across five experiments, participants’ predictions cannot be explained

with simulation or rules alone, but we find evidence that individuals rely on both capacities. The

mixture of strategies that people use to solve these stability problems is consistent with a

resource-rational trade-off that accounts for the costs and benefits of using those strategies.

Finally, we find that participants can rationally adapt this mixture of strategies to perform more

efficiently given the distribution of task instances they encounter, demonstrating the flexible and

online nature of the computational trade-offs in intuitive physics.

Keywords: physical reasoning; resource rationality; simulation; rules and heuristics
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Integrating heuristic and simulation-based reasoning in intuitive physics

1 Introduction

Humans have remarkable capabilities for understanding, making predictions about, and

acting on the physical world. We easily toss and catch balls, stack up plates or blocks, and pour

water from a pitcher into a glass – all tasks that seemingly require an understanding of what will

happen next, or how our actions will affect the world. This capability for predicting the outcome of

physical events is even thought to underlie the quintessentially human tool use capabilities that

give rise to our complex culture (Allen, Smith, & Tenenbaum, 2020; Osiurak & Reynaud, 2020). Yet

despite the importance of this capability, there remains active debate about how the mind

accomplishes physical prediction, with theories often falling into two broad camps: either

suggesting that we use simulatable mental models of the world (Battaglia, Hamrick, & Tenenbaum,

2013; Smith & Vul, 2013; Ullman, Spelke, Battaglia, & Tenenbaum, 2017; Hegarty & Just, 1993), or

that we rely on a system of rules and heuristics (Siegler, 1976; Davis, Marcus, & Frazier-Logue,

2017; Vasta & Liben, 1996).

The debate about whether physical reasoning is predicated on simulation or rules has a long

history, with both sides claiming evidence that supports their theory and proposing models of these

theories that explain human behavior. However, there has been a growing appreciation that

physical reasoning might not be a monolithic entity, but instead could be accomplished by a set of

different cognitive systems (Hegarty, 2004; Smith, Battaglia, & Vul, 2018; Zago & Lacquaniti,

2005). But if people use multiple systems for physical reasoning, then they must decide which

system to use in any given scenario. While some research has proposed “rules of thumb” for

choosing between simulation and rules – for instance, that we are more likely to use simulation

with more realistic stimuli (Schwartz, 1995) – these are not universally true, nor do they explain

why one system should be favored over another, and cannot provide precise predictions about

when and how cognitive systems should trade off with one another.

In this paper, we propose a computational framework for understanding the trade-off

between different cognitive strategies for physical reasoning, called the Integration of Simulation
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Figure 1. Stimuli to test judgments of “which direction will it fall?” A: Traditional balance beam stimuli that are

used to argue for rule-based physical reasoning are typically presented as simple diagrams (from top to

bottom: Boom, Hoijtink, & Kunnen, 2001, Jansen, Raijmakers, & Visser, 2007, van der Maas & Jansen,

2003). B: Block-tower stimuli that are used to argue for simulation-based physical reasoning typically use

complex configurations where simple rules are difficult to apply (top: Battaglia et al., 2013, bottom: Fischer,

Mikhael, Tenenbaum, & Kanwisher, 2016). C: Our stimuli are designed to recreate problems that test

stability judgments, but introduce more realistic visuals and physical variations, requiring incorporating

estimating mass from shape or material, or incorporating the weight of the balance beam.

and Rules (ISR) framework. We formulate this as a resource-rational trade-off between systems,

where the mind’s goal is to find a ‘good enough’ solution as efficiently as possible (Gershman,

Horvitz, & Tenenbaum, 2015; Gigerenzer & Goldstein, 1996; Griffiths, Lieder, & Goodman, 2015).

Thus people will use simple rules, even biased ones, if the expected loss in accuracy is offset by

an efficiency gain from forgoing more cognitively costly simulation. We test this framework in the

domain of stability judgments, which have a long history of competing theories to explain human

behavior (Marcus & Davis, 2013): there are many theories and models that suggest that judging

whether and how objects will cause a balance beam to tip over relies on rules or decision trees



INTEGRATING HEURISTIC AND SIMULATION-BASED REASONING IN INTUITIVE PHYSICS 5

(Figure 1A; Siegler, 1976; Rijn, Someren, & Maas, 2003), and another set that suggest mental

simulation is the basis of judgments of whether a tower of blocks will fall (Figure 1B; Battaglia et

al., 2013; Hamrick, Battaglia, Griffiths, & Tenenbaum, 2016; Zhou, Smith, Tenenbaum, &

Gerstenberg, 2022). Using a judgment task that combines features of experiments from both

theoretical camps (Figure 1C), we demonstrate the human stability judgments do in fact use a

combination of simulation and rules, and provide a model instantiating the ISR framework that

quantitatively explains people’s judgments across a variety of balance beam scenarios.

The rest of this paper is structured as follows. In Section 2 we review the theoretical

foundations of simulation-based and rule-based physical reasoning, as well as proposing the

ISR framework for combining the two as a resource-rational trade-off. In Section 3 we review the

literature on how people judge stability in the case of balance beams, and show that, although

there is evidence that in many cases people use rules to form their predictions, there remain cases

that are difficult to explain through rules alone. We then introduce a set of experiments in Section 4

that test peoples’ predictions about balance beams, and demonstrate that rules alone are not

sufficient to explain the pattern of responses. Next, in Section 5 we describe how the Integration of

Simulation and Rules model can be applied to stability judgments, and demonstrate that it explains

the empirical behavior well. In Section 6 we demonstrate that this model generalizes well to

explain human predictions about more complex balance beam configurations, and in Section 7

show that the Integration of Simulation and Rules model naturally explains a finding from the

balance beam literature that has been challenging to explain with rules alone (Ferretti & Butterfield,

1986). In Section 8 we show that, as expected under resource-rational trade-offs, changing the

distribution of balance beams that people expect to see will also change the mixture of strategies

they use for reasoning about stability. Finally, in the discussion we review implications of this

framework for understanding physical reasoning and cognitive strategy selection more broadly.
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2 Systems for physical reasoning

2.1 Physical reasoning using simulation

The ability to predict how the world will unfold is a crucial feature of cognition. Since Craik

(1943) suggested that we have a “small-scale model of external reality” that we can use to run

forward and understand the impact our actions will have on the world, many people have

suggested that this capability underlies spatial reasoning (Kosslyn & Ball, 1978; Shepard &

Metzler, 1971), language comprehension (Bergen, 2012), and social reasoning (Gallese &

Goldman, 1998). More recently, Battaglia et al. (2013) extended this theory to physical inference

by suggesting we all have a “game engine” in our minds that we can use to simulate how physical

events will unfold over time.

There are two key features of this simulation engine that we focus on here. First, it runs

simulations on mental models of the world using approximately accurate physical principles.

Second, our mental representations of the world are noisy due to uncertainty about the world, and

therefore simulation necessarily provides us with probabilistic representations over future world

states.

The proposal that we ‘simulate’ physics makes a specific claim about the nature of this

process: there is a direct mapping between the simulation process and the process that occurs in

the world (Fisher, 2006; Moulton & Kosslyn, 2009). This does not mean that we perfectly represent

physical laws such as Newton’s laws of motion, but rather that our simulation runs forwards our

mental models in a stepwise way that is similar to how the world itself might evolve. Thus the

cognitive process that performs this simulation might be an approximation of the laws of physics

(Battaglia et al., 2013; Ullman et al., 2017), just as computer physics engines do not explicitly

perform calculations derived from Newtonian mechanics but instead use collision rules that

approximate these laws of motion (Millington, 2007).

Nonetheless, just as there are a limited set of principles of Newtonian mechanics that can be

applied across a wide range of objects and situations, our mental simulations use a limited set of

principles to form generalizable predictions. In this way our physical predictions can naturally
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extend to objects and situations we have never observed before: because we know about fluid

dynamics and how it is affected by viscosity, we can not only reason about how liquids that we are

familiar with will pour (Bates, Yildirim, Tenenbaum, & Battaglia, 2019), but also rapidly infer the

viscosity of an unknown fluid from a single observation and use that information to predict how that

fluid will pour in other situations (Kubricht et al., 2016). Thus a key strength of this mental model is

that with just a limited set of principles that define how objects with different shapes and properties

interact, it can produce predictions for an almost infinite set of scenarios that we might encounter

in our day-to-day lives.

Even if physical simulation is based on relatively accurate principles, its predictions will not

always accurately track the future. The mental model of the world that is simulated is not perfectly

accurate, since perception is noisy and cannot perfectly localize objects. Furthermore, there are

latent physical properties such as density, stiffness, or elasticity that we can only noisily infer from

object materials (Fleming, 2014; Paulun, Schmidt, Assen, & Fleming, 2017; Yildirim, Smith,

Belledonne, Wu, & Tenenbaum, 2018) or how they interact with other objects (Sanborn,

Mansinghka, & Griffiths, 2013; Hamrick et al., 2016; Hauf, Paulus, & Baillargeon, 2012; Neupärtl,

Tatai, & Rothkopf, 2020; Yildirim et al., 2018).

Because we have uncertainty in the localization and properties of objects, predicting how

those objects will act in the future will compound this uncertainty, not just leading to variability

(Battaglia et al., 2013; Smith & Vul, 2013), but also systematic biases in judgments of physical

outcomes. These biases may arise either because the perception of object properties are

themselves biased, or because physical outcomes are non-symmetric. For instance, because

perception of object velocities is biased towards slower motion (Stocker & Simoncelli, 2006),

people who are asked to judge the relative masses of two object from a collision – which requires

comparing both the pre- and post-collision velocities – will produce characteristic biases (Sanborn

et al., 2013). And people are more likely to judge a stable tower of blocks to be unstable than to

judge an unstable one to be stable, not because we are inherently biased to call things unstable,

but because it is more likely that incorrectly judging the position of a block in a stable tower will
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cause it to become unstable than vice versa (Zhang, Wu, Zhang, Freeman, & Tenenbaum, 2016).

This uncertainty also implies that simulation will not provide just a single answer, but rather a

range of possible futures. This distribution over futures can help us by allowing us to calibrate when

we should be more or less sure about our decision making (Smith & Vul, 2015), but because we

sample only a limited set of outcomes (Hamrick, Smith, Griffiths, & Vul, 2015) individual predictions

can be erroneous even if physical simulation provides an unbiased estimate. Thus even if physical

inference relies on generally unbiased simulation in a wide set of situations, it is only under nearly

noiseless conditions with simple dynamics that it will provide certainty in its predictions.

2.2 Physical reasoning using rules

In contrast to theories of physical reasoning that propose we use simulatable mental models,

others have pointed out that simulation cannot explain the full range of ways that people reason

about the world (Ludwin-Peery, Bramley, Davis, & Gureckis, 2020, 2021; Davis & Marcus, 2015).

Instead, many claim that physical knowledge can be formalized as a set of axioms and rules that

can be combined to produce logically consistent statements about the world (Hayes, 1979). This

suggests that physical reasoning could be performed using first order logic (Davis et al., 2017) or

decision trees (Siegler, 1976) applied to propositional statements about the scene (e.g., “Object A

is surrounded by object B on all sides” or “Object A is heavier than object B”). These propositions

are thought to be lifted from our perception and formed into “qualitative” representations (Forbus,

1983).

Although rules are typically defined as being specific to a certain physical situation, they

allow flexibility along other dimensions. While simulations require that all relevant objects have at

least roughly known (or assumed) positions, motions, and properties, rules can be used even with

incomplete information: for instance, we know that objects in a grocery bag will remain in the bag

to be carried home without needing to know specifics about what those items are (Davis et al.,

2017). The more limited, qualitative representations underlying these rules can also help with

abstraction, since it can be easier to find similarities in relations between objects across scenes
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than to find how continuous representations relate to each other (Forbus & Gentner, 1986; Bassok

& Holyoak, 1989). And finally, on computing hardware, physical simulation is significantly more

computationally expensive than implementing symbolic rules, and this same cost asymmetry

between simulation and rules has been proposed to exist in the mind as well (Davis & Marcus,

2015).

However, the downside of these rules is that they can be based on erroneous logic and

produce biased predictions. Indeed, much of the literature on intuitive physics has focused on the

reasoning errors that people make, such as misconceptions about how objects exiting from curved

tubes will travel (McCloskey, Caramazza, & Green, 1980), how mass distribution affects the way a

wheel will roll (Proffitt, Kaiser, & Whelan, 1990), or how balance beams will tip (Siegler, 1976).

Furthermore, rules are defined to provide predictions over discrete outcomes, and can therefore

be ill equipped to handle physical predictions with continuous outcomes, such as predicting exactly

where a ball bouncing around a scene will come to rest (Forbus, Nielsen, & Faltings, 1990). Thus

while rules have the benefit of providing discrete, abstractable predictions, these predictions can

also be too coarse for certain judgments, and can produce non-physical errors and biases.

2.3 Multiple systems for physical reasoning

While prior theories have suggested that we have more than one system for conceptualizing

physics, it is not clear how these systems might coexist to produce a unified physical

understanding. Often, these systems have been thought to be separately activated by either the

nature of the stimuli or the task used to probe physical knowledge (Hegarty, 2004; Kubricht,

Holyoak, & Lu, 2017; Schwartz & Black, 1996b; Zago & Lacquaniti, 2005). For instance,

Kozhevnikov and Hegarty (2001) argue that simulation is used for automatic, immediate

judgments, but that these judgments can be later overridden with more explicit, logical reasoning.

Schwartz (1995) suggests that simulation is used to reason about objects that look realistic, while

analytic strategies are used for diagramatic stimuli. Under this theory, more natural stimuli enable

simulation by leading people to represent a picture as the object itself, or by allowing for
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observation of objects’ velocities and other kinematic properties that can be used to extrapolate

motion (Kaiser, Proffitt, Whelan, & Hecht, 1992; DeLucia & Liddell, 1998). But it is also possible

that these stimuli do not require simulation, but rather facilitate it: it is easier to form mental models

of the world with natural or kinematic information. Indeed, when presented with a diagram of a

pendulum and asked an explicit question about its motion, people will naturally provide biased,

rule-like answers; if, on the other hand, they absorb the cost of setting up the mental model by

imagining the pendulum in motion first, their responses are more likely to follow accurate physical

relationships (Frick, Huber, Reips, & Krist, 2005). Similarly, judgments about how water will pour

from cups are typically subject to a number of biases (Vasta & Liben, 1996), but if people are

asked to first imagine tilting a cup of water, their judgments become close to veridical (Schwartz &

Black, 1999).

This suggests another explanation for why we see such separation of cognitive processes

across tasks: some scenarios or queries might be considerably better suited for one cognitive

system over another, and so that system is preferentially chosen for solving those problems even if

it is in theory possible to use a different system. For instance, animation might make simulation

less costly (Kaiser et al., 1992), familiar problems can encourage retrieval of prior instances from

memory (Kaiser, Jonides, & Alexander, 1986), and simulations that produce time-varying

predictions about objects’ locations are more likely to be used in visuo-motor tasks that require

precise localization (Smith et al., 2018).

2.4 Adjudicating between systems for physical reasoning

In order to understand how people might decide which cognitive system to apply in any

instance of physical reasoning, we turn to the framework of resource rational strategy selection.

This framework asks how a rational reasoner might select strategies – perhaps consciously,

perhaps implicitly – to solve their problems under resource constraints (e.g., time pressure or

cognitive limitations; Gigerenzer & Goldstein, 1996; Lieder & Griffiths, 2020; Simon, 1955). Under

this framework for strategy selection, an agent’s goal is not always to choose the strategy that is
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most likely to solve its problem, but to choose the strategy that is most efficient, given the costs

and utilities inherent in the problem structure. This efficiency is defined as the Value of

Computation (VoC): the utility (U ) from applying the strategy minus the costs of performing the

strategy (e.g., metabolic costs of processing, or opportunity costs of thinking rather than doing

something else; C). However, because strategies can be non-deterministic, they may produce

different outcomes (and hence different utilities) or require more or less effort even applied to the

same problem; therefore the VoC is defined as the expected utility over all possible ways that a

strategy might resolve for a problem. Thus, for any given strategy (S) and problem (Pi), the VoC

can be calculated as (Lieder & Griffiths, 2017; Russell & Wefald, 1991):

VoC(S,Pi) = E[U(S,Pi)−C(S,Pi)] (1)

The goal is therefore to produce a strategy that can be applied to a set of problems (P̄) that

maximizes this expected Value of Computation:

S∗ = argmax
S

∑
pi∈P̄

VoC(S,Pi) (2)

Here we define a strategy as a set of actions or cognitive operations (S = {s1,s2, ...,sn}) that

are assembled sequentially or as a decision tree. For instance, when encountering a multiplication

problem x∗ y, a strategy might be to attempt retrieval of the answer from memory (s1) and then, if

retrieval fails, to manually solve the problem by adding x together y times (s2; Siegler, 1988). This

definition allows flexibility and backups in cognitive plans, such that one rapid plan can be

prioritized while other slower but more accurate plans can be used if the first fails (Siegler &

McGilly, 1989). There can also be choice points within each of the primitive strategies, e.g., how

much time to spend retrieving an item from memory, or how much effort to dedicate to a cognitive

operation (Gershman et al., 2015).

It is important to note that analytically determining the best strategy for a set of problems is

computationally intractable: for any given situation knowing for sure how well a strategy will

perform or how much effort it will take requires actually using that strategy. Thus analytically
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determining the optimal strategy requires implementing every strategy, which defeats the point of

reasoning about which strategy to use. Instead, there have been a number of heuristics suggested

that can learn approximate solutions to this selection problem, including reinforcement

learning-like updates where strategies that are successful become more preferred (Erev & Barron,

2005; Siegler, 1999) or learning approximations to the VoC function (Lieder & Griffiths, 2017).

These learning heuristics suggest that strategy selection is not necessarily a conscious choice

driven by explicit comparisons between strategies, but rather is typically an implicit process that

operates automatically (Siegler, 1988). Regardless of the heuristic used, any good strategy

selection process should allow people to approach problems flexibly based on the relative costs

and benefits of each strategy within a given environment. Thus it may be globally inefficient to use

a strategy that is more likely to give the correct answer if a more erroneous but less costly strategy

provides more value; but conversely, if there is a large enough difference in accuracy or small

enough difference in cognitive costs, the more accurate strategy should be preferred.

This framework thus provides a window into understanding how different cognitive systems

might trade off in physical reasoning: when simulation provides better information or is less costly

to set up, it should be more likely to be used; conversely, when simple rules will suffice to solve our

problems, we should rely on those instead.

2.5 The Integration of Simulation and Rules framework

We propose the Integration of Simulation and Rules (ISR) framework to instantiate the way

people might select between different systems for physical reasoning. This framework (pictured in

Fig. 2) assumes that to reason about a physical problem, people must hold or create a set of

possible ways to solve that problem. People then select a strategy from this set (perhaps implicitly)

that is expected to maximize the next Value of Computation, according to the principles of

resource rationality. Finally, people apply the selected strategy to their mental representation of a

particular scene in order to produce an answer to the problem under consideration. We note that

this framework suggests an ordering for the process that the mind must perform to solve arbitrary
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Figure 2. The structure of the Integration of Simulation and Rules (ISR) framework to capture peoples’

strategy selection and use. When confronted with a problem under consideration (the question that applies

to a scene that is parsed into a mental representation), people rely on a set of primitive strategies that could

possibly provide an answer. These primitive strategies can be chained together into integrated strategies

that form simple programs, using the primitive strategies as choice points or outputs. Next, one integrated

strategy must be chosen out of all of the theoretically possible ones; this selection is done to approximately

maximize Value of Computation of using that strategy given expectations over the problem set to be

encountered. Finally the integrated strategy is applied to the scene representation to produce an answer to

the question under consideration.
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physical problems, but does not make strong commitments to the particular ways each of these

steps are performed (e.g., whether strategies have been formed in the past and are retrieved from

memory, or whether they are computed on the fly; see Discussion Section 9.1).

We propose that people have a set of “primitive strategies” – rules, heuristics, or ways of

simulating the world – that could provide an answer to the question under consideration (e.g.,

Dehaene, 1992; Siegler, 1987). However, these primitive strategies are not guaranteed to give an

answer (e.g., if a rule depends on which object has greater weight but the weights are equal, or if

simulation provides a flat distribution over possible outcomes). Thus we suggest that people chain

these primitive strategies together into “integrated strategies:” small programs that use the

primitive strategies either as choice points (e.g., if one object has a greater weight, do A,

otherwise, do B), or as outputs (e.g., if one object has greater weight, choose that object).1 This

integrated strategy can be applied to the scene under consideration, and will provide an answer to

the required question.

However, even with a limited number of primitive strategies, there is a combinatorial

explosion of the number of possible integrated strategies that can be constructed; thus people

must decide which of these strategies to consider. Here we assume, consistent with the resource

rationality theory, that people will select an integrated strategy that they expect will (approximately)

maximize the Value of Computation, given an expectation about the problems that they believe

they will encounter. This selection is not necessarily a conscious decision, but is a cognitive

process that flexibly activates a strategy based on the expected utilities and costs. But because

expectations about the range of problems is uncertain, the VoC will be approximate, and so people

might pick multiple integrated strategies and select between them. Thus when people expect to

encounter situations where simple rules will mostly provide accurate answers, we should observe

people using integrated strategies that rely on early use of those rules, but when in a domain

where those rules are not expected to be helpful, people should use integrated strategies that do

not include those rules as a primitive strategy.

1 For a discussion of how primitive strategies might be performed in parallel, see the Discussion, Section 9.1.2.
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Finally, while people select integrated strategies for a set of problems, people must apply the

selected strategy to a single problem. This requires first perceiving and forming a mental

representation of the scene (which can be subject to perceptual noise; Battaglia et al., 2013;

Smith & Vul, 2013), then running the selected strategy on that representation to produce an

answer to the question under consideration.

In order to test the ISR framework, we require a domain where we expect to observe people

using a mixture between rules and simulation. However, in many previously studied situations, it is

impossible to tease apart whether selecting rules versus simulation is a choice or is fixed based on

the problem: either the rules or heuristics that come to mind are significantly less helpful than

simulation and are never chosen, or because the rules are too helpful and so are always chosen.

Instead, we turn to a task that can be explained by both simulation and logical rules: judging if and

how a balance beam will tip. While performance on this task has historically been described as

based on a set of decision tree based rules (Siegler, 1976; Normandeau, Larivée, Roulin, &

Longeot, 1989; Jansen & van der Maas, 1997), there are some suggestions that human

predictions on this task are not entirely rule-based (Ferretti & Butterfield, 1986; Schapiro &

McClelland, 2009). This task is also in many ways similar to stability judgments that are explained

by simulation but not rules (Marcus & Davis, 2013): judging how and whether a set of blocks

formed into a tower might fall (Battaglia et al., 2013; Hamrick et al., 2016; Zhou et al., 2022). In

order to understand how rules and simulation might combine in stability judgment tasks, we first

review historical evidence for and against the use of rules on classical balance beam judgments,

then turn to experiments that are expected to require a combination of simulation and rules.

3 Predictions of stability for balance beams

In classical balance beam tasks, people (often children) are presented with a diagram of a

balance beam on which a stack of blocks sits on either side of the center pivot, and are asked to

judge whether the beam will stay balanced, tip to the left, or tip to the right (Figure 1A). The way

that the beam actually falls depends on the net torque, which can be calculated for each side by a
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multiplicative combination of the weight on the beam and the distance that weight sits from the

center of the beam – whichever side has more torque is the side to which the beam falls. However,

people often do not use this torque calculation and instead provide inaccurate judgments of the

direction the beam will fall.

3.1 Rules for balance

Siegler (1976) proposed that balance judgments were derived from a decision tree made of

binary judgments about the balance beam. He further suggested that these decision trees

developed through childhood, starting from a simple focus on a single dimension of the scene, and

growing to understand the combination of weight and distance. Thus younger children would

display more characteristic errors because they used simpler sets of rules, while older children and

adults would have more developed (though still mostly imperfect) rule sets and would therefore be

more accurate. Siegler (1976) proposed four stages representing different sets of “rules” through

which people would develop (see Figure 3):

• Rule 1: A singular focus on weight. If there is more weight on one side than the other, the

beam would be predicted to fall that direction, but would balance otherwise.

• Rule 2: Separately considering weight and distance. This builds on Rule 1, such that if the

weights are equal on both sides of the beam but the weight on one side is further from the

center, the side with the greater distance should fall rather than balance. However, when in

conflict, weight takes precedence over distance.

• Rule 3: Confusion about integration. With this rule, children are able to recognize that

greater weight but less distance can compensate for lesser weight but greater distance.

However, they are unsure of how to integrate the two dimensions, so when they come into

conflict, children ‘muddle through’ and simply guess randomly.

• Rule 4: Mature integration. Children who use this rule understand how weight and distance

combine in a multiplicative fashion and therefore can determine how any beam will fall
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Figure 3. The rule-based models of Siegler (1976). Children begin by considering only a single dimension

(typically the weight of the blocks; Rule 1), then separately consider weight and distance (Rule 2), and then

recognize that weight and distance combine but are unsure how (Rule 3), before finally integrating weight

and distance appropriately (Rule 4).

correctly.

To test for the use of these rules, Siegler (1976) proposed a classification of six beam

configurations that would elicit different predictions depending on which rule people are using (see

Figure 4). One configuration was ‘balanced’ where the same size stack of blocks was positioned

the same distance away on each side, providing a symmetrical system with no net torque. The

‘weight’ configuration had stacks on each side that were equally distant from the center, but one

side had more blocks (and therefore more weight). Conversely, the ‘distance’ configuration trials

had the same number of blocks on each side, but the stacks on one side were positioned further

from the center and therefore that was the side that would fall. The remaining three configuration

were ‘conflict’ trials, where one side of the beam had more weight but the stack was closer to the

center, while the other side had less weight that was positioned further out. In ‘conflict-balance’

trials, the blocks were perfectly positioned to net out to no torque. In the ‘conflict-weight’ trials, the

side with more weight but less distance would fall, while in the ‘conflict-distance’ trials the side that
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was further but with less weight would fall. According to the rule classification that Siegler

proposed, every rule should treat all beams within the same classification identically, but the

application across classifications will differ according to the rule used (see Figure 4). Therefore the

rule that a person is using to make their predictions can be inferred based on their pattern of

responses across different beam classifications.

This framework has formed the backbone of most research into balance beam judgments:

nearly all studies use the same six beam classifications, and most assume that people use a set of

rule-based decision trees to form their judgments. However, even within this framework there have

been debates about the exact set of rules that people use. For instance, rather than using Rule 3 –

guessing on the conflict trials – some researchers have suggested that people use systematic yet

biased rules on those trials: e.g., that they add rather than multiply the weight and distance

(Normandeau et al., 1989; Wilkening & Anderson, 1982), or assume that any conflict should cause

the beam to balance (Normandeau et al., 1989).

3.2 Rules, or rule-like behavior?

In contrast to theories that suggest people use rules to make balance judgments, other

researchers have debated whether people are truly using rules to form their judgments, or whether

their judgments are based on more continuous processes that appear to be rule-like due to the

classification process (Quinlan, van der Maas, Jansen, Booij, & Rendell, 2007). The Rule

Assessment Methodology (Siegler, 1976; Siegler, Strauss, & Levin, 1981) classifies participants by

how well their behavior matches a hypothetical rule-user, but does not allow for the use of multiple

rules or other processes that might happen to produce the same output (Jansen & van der Maas,

2002; Kerkman & Wright, 1988; Wilkening & Anderson, 1982). Proponents of continuous

processing have therefore suggested that “rule-like” judgments do not necessarily imply the use of

rules, and, to prove this point, have developed connectionist models that are classified by the Rule

Assessment Methodology as using rules that develop in the same stages as expected for people

(McClelland, 1988, 1995; Schapiro & McClelland, 2009; Shultz, Schmidt, Buckingham, &
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Figure 4. Examples of each of the beam configurations and associated accuracy of predictions from each

rule. People using Rule 1 should only get the ‘balance,’ ‘weight,’ and ‘conflict-weight’ trials correct,

incorrectly predicting the ‘distance’ trials will balance and that all of the conflict trials will fall to the side with

the greatest weight. Rule 2 would produce the same predictions except in the ‘distance’ configurations,

which would be predicted correctly. Using Rule 3, children should predict all of the simple beams correctly

but ‘muddle through’ and guess on all conflict trials. Finally, children using Rule 4 should make predictions

about all configurations accurately. Surrounding colors are indicators of the beam configuration that are

common to all figures in this paper.
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Mareschal, 1995).

Therefore, more advanced criteria were developed to determine whether people are using

rules or rely on continuous processes. If rules are driving behavior, then behavior should be

consistent and invariant across all classes of problems that the rules treat as the same (Jansen et

al., 2007; Quinlan et al., 2007).2 Thus a necessary but not sufficient test for the use of rules is

‘bimodality’ (Jansen & Van der Maas, 2001): if each individual is using a single rule, then their

predictions for all balance beams within a single classification should either be all correct or all

incorrect (excepting response noise), and so the distribution of accuracies across participants

should be bimodal, clustering around 0% and 100%. Indeed, Jansen and Van der Maas (2001)

searched for evidence of bimodality on distance problems, and found that the vast majority of

children tested received either perfect accuracy or all incorrect marks, providing evidence for the

use of rules.

However, Ferretti and Butterfield (1986) found evidence against the invariance of rules

across all instances of a classification: when children are presented with balance beams for which

the difference in torques between the two sides is particularly large, they often behave as if they

are using a more advanced and more accurate rule than would be expected based on their

responses to less extreme problems. This change in performance, called the “torque difference

effect,” is inconsistent with a system of rules that strictly compares weight and distance, since if

people are using fixed rules then all beams of a given configuration type should be treated

identically. Jansen and van der Maas (1997) argues that this classification difference is only

statistically significant in the most extreme level and therefore children use consistent rules for

most beam configurations, leading others to argue that rules are used for ‘difficult’ problems while

‘easy’ problems are solved by visual heuristics (Zimmerman & Pretz, 2012). However, there is a

numerical increase in accuracy across all levels of torque difference (especially for the conflict-type

beams) which cannot be explained by the strict use of rules (Schapiro & McClelland, 2009). The

torque difference effect has therefore often been highlighted as a signature of more continuous

2 However, c.f. Siegler (1996) for a discussion of how children might use multiple rules at a transition point.
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underlying process, since many connectionist models can capture this effect (McClelland, 1995;

Shultz et al., 1995), although a rule-based ACT-R model of balance beam judgments also displays

a torque difference effect, albeit only when the model is transitioning between rules (Rijn et al.,

2003).

3.3 The presentation and choice of balance beam stimuli

Human predictions about how balance beams will tip have been studied extensively in the

past five decades, across a variety of age ranges and using a number of different modeling

techniques. Much of this research has pointed towards the theory that people do use rules to

make these predictions, but other evidence suggests that rules cannot explain the full range of

human behavior on these tasks. Because there is a large set of empirical, developmental, and

computational data on this task, and because this task is one for which rules can explain some but

not all of the empirical data, we consider these stability judgments to be a good test-bed for

capturing the trade-off between rules and simulation in physical judgments. However, because so

much focus has been placed on the use of rules to support balance beam judgments, we consider

why this is so different than the towers task of Battaglia et al. (2013) and how we might design

stimuli that bridge the gap between the two.

Prior research into balance beams has typically used stimuli that consist of diagrams that

are marked at the distances from the center that weights can sit, use identical and discrete blocks

to represent the weight, and often only allow a single stack of blocks on each side of the beam

(see Fig. 1A). In this way, the two dimensions of weight and distance can be quantified with almost

no uncertainty, and the comparison between sides is easier because it does not require integrating

the effects of different weights at different distances on the same side. This is in contrast to

real-world judgments of stability, where there can be multiple objects of different, uncertain weights

at multiple distances from the point of balance – for instance, imagine a waiter balancing a full tray

of different dishes on one hand. Furthermore, we expect that showing people diagrams of balance

beams rather than images with more realistic features should make people more likely to use
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analytic reasoning as opposed to simulatable mental models (Schwartz, 1995). Thus people may

have been using mostly rules in prior studies of balance beams because of the artificial nature of

the stimuli rather than because reasoning about stability is only predicated on rules.

We therefore consider how people might make predictions about balance beams using more

realistic and uncertain stimuli. We use realistic, 3-D images of balance beams, remove any

distance markers along the beam to avoid certainty about the distance dimension, allow objects at

multiple distances per side, and across different experiments we add uncertainty to either the

estimation of weights (using non-uniform blocks and stacks or blocks of different materials) or the

position of the pivot point or size on which the beam balances.

Even with this uncertainty, simple rules could apply: people can noisily estimate the weight

on each side of the beam and apply the simple heuristic that the side with the greater estimated

weight will fall regardless of where those objects are placed. On the other hand, these changes

make the balance beams more similar to the towers of Battaglia et al. (2013) where people’s

judgments are well explained by simulation. We therefore test whether people’s predictions with

these more realistic, uncertain stimuli rely solely on rules, solely on simulation, or whether they can

only be explained as a selection of strategies that combine rules and simulations.

4 Experiments 1–3: Stability judgments under uncertainty

We tested judgments about stability across three experiments that varied in the way balance

beams were modified to introduce complexity (see Fig. 5). In Experiment 1, the stacks of blocks

could be replaced by stacks of non-uniform shapes to introduce uncertainty in the size of the

objects, and therefore the weight comprising each stack, in order to test whether rules might be

used when there is less certainty about the relevant physical quantities. In Experiment 2, the

blocks could be made of different materials – wood, brick, or iron – so that participants were

required to account for physical density when making their judgments. In Experiment 3, the size

and location of the pivot that supported the beam was varied so that participants would need to

take the weight of the beam into account to judge balance. Other than stimulus differences, the
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task was identical across all three experiments: participants would view a computer-generated

image of a balance beam and were asked to indicate whether they believed it would fall left, fall

right, or balance.

4.1 Procedure

Participants were recruited online from Amazon’s Mechanical Turk using psiTurk (Gureckis et

al., 2016). Participants were limited to those with IP addresses in the United States. All

participants were compensated for their time depending on the length of the experiment ($1.20 for

Experiment 1 and Experiment 3, which took ~8-12 minutes, or $1.50 for Experiment 2, which took

~10-15 minutes). There were 25 participants each in Experiments 1 and 2, and 48 participants in

Experiment 3. Sample sizes were estimated and found to provide reliable results for Experiment 1,

then set to provide approximately the same number of data points for each stimulus for all other

experiments. These and all other experiments were approved by MIT’s Committee on the Use of

Humans as Experimental Subjects, approval number 08120030.

There was a common cover story across all experiments: a friend with a poor sense of

balance was building sculptures using a computer program and participants were asked to help

him decide whether they would fall, and if so, which way. Participants were always introduced to

the task and the different types of stimuli they would encounter in each experiment. They were

then asked to make judgments about an introductory set of balance beams that they were told had

already been built, and therefore would receive feedback after their judgment by observing a movie

of how the beam would fall. The introductory stimuli were counterbalanced to provide equal

number of beams that balanced, fell to the left, or fell to the right, and were designed to not have

conflicts between weight and distance.

In the experiment, participants saw static balance beams and were asked to make

judgments about whether the beam would “tip left”, “stay balanced”, or “tip right” by clicking on one

of three buttons with their mouse. Both the response made and the time since the start of the trial
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were recorded.3 Participants were given no feedback on these trials.

At the end of the experiment, participants were asked to answer two open-ended questions:

“Did you use any particular strategies to decide when a sculpture would balance or tip?” and “Did

you notice anything about this task you would like to tell us?”

4.2 Materials

Balance beams for all experiments were constructed to conform to one of the six

classification types from Siegler (1976): balance, weight, distance, conflict-balance,

conflict-weight, or conflict-distance. To avoid any directional bias in judgments, beams were

mirrored and participants were equally likely to see either mirrored version of the beam; however,

for ease of reporting we normalize all responses to the version of the beam that falls to the left (or,

in the case of the conflict-balance beams, the side with more weight would be on the left). For

instance, if the version of the balance beam that a participant saw would actually fall to the right

but they judged it to fall left, their response would be recorded as ‘right’ for all analyses.

All stimuli were created in the Cycles rendering engine of the Blender 3D modeling software

(Community, 2018). Introductory movies were made in Blender using its built-in physics engine to

simulate the motion of individual blocks; how the beam tipped or balanced always matched with

the expected behavior from the beam classification.

4.2.1 Experiment 1: Shapes. Experiment 1 was designed to reduce the certainty in the

weight stacked on each side of the beam by allowing objects of non-uniform shape to rest on one

or both of the sides. To create the trials, we first developed base configurations that consisted of a

set of weight and distance “stacks” for each side of the beam to fit into the six Siegler

classifications. These base configurations were then transformed into four separate trials. In the

‘blocks’ version, for each stack a number of blocks equal to the weight was placed at the

3 Because responses were indicated by clicking on a button, reaction times could be contaminated by autocorrelation

effects: if participants indicated the same response twice in a row, they would not need to move their mouse and

therefore would respond more quickly. We therefore used these times mainly to ensure that participants were paying

attention and not simply “clicking through” the experiment.
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Exp 3: Pivot Size Exp 3: Pivot Location

Blocks Mixed

Shapes Mixed
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Figure 5. Example stimuli from each of the three experiments. In Experiment 1, the stimuli could be

comprised of pure blocks, pure shapes, or shapes on one side and blocks on the other. In Experiment 2, the

blocks could all be the same material, or could be a mixture of wood, brick, or iron. In Experiment 3, the

pivot size could be resized from 2.5% of the length of the beam up to 20% of the length of the beam, or

could be positioned away from the center of the beam.

appropriate distance from the center of the beam. In the ‘shapes’ version, all of these stacks were

replaced with non-block shapes, either individually or stacked on one another. These shape groups

were created by picking from one of 29 stable, canonical shape stacks, rescaling that stack so that

it was the same volume of material as the blocks,4 then placing that shape stack so that the center

4 All blocks and shapes had the same, constant depth, so this was equivalent to equalizing the area of the closest face.
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of mass is positioned at the appropriate distance from the center of the beam. Each canonical

shape stack was arbitrarily chosen, but created such that the stacks always had some visible

distance from their nearest neighbors. Finally, there were two ‘mixed’ beams in which one side was

comprised of blocks and the other side was comprised of shapes. See Figure 5 for examples.

We created five base configurations each of the basic trials, and seven of each of the conflict

trials, for a total of 36 base configurations and 144 trials. All participants saw all trials, but whether

the beam was mirrored or not was counterbalanced across participants. Trials were balanced so

that there were an equal number of balance beams that fell left, right, or balanced.

4.2.2 Experiment 2: Materials. Experiment 2 was designed to test whether people can

account for different material densities when making balance judgments, rather than simply

counting the number of blocks. In this experiment, blocks could be made of materials with a wide

range of densities: either wood, brick, or iron. To construct these stimuli, we first gathered material

densities online (The Engineering Toolbox: Densities of Common Materials, 2010), assuming the

wood was a heavy wood such as elm or mahogany at 0.8 g/cm3, that brick was 2.0 g/cm3, and

that iron was 7.2 g/cm3. This produced densities in a ratio of 1 : 2.4 : 9.

Half of the stimuli were created so that the blocks were always made of the same material

(the ‘pure’ trials), and the other half were created so that the blocks were made of different

materials (the ‘mixed’ trials); however, the balance beam was always made of wood. Stimuli were

randomly generated to conform to the six Siegler classification types, using the actual weight of the

blocks as the ‘weight’ measure, rather than just the number of blocks.

For each of the pure and mixed trial types, there were eight randomly generated trials for

each of the three basic trial types, and sixteen trials for each of the three complex types, for a total

of 144 trials. All participants saw all trials, but mirroring of trials was counterbalanced across

participants. Trials were balanced so that there were an equal number of balance beams that fell

left, right, or balanced.

To acquaint participants with the different materials, in the introduction participants were

acquainted with the materials and shown movies to demonstrate that one brick was heavier than
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two wood blocks but lighter than three, that one iron block was heavier than three bricks but lighter

than four bricks, and that one iron block balanced with 9 wood blocks but was lighter than 10 wood

blocks. After the introductory trials, this information was again summarized to remind participants

that brick is 2-3 times heavier than wood, iron is 3-4 times heavier than brick, and iron is about 9

times as heavy as wood. Finally, during the experiment, labeled pictures of a single block of each

of the three materials was shown beneath the trial to prevent confusion; however, the material

densities were not shown again.

4.2.3 Experiment 3: Pivot Size and Location. Experiment 3 was designed to determine

whether and how people comprehend balance beams when the pivot is not a central point, but

instead is a table on which the beam can rest, or is positioned off-center. Trials were created

separately to test the effect of pivot size and pivot location, but were combined in the experiment to

ensure participants observed a nearly equal split between trials that balanced, fell left, or fell right.

The trials to test for pivot size were formed based on the weight, distance, conflict-weight,

and conflict-distance configurations, so that if the pivot were a point, the beam would fall. However,

rather than being a point, the pivot was a box with a width that was either 2.5%, 5%, 10%, or 20%

of the width of the beam. There were 10 trial bases for each of the four beam configurations, half

of which used a centered pivot, and half in which the pivot was placed off-center. Because the

beam no longer rests on a point, configurations of blocks that would fall in this idealized situation

will not necessarily fall with a larger object to balance on. We therefore constructed these stimuli

so that two of the configurations (one with a centered pivot, one off-centered) would stay balanced

on all four beam widths, another two would tip on the 2.5% pivot but balance on the rest, another

two would balance on the 10% and 20% pivot but not the others, another two would only balance

on the 20% pivot, and the final two trials would always tip even on the largest pivot. Because the

configuration of the blocks was the same across the four different pivot sizes, participants only saw

two of the four possible pivot sizes for a given configuration – one standard beam and one mirrored

beam, for a total of 80 pivot size trials.

The pivot location trials tested whether people would account for the weight of the beam
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itself when that would differentiate how the whole beam would fall. These trials were based on

either conflict-weight or conflict-distance configurations, so that it would fall according to that

classification if the pivot were small and centered. However, each trial also had a ‘shifted’ version

where the blocks and pivot were moved together so that the beam would fall in the opposite

direction from the basic trial (e.g., if the basic trial were a conflict-distance trial, it would fall to the

side with more distance when the pivot were centered, but would fall to the side with more block

weight in the shifted version, and vice versa). There were twelve base trials each of the

conflict-distance and conflict-weight versions, with half using a pivot that was 2.5% of the beam

width and the other half using one that was 5% of the beam width. Participants all observed both

the normal and shifted version of each trial, but one of the pair was always a mirrored version, for a

total of 48 pivot location trials.

These trials could not be perfectly counterbalanced between the three outcomes (balance,

fall left, or fall right), but were designed to be as close as possible. Because half of the pivot size

trials balance but the pivot location trials always fell, 40 of the 128 trials (31.25%) were balanced,

and because of mirroring an equal number of the remaining trials fell left or right.

4.3 Transparency and Openness

We report how we determined our sample sizes, all data exclusions, and all manipulations

and measures in these studies. All data, analysis code, and research materials are available at

https://github.com/kasmith/balance_beams. The study’s design and analyses were not

pre-registered.

4.4 Behavioral Results

Participants’ average predictions across all experiments and conditions can be observed in

Figure 6. Interpreting these result is challenging without a comparison to a normative model of

how people should behave, and so most of our analysis is performed in the following section after

our model is described. However, here we apply standard tests of rule use to the most basic

balance beams and show that they do not capture participants’ behavior nearly as well as would
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be expected from prior studies. Additionally, we report further evidence against the use of rules in

the Appendix (Section A1).

Because the non-standard beams we used might be more likely to rely on simulation, we

limit our standard tests for rule use to the most basic stimuli in our experiments. Basic balance

beams were defined as those that did not vary from the simple beam types used in prior

experiments: the blocks-only stimuli of Experiment 1 (36 trials), the beams with only a single

material of Experiment 2 (72 trials), and the trials from Experiment 3 with the smallest, centered

pivot (20 trials).

First, we applied the Rule Assessment Methodology of Siegler (1976) to classify participants

by the closest matching rule. To assign a participant as Rule 1, 2, or 4, that participant’s

predictions must agree with the predictions of the rule at least 86.7% of the time (matching with 26

of 30 trials used by Siegler). To assign a participant as Rule 3, that participant had to achieve an

accuracy of greater than 83% on the non-conflict trials (including at least 75% accuracy on the

distance trials) and had to deviate from weight cues in at least 22% of the conflict trials.5 All other

participants were deemed ‘unclassifiable.’

As can be seen in Table 1, many participants did not appear to be using a consistent rule,

with almost half of the participants in the Shapes and Pivot experiments being unclassifiable. This

is in contrast to prior studies, where typically fewer than 10% of participants could not be classified

according to the Rule Assessment Methodology (Siegler et al., 1981). Furthermore, the majority of

participants who could be classified were assessed to be using Rule 3 (72%), which is the rule that

is often thought of not as a single rule but a set of heterogeneous strategies for “muddling through”

(Normandeau et al., 1989).

In addition, a necessary but not sufficient test for the use of rules is ‘bimodality’ (Jansen &

Van der Maas, 2001): beam classifications were designed so that these rules should treat every

instance within that class identically, and therefore if people are using a rule that accurately judges

5 We did not include the ‘addition’ rule because the stimuli were not designed to be able to disentangle this rule from

either Rule 3 or 4. However, see Section 5.2.2 for a model-based rule assessment using the addition rule.
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Figure 6. Distribution of predictions by participants (bars) and the Integration of Simulation and Rules model

(red dots) across all experiments and balance beam variants. Error bars represent 95% confidence intervals

on expected participant responses for that trial category. In general, the ISR model explains both the correct

and incorrect predictions that participants make very well, including how those predictions are expected to

vary across different trial types.
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Table 1

Assignment of rule types to participants of each experiment. Numbers indicate counts of participants with

each assignment. Rule classifications were based on Siegler (1976), using only the trials most similar to

those in prior experiments.

Rule 1 Rule 2 Rule 3 Rule 4 Unclassifiable

Exp 1: Shapes 4 3 6 0 12

Exp 2: Materials 0 5 14 0 6

Exp 3: Pivot 1 1 21 2 23

that classification, they should have perfect accuracy across all instances within a class (excepting

response noise), and conversely with an incorrect rule should have zero accuracy across all

instances. Crucially, this implies that there should be very few participants who provide an

accurate response for some but not all of the instances. Thus if participants’ accuracies for a

single instance were plotted as a histogram, this would appear as a bimodal distribution with

clusters at 0% and 100% accuracy, and very few participants would appear in between.

Following the example of Jansen and Van der Maas (2001), we look for bimodality on the

distance problems, and further limit the configurations considered to the most basic balance

beams, as described above. However, unlike Jansen and Van der Maas (2001), we found no clear

evidence of bimodality in any of the three experiments: zero or perfect accuracy was found for only

36% of participants in Experiment 1, 32% of participants in Experiment 2, and 65% of participants

in Experiment 3 (though there were only two basic distance trials in the third experiment, perhaps

inflating this number; see Figure 7).

If participants were using rules exclusively for any subset of balance beams, much less for

the entire experiment, we would expect these rules to be found at least on the simplest trials most

similar to balance beams from previous research. However, because we cannot easily classify

most participants on even the basic trials, and because we do not find evidence of bimodal

response patterns as a sign of consistent rule use, it does not appear that our participants were in
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Figure 7 . Histogram of participants with different solution rates on the basic distance trials, split by

experiment. A large number of participants with zero or perfect evidence would be evidence suggestive of

rule-use; however, we do not find evidence of that bimodality even on the simplest distance trials.

general using rules alone to solve this task (and see Section 5.4 for further analysis of individual

uses of rules). We therefore consider a model that builds strategies out of both rules and

simulation to make predictions about how balance beams will fall.

5 The Integration of Simulation and Rules model

5.1 Model structure

We suggest that instead of relying solely on rules or solely on simulation, people select from

both options to make judgments about balance beams. Crucially, we assume that rules and

simulation comprise the building blocks that people compose into integrated strategies for solving

their problems (Siegler, 1988).

As described in Section 2.5, the Integration of Simulation and Rules (ISR) framework was
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designed to capture this theory. Here we instantiate it into a concrete model that is designed to

solve balance beam problems like people do (Fig. 8). Because this model considers a single

question – whether and how the beam will fall – the model assumes that all strategies will be

constructed to answer this question.

The ISR model constructs integrated strategies by linking together different primitive

strategies – rules or simulations – similar to the decision trees proposed by Siegler (1976). These

primitive strategies can either provide a prediction about what will happen to the balance beam, or

are undecidable and pass the decision through to the next primitive strategy (e.g., the ‘symmetry’

rule can suggest that the beam will balance if the structures are symmetric, but does not make any

predictions if they are not; see Fig. 8A). For tractability, we only consider “pass-through” programs

for integrated strategies, in which primitive strategies can either provide a prediction, or pass the

decision along to another primitive strategy for assessment.6

We consider four primitive strategies suggested by the literature, and detailed below: (1)

symmetry judgments that predict the beam will balance if it is symmetric, (2) the weight rule that

predicts the side with more weight will fall, (3) the distance rule that predicts the side with objects

further from the pivot will fall, and (4) forming predictions based on the outcome of physical

simulation.

In theory, an integrated strategy could be formed from any ordering of the primitive strategies

(or the empty set, corresponding to random guessing). In practice, however, we do not expect that

people will consider every possible strategy formed in this way, but instead will select from a small

set in order to avoid the effort required to search through a large number of strategies (Milli, Lieder,

& Griffiths, 2021). Empirically, we find this to be true – we only found evidence that people that

people use two integrated strategies other than guessing: symmetry -> weight rule -> physical

simulation (SWP), and symmetry -> physical simulation (SP). See Section 5.2 and Appendix

6 We make this simplifying assumption because (a) without it the space of potential integrated strategies would be

infinite, which would be intractable to search through, and (b) this assumption would be sufficient to reproduce any of

the rules proposed by (Siegler, 1976).
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Section A2 for further details.

Next the ISR model must apply these integrated strategies to a scene (Fig. 8B). It first

encodes the image of the scene into an object-based representation (Battaglia et al., 2013;

Yildirim, Wu, Kanwisher, & Tenenbaum, 2019). This perception module will act differently for each

experiment due to differences in the uncertainty about object locations and properties induced by

the different scenarios (e.g., there is more uncertainty about the size/mass of non-block shapes),

but will form a common representation that can be used for all rules and simulations.

However, for each scene that people encounter, they must pick one of the integrated

strategies that they will use to form a prediction. We assume that this is a probabilistic selection

from the available strategies, chosen concurrently with but not dependent on perception. Similar to

how we must discover empirically the set of integrated strategies that people consider, the

probability of selecting between strategies was estimated by fitting to human data.

Nonetheless, even though both the set of integrated strategies and their relative weightings

were fit to empirical data, we consider whether those choices are in fact aligned with a

resource-rational framework, in which the choice of strategies roughly maximizes the expected

rewards and cognitive costs. Although calculating this utility requires assumptions about cognitive

costs, we find in Section 5.5 that under a broad set of assumptions, resource rationality does hold.

5.2 Empirical use of strategies

In order to determine which integrated strategies people do in fact use, we used forward

model building: starting from pure guessing, we added individual integrated strategies that

explained participants’ predictions across all three experiments better until there was no strategy

that improved explanatory power. Using this technique, we found that only two strategies are

required to explain participants’ behavior: symmetry -> weight rule -> physical simulation (SWP),

and symmetry -> physical simulation (SP). To validate this finding, we compared this SP/SWP

model to a number of alternatives (Fig. 9), including the possibility of using any integrated strategy

(All Strategies), using only integrated strategies that combined symmetry, weight, and physical
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simulation (in any ordering; S/W/P Strategies), including integrated strategies that used the

distance primitive strategy similar to how the main model used the weight primitive strategy (SDP,

SDWP, or SWDP; Plus Dist) or instead of integrated strategies that included the weight rule

(Instead Dist), using any integrated strategy not including each of the three observed primitive

strategies (No Symmetry/Weight/Simulation), using only physical simulation (Simulation Only ),

and adding any individual strategy on top of SP/SWP (see Appendix Section A3.1).

Because all of these model variants have different numbers of parameters (to fit the mixtures

of different numbers of strategies, or because some perceptual parameters are irrelevant without

corresponding strategies), we used crossvalidation techniques in order to compare them on equal

footing. We randomly split the trials in half – with an equal split for each of the three experiments –

fit all models to half of the data, and compared model likelihoods on the other half. We then took

the difference between the baseline (SP/SWP) and comparison model log-likelihoods such that

positive values of this metric would indicate the comparison model outperformed the baseline.

Finally, we repeated this process 50 times to test the range of performance differences under

various trial splits.

We find that any change to the model that adds integrated strategies added at best marginal

explanatory power, whereas any model variants that change or remove strategies have reliably

worse performance (see Fig. 9 and A3). There was no model that reliably performed better than

the baseline – allowing all integrated strategies provided the largest numerical improvement but

still failed to do so reliably (∆LLHCV = 15.4, 90% CI = [−1.5,30.6]), and there was no additional

individual strategy that outperformed the baseline (Appendix Section A3.1).

5.2.1 Using only physical simulation. The above analysis contains a comparison to a

standard model of physical simulation, noted as ‘simulation only’ in Fig. 9. This model assumes

that people have perceptually uncertainty and use noisy unbiased simulation, similar to many other

cognitive models of intuitive physics (Battaglia et al., 2013; Smith & Vul, 2013; Hamrick et al.,

2016; Sanborn et al., 2013; Gerstenberg, Goodman, Lagnado, & Tenenbaum, 2021; Zhou et al.,

2022), but does not allow for the use of any rule-like primitive strategies. Surprisingly, this model
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Figure 9. Differences in cross-validated log-likelihood for model variants versus the baseline (SP/SWP)

model. Points indicate mean difference in log-likelihood over 50 samples, bars indicate the 10th to 90th

quantiles. The dotted line indicates parity with the baseline model, so points below the line indicate worse

predictive power for that model variant. Models that add more possible strategies vs. the baseline model

add very little explanatory power, whereas all models that remove or change strategies (including using

traditional balance beam rules) fit participants’ judgments much worse.

performs worst out of all model variants (∆LLHCV =−734, 90% CI = [−809,−631]), suggesting

that noisy simulation alone cannot explain behavior on this task.

5.2.2 Using only rules. While we showed that people cannot be using stimulus-based

rules to make balance judgments (see Sec. 4.4), this does not preclude the possibility that people

are still using the deterministic rules noted in prior literature, but have more perceptual uncertainty

on this task than when judging more diagramatic balance beams in earlier work. We therefore test

whether we can explain participants’ predictions using a model that includes the same noisy

perception as the Integration of Simulation and Rules model, but assumes that participants are

using either the rules proposed by Siegler (1976) or the addition rule (Normandeau et al., 1989) to
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form their judgments.7

To place the “traditional rules” model on the same footing as the ISR model, we assume that

people start with the same types of perceptual uncertainty by filtering stimuli through the noisy

perception module to produce judgments of the weights and positions of each stack of objects.

This representation is then subject to each of the five proposed systems of rules to determine how

a person using each of those rules would respond. The only difference between the rules used in

this model and those proposed in prior literature is that these rules assume approximate matching,

as strict equality cannot applied with noisy perception. For instance, weights are judged to be

different only if the difference in the representation exceeds a threshold. Similarly, the rules model

includes a parameter for distance matching as well as matching torques for Rule 4. This process is

repeated 500 times to form a distribution of predictions from each rule for each trial. Finally, for

aggregate model fitting, we assume that the participant group is comprised of people who each

use one of the five rules, and thus fit the proportion of users of each rule in addition to allowing

some responses to be ‘guesses’ similarly to the ISR model.

However, as can be seen in Fig. 9, the ‘traditional rules’ model does not explain peoples’

predictions as well as the ISR model (BICISR = 22,845, BICrules = 23,722; ∆LLHCV =−199,

90% CI = [−246,−150]), suggesting that people in aggregate do not only use rules on this task.

5.3 Performance across experiments and trials

Across all experiments, conditions, and trials, the ISR model using SP and SWP integrated

strategies was approximately as accurate as people were (model: 50.6% accurate, participants:

52.8%). Furthermore, this model explained the differences in accuracy by trial very well (r = 0.89).

This explanatory power transfers well across all of the experimental manipulations (see Figure 10

and Table 2).

7 We do not include the “buggy rule” (van Maanen, Been, & Sijtsma, 1989) because it makes the same predictions

about judgments as the addition rule, only differing in predictions of reaction time. We also do not include the

qualitative proportionality rule (Normandeau et al., 1989), which predicts that people should always judge conflict

items to balance, because no participant judged the beam to balance in more than 50% of conflict problems.
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Figure 10. Comparison of model vs empirical accuracy across experiments. Each point is a single trial,

comparing the accuracy of the Integration of Simulation and Rules model (x-axis) with the accuracy of

participants (y-axis) on that same trial. Colors represent the Siegler beam classifications for trials, and the

point shapes represent the variant along the dimension being tested in each experiment. Accuracy

correlations were high (> 0.87) across all experiment types.

Table 2

Model accuracies and correlation by experimental manipulation. Correlation is calculated by trial, comparing

the model accuracy with participants’ accuracy for each trial. There is high correlation and low bias in

accuracies across all experiments.

Experiment Acc. Correlation Human Acc. Model Acc.

Exp 1: Shapes 0.87 49% 47%

Exp 2: Materials 0.93 62% 55%

Exp 3: Pivot Size 0.87 50% 52%

Exp 3: Pivot Location 0.90 46% 45%

This model predicts by-trial accuracy approximately as well as theoretically possible. We can

measure how well we can predict the trial accuracies of half of the participants by using either (a)

the other half of the participants, or (b) the ISR model. As can be seen in Table 3, model

correlations are approximately at the same level as the split-half correlations, suggesting that it is

fit up to the noise ceiling.
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Table 3

Comparison of split-half correlations of trial accuracies by experiment versus model correlations using half

of the participants. Participants were split in half 500 times, and the average accuracy by trial was correlated

between the two halves (split-half) or one half accuracy was correlated with model accuracies.

Experiment Split-Half Correlation Half-Data Model Correlation

Exp 1: Shapes 0.74 0.80

Exp 2: Materials 0.92 0.91

Exp 3: Pivot Size 0.84 0.83

Exp 3: Pivot Location 0.88 0.87

In addition to testing how the model explains whether people are inaccurate, we also

consider how their errors occur. We can do so by investigating how well the model captures the

distribution of the three different responses: ‘left’, ‘balance’, and ‘right’. As can be seen in Figure 6,

across all trial variants within all experiments, the ISR model captures the pattern of responses,

both correct and incorrect.

Together, this suggests that the model does a good overall job of explaining people’s

aggregate predictions about the balance beams in all three experiments. We next test whether the

ISR model explains participants’ predictions for each individual better than alternatives.

5.4 Individual use of just simulation or rules

While we find that participants’ aggregate predictions can only be explained my a mixture of

simulation and rules, it is possible that individual participants might be using only physical

simulation or only rules. To test for this, we fit model parameters individually for each participant

using the crossvalidation methodology above, and compared these fits to two different models that

(1) assumed people used only physical simulation, and (2) assumed people were using a single

rule type.

We fit the individual rules-only model in the same way as the aggregate model, but rather

than assuming that responses were drawn from a mixture of rule-users, we assigned each
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participant a single rule: the one that maximized the likelihood of that participant’s data. To

compare with the individual use of rules, we also fit the ISR model for each participant, by allowing

the proportion of each strategy used (SP vs. SWP vs. guessing) to vary by individual.8 Because

these models had differing numbers of parameters, we compared these models using

cross-validated likelihoods: splitting the trials in half, fitting the parameters to one half, then

comparing the likelihood of the cross-validated trials, and repeating 50 times.
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Figure 11. Comparison of Integration of Simulation and Rules vs. rules-only model (left) or simulation-only

model (right) by individual, demonstrating that most participants’ predictions are better explained by the

Integration of Simulation and Rules model. The y-axis represents the difference in cross-validated

log-likelihood between the two models, where higher values indicate the ISR model has better explanatory

power. Each dot represents a different participant, color-coded by experiment and split by best fitting rule,

and the lines are 5th to 95th percentiles of differences based on 50 cross-validated fits.

As can be seen in Figure 11 (left), the majority of participants made predictions that were

better described by the Integration of Simulation and Rules model than by a rules model with

probabilistic perception (73 out of 98, p = 1.28∗10−6). Furthermore, while the difference in model

fits reliably favored the Integration of Simulation and Rules model at the 90% confidence level for

26 participants, only 5 participants were better described by the rules only model at that level. We

can then check how the Rule Assessment Methodology (described in Section 4.4) would classify

8 See Appendix Section A3.2 for discussion of individual differences in strategy usage.
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these participants, and find that two of the five are unclassifiable according to this methodology,

while the other three are classified the same using the rules model fits and the Rule Assessment

Methodology (one using rule 1, one using rule 2, and one using rule 3).

Similarly, Figure 11 (right) shows that the Integration of Simulation and Rules model explains

the majority of participants better than a model that uses simulation alone (85 out of 98;

p = 4∗10−14). The Integration of Simulation and Rules model fit 42 participants reliably better at

the 90% confidence level, whereas simulation alone outperformed the ISR model with only 2

participants.

Thus there may be some participants who use rule-like strategies alone or only rely on

simulation, but even if so, this would be a small subset of the participants tested.

5.5 Resource rationality of the strategy choice

Although the prior analyses demonstrate that participants were using a mixture of strategies

to make their predictions, if this is due to a resource rational choice, then we should expect that the

mixture of strategies used overall will (approximately) maximize value of computation across the

balance beam problems that participants encountered.

In the analysis below, we only consider strategies comprised of the symmetry, weight, and

simulation primitives. We find that people do not use the distance rule in our experiments

(Section 5.2), perhaps because they do not notice it as a possibility (see Discussion Section 9.2.3

for further detail), and thus seek to study whether people are making rational use of the primitives

that they do recognize. An analysis including the distance primitive is included in Appendix

Section A3.3.

We define value of computation of a single integrated strategy (S) on single problem as the

benefit gained from getting that problem correct (R) multiplied the probability of being correct using

that strategy, minus the cognitive cost of applying that strategy for that problem (CS,i):

VoCS,i = R∗P(correct)S,i−CS,i (3)
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However, estimating these benefits and costs is challenging. While we did not directly

incentivize participants for correct answers, we assume that there is intrinsic motivation to do well

which can act as a reward; however, we cannot measure the magnitude of this reward. Similarly,

the cost of using a strategy can be decomposed into the cost of using any of the individual

primitive rules or simulation, but we cannot directly estimate the cognitive costs of those primitive

strategies. We therefore fix the benefit of getting a correct prediction to 1 and define the costs of

the various primitives as a proportion of this reward.

While we still cannot directly estimate the primitive costs, we can make some assumptions

about their ordering. Because symmetry is often computed quickly, and perhaps pre-attentionally

(Wolfe & Friedman-Hill, 1992), we assume that this component incurs the lowest cost. It is

relatively easy for participants to compare two quantities, and so it is theorized that simple

operations like the weight rule will be less costly than simulation (Davis & Marcus, 2015). Thus we

can define the inequality for the symmetry judgment costs (cs), weight rule costs, (cw), and

physical simulation costs (cp) as cs ≤ cw ≤ cp. Given the cost of the primitives, we can calculate

the cost of using an integrated strategy on problem i as this cost times the probability that the

primitive rule or simulation is reached in the strategy chain, and thus is used. This will differ by

problem even for a fixed strategy (e.g., for the symmetry -> simulation strategy, if the balance beam

is clearly symmetric, then the symmetry rule will almost always trigger and thus the probability of

using physical simulation will be near zero, but conversely a very non-symmetric beam will almost

always trigger both the symmetry rule check, which will fail, and then simulation). We calculate the

chance of using each primitive strategy by running the Integration of Simulation and Rules model

with a fixed strategy 100 times for each balance beam, then tallying the proportion of the time each

primitive strategy is activated for that integrated strategy and beam. We therefore define the cost

as:

CS,i = csym ∗P(sym)S,i + cwght ∗P(wght)S,i + cphys ∗P(phys)S,i (4)

And so the value of computation for a given strategy and balance beam is defined as the
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probability that the integrated strategy will provide the correct answer minus the associated cost.

For an expected set of problems, the value of computation can be defined as the total value across

all of those problems:

VoCS = ∑
i∈Problems

P(correct)S,i− (csym ∗P(sym)S,i + cwght ∗P(wght)S,i + cphys ∗P(phys)S,i) (5)

If we make assumptions to fix the various primitive costs, we can use these equations to

calculate the value of computation for each integrated strategy across the trials encountered in all

three experiments, and thus determine the most efficient strategy to use to make predictions about

those particular balance beams. Thus we can investigate how the most efficient strategy changes

under different reasonable cost assumptions.

However, participants will not know precisely which balance beams they will encounter, and

so we consider which strategies might be most efficient for similar sets of balance beams. To do

so, we resample trials with replacement – keeping an equal number of trials per experiment – as a

proxy for how experiments with similar trials might have been constructed. We repeat this process

100 times, and so for each cost setting, can calculate the proportion of the time any integrated

strategy is most efficient across these proxy balance beam sets.

We can then investigate which integrated strategies are reasonably efficient across a large

range of cost settings. We consider a grid of cost parameters, where cphys ranges from 0.03 to

0.27 of a correct answer, and settings of csym and cwght that ranged from 10% to 100% of the value

of cphys (see Fig. 12). We also consider what might be ‘reasonable’ strategies to use, and define

these as integrated strategies that are the most efficient in at least 10% of the resampled trial

mixtures.

Figure 12A shows the way that these reasonable strategies change under different cost

assumptions. Each panel represents a different value of cphys, and each of the boxes within that

panel refer to the values of csym and cwght . This box can have different colored sub-squares

representing different sets of strategies: blue represents the SP strategy, red represents the SWP
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and WSP strategies,9 green represents a strategy of just using physical simulation, and yellow

represents all strategies that do not include physical simulation (S, W, SW, and WS). If the square

has a black background, then simply guessing is also a reasonable strategy. For further results

see also Appendix Figure A5.

Qualitatively, Figure 12A shows different regimes of cost settings. The top row, where the

costs of the primitive strategies are low, approximates a regime without costs. Thus the weight rule

is almost never used since, if costs are not an issue, it simply introduces a bias that reduces the

overall number of correct judgments. Conversely, the bottom row is dominated by guessing, as it

represents a regime where all primitive strategies are costly and often do not provide enough

information to justify their expense. However, in the middle row with a moderate cost for simulation,

there is a good mixture of the SP and SWP strategies, especially when the symmetry cost is very

low and the weight rule cost is moderately low (the bottom-left quadrants of the panels). Thus

there exists a moderately large swath of cognitive cost values for which the most efficient

strategies are those that we observe in our participants.

Given that the choice of observed strategies can be explained in a resource-rational

framework, we next ask whether the observed proportion of SP and SWP strategies is also

consistent with a resource-rational trade-off. Using the same resampling scheme, we assume that

only the SP and SWP strategies are available, and calculate what the optimal mixture of these

strategies would be to produce the highest average value of computation across all of the proxy

balance beam sets. We compare this to the empirically observed mixture of 39% using the SWP

strategy (excluding guessing). Figure 12B shows the optimal mixture of these strategies, where

the red regions represent ±5% from the empirical value, more yellow values represent higher use

of the SWP strategy, and purple/blue regions represent higher use of the SP strategy. In the

regions where both the SP and SWP strategies are found to be optimal (the bottom-left quadrants

9 We included these two together because the weight rule and symmetry judgments are mutually exclusive – if a

balance beam has enough of a weight difference to trigger the weight rule, it cannot be symmetric. Thus the optimal

ordering of these strategies is difficult to untangle.
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of the middle row), we find that the optimal mixture between these two integrated strategies is

similar to the mixture we observe across our participants.

Thus, even though we cannot reliably estimate the relative cognitive costs of using these

various strategies, we do find a large regime in which people’s choice of a mixture between

integrated strategies is consistent with a resource-rational selection of strategies.

6 Experiment 4: Generalizing to more complex stimuli

Although the Integration of Simulation and Rules model can capture human stability

judgments on simple beams as well as variants in the shape or material of blocks and the size or

position of the pivot, to validate and extend this model, we test whether we can explain balance

judgments on beams that vary in shape, material, and pivot at the same time, using a model that

was fit only on singular variants.

6.1 Experiment

The generalization experiment procedure was nearly identical to the first three experiments,

only changing the stimuli used, and presenting extended instructions that described all three

balance beam variants. Twenty seven participants were recruited from Mechanical Turk in

exchange for $2.00.

The trials consisted of 192 different balance beams, created using the same tools as before.

These beams were split evenly between the six beam configuration (balance, weight, distance,

and the conflict counterparts). Within each configuration, trials were created such that:

• Half of the trials were made only of blocks, and half were made of a mixture of blocks and

shapes.

• Half of the trials were made of a single material, and half were made of items of mixed

materials.

• Half of the pivots were at the center of the beam, and half were off-center.
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• Half of the pivots were the smallest made in the pivot experiment (2.5% of the beam width)

and half were the second largest (10% of the beam width).

Trials were counterbalanced such that there were 12 trials with each of these 16 possible

variations, split evenly across configuration types. As in the previous experiments, each participant

observed an equal number of trials that fell left, fell right, or balanced; however, trials were

normalized for reporting such that all beams that fall should fall left, and the side with more weight

in the conflict-balance trials was on the left.

6.2 Results

To demonstrate generalization of the Integration of Simulation and Rules model, we applied

the model from before to the predict how the balance beams in this experiment would fall. Because

all of the trials here were made of an amalgam of trial types from the prior experiments, no

parameter fitting was required, making these out-of-sample predictions.

Overall, we could predict accuracy across trials well (r = 0.79, see Figure 13, left),

suggesting good generalization. Furthermore, the Integration of Simulation and Rules model

generalizes to this out-of-sample experiment better than the traditional rules model (∆LLH = 99.6).

The ISR model also generalizes well to novel stimuli. We can categorize the trials by how

much they deviate from the “standard” beam: a balance beam made of blocks of a single material

on a small, centered pivot. In this way, the model has been fit based on balance beams that look

like the standard beam, or with any one of the four deviations above, but has never seen any

combination of those changes (with the exception of only pivot centering and size). Yet as can

been seen in the right panel of Figure 13, the ISR model generalizes to these novel scenarios with

2-4 changes well (albeit slightly worse than the trials it was fit on).

7 Experiment 5: Explaining the torque-difference effect

According to rule-based explanations of balance predictions, one of the most inexplicable

findings in the literature is the torque-difference effect: that people can more accurately predict
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Figure 13. Left: Human accuracy accuracy on Experiment 4 versus zero-parameter model predictions.

Each point represents a separate trial. Colors indicate the beam configuration based on the legend to the

right, while the shapes indicate how much the trial deviates from a standard trial (circle: standard; triangle: 1

change; square: 2 changes; cross: 3 changes; boxes: 4 changes). Right: Participants’ choices (bars)

versus Integration of Simulation and Rules model choices (red dots), split by beam configuration and

deviation from standard trial. The Integration of Simulation and Rules model can predict the responses of

new participants on novel combinations of trials well.

how a beam will fall when the difference in torque between the two sides is larger, even when

those beams would be treated identically within a set of rules (Ferretti & Butterfield, 1986). Some

have explained this finding by appealing to “visual heuristics” (Zimmerman & Pretz, 2012) that are

activated only when there is a large difference between the sides of the beam (Jansen & van der

Maas, 1997); however, it has not been well described how these visual heuristics work or when

they should be activated instead of rules.

On the other hand, if people are using a combination of rules and simulation, we would

expect that performance should increase any time the torque difference increases: even if the use

of rules does not change, noisy simulation will be more likely to produce the correct answer when

the difference between the sides is larger. To test whether we can explain the torque-difference

effect with the ISR model, we replicate Ferretti and Butterfield (1986).
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7.1 Experiment

We recruited 21 participants from Mechanical Turk, who were compensated $1.20 for their

time. The experimental procedure was identical to that of previous experiments; only the materials

were different.

To produce the balance beams for this experiment, we replicated the methodology of Ferretti

and Butterfield (1986), although we used twice the number of stimuli. All balance beams were

standard beams, comprised of only a single stack of up to six identical blocks on each side of a

point pivot. To further replicate Ferretti and Butterfield (1986), the stack of blocks could only be

placed at one of six equally spaced distances away from the pivot.

There were 144 stimuli used in this experiment. Of these, eight each were balance or

conflict-balance configurations. The remainder of the stimuli were split equally into 32 trials of

weight, distance, conflict-weight, and conflict-distance trials. Each of these groups were further

split into four torque-difference levels. In all cases, a torque value was calculated for each side of

the beam by multiplying the distance position (1–6) by the number of blocks in the stack. For the

simple weight and distance trials, the there was only a difference of 1 unit of torque between the

sides for torque-difference level 1, a difference of 3 for level 2, 12 for level 3, and between 24 and

30 for level 4. For the conflict-weight and conflict-distance trials, the torque difference for level 1

and 2 were the same – 1 and 3 respectively – but there was a difference of 5 for level 3 and 18-24

for level 4.

As in previous experiments, stimuli were mirrored so that half of the beams that fell would fall

to the right and half to the left (however, because there were fewer balance or conflict-balance

trials than the rest, there was not an equal split between all three options).

7.2 Results

Because Ferretti and Butterfield (1986) investigated the torque-difference effect in children,

we first check that the torque-distance effect can be found in adults. As can be seen in the left

panel of Figure 14, there is a clear difference in accuracy by beam classification
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Figure 14. Accuracy on Experiment 5 for participants (left), the Integration of Simulation and Rules model

(center ), and the traditional rules model (right), grouped by beam classification and torque-difference level

(balance and conflict-balance configurations could not have a torque difference so were set at level 0). Both

participants and the Integration of Simulation and Rules model demonstrate an increase in accuracy across

all beam types as the torque-difference increases, while the rules-only model only does so for the distance

trials.

(F(3,112) = 337, p≈ 0), and by the difference level (F(3,112) = 85, p≈ 0), as well as an

interaction between the two factors (F(9,112) = 8.95, p = 4.4∗10−10). Although Jansen and

van der Maas (1997) suggests that the torque-difference effect is driven by only the most extreme

differences, even excluding beams of difference level 4 we find evidence for a difference in

accuracy across classification (F(3,84) = 282, p≈ 0), difference level

(F(2,84) = 30, p = 1.6∗10−10), as well as an interaction (F(6,84) = 3.75, p = 0.0023). Thus

we find evidence for a torque-difference effect across all difference levels, as expected by the

ISR model.

To directly test how well the ISR model explains the torque-difference effect, we use the

same model fit on the data from Experiments 1-3 to predict accuracy on this data, and find that it

correlates well across trials with empirical accuracy (r = 0.87). As can be seen in the middle panel

of Figure 14, the model’s accuracy generally follows the same trend as human accuracy,

increasing with greater torque difference levels. However, the largest deviation between human
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and model accuracy is in the simple distance trials with a small torque difference, perhaps

because people are paying more attention to the difference in distances when all else is equal.

The traditional rules model with noisy perception, on the other hand, cannot capture the

torque difference effect nearly as well (it produces only slight accuracy increases across the torque

levels; Figure 14, right) or capture human predictions as well as the ISR model (∆LLH = 80.6, see

Figure 15). While it does expect accuracy to rise with difference level in the simple distance trials

because the distances become more perceptually distinct, it underpredicts accuracy at small

torque differences just as the Integration of Simulation and Rules model does. Furthermore, it

expects little to no increase in accuracy across any of the other beam configurations. Thus we can

naturally explain the torque difference effect as a combination of rules and physical simulation, but

cannot explain it by rules alone, even for small torque differences.

8 Experiment 6: Shifting the use of rules

A core claim of resource rationality is that people will in general use strategies that provide

better expected value on the problems they expect to encounter. Thus, if people are in a situation

where they expect the weight rule to be useful, we should expect them to use the weight rule more

often; conversely, if people expect to encounter more balance beams where the weight rule will

provide the wrong answer, then people should use that rule less. In this experiment, we provide

participants with “training” stimuli that either consist of many trials where the weight rule is

accurate or where it is inaccurate, and investigate whether this training impacts the use of the

weight rule in future balance judgments.

8.1 Experiment

We recruited 48 participants from Mechanical Turk, who were compensated $2.00 for their

time. Participants were randomly assigned one of two conditions: the weight rule accurate or

weight rule inaccurate conditions, for 24 participants in each condition. One participant from the

inaccurate condition was excluded from analysis because their median time to respond to the test
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Figure 15. Correlation of empirical accuracy (y-axis) with Integration of Simulation and Rules model

accuracy (left) and traditional rules model accuracy (right). Each point represents a single trial, with the

color representing the beam configuration and the shape representing the torque-difference level. Circles

indicate the zero-level difference (balanced beams), triangles are a one-level torque difference, squares a

two-level, crosses a three-level, and hollow boxes a four-level. The traditional rules model mostly treats all

instances of a given beam classification the same, regardless of the torque-difference level, and so cannot

capture the behavior of participants, who do not.

stimuli was 220ms, which was over two standard deviations from the average of all other

participants (mean: 2,134ms, sd: 851ms), and indicative of “clicking through” the experiment.

The experiment proceeded in two phases: the ‘training’ phase and the ‘test’ phase. The

training phase consisted of 30 trials that were similar to prior experiments, except that after

participants indicated their prediction for how the beam would fall, a movie would play showing the

motion of the balance beam and blocks. Each balance beam was constructed only from simple

blocks of a single material, and could be one of three types: conflict-weight, conflict-distance, or

asymmetric-balance. Conflict-weight and conflict-distance trials are as defined before, but

asymmetric-balance trials were created so that there were equal numbers of blocks on each side

in configurations that produced equal torques, but were not symmetric; thus the weight rule could
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not be applied to these configurations at all.

Participants were all given the same 10 asymmetric-balance trials, but the mixture of the

other 20 trials differed by condition: participants in the ‘weight accurate’ condition were asked to

judge 16 conflict-weight trials and 4 conflict-distance trials (so that the weight rule would be

accurate 80% of the time), while participants in the ‘weight inaccurate’ condition judged 4

conflict-weight and 16 conflict-distance trials (so that the weight rule would only be accurate 20%

of the time).

The ‘test’ phase was identical across all participants. Participants were given 150 trials with

simple, single-material blocks: 50 conflict-weight, 50 conflict-distance, and 50 conflict-balance.

The movies no longer played after participants made their choice to avoid shifting strategies with

further feedback.

8.2 Results

In the ‘test’ phase, we do not find any evidence that overall accuracy differed by training type

(weight accurate: 49%, weight inaccurate: 46%; χ2(1) = 1.88, p = 0.17), but do find an

interaction between training type and balance beam class (χ2(2) = 204, p≈ 0), suggesting that

training affected which trials participants got wrong or right.

Because all of the test trials were conflict trials, the weight rule will always suggest the side

with more weight should fall down, while simulation will produce a distribution of responses (and

the symmetry rule should never trigger). Thus we can study whether participants in the ‘weight

accurate’ condition use the weight rule more by testing whether they make more predictions that

the weight-side will fall than participants in the ‘weight inaccurate’ condition. Indeed, we do find

that the participants in the ‘weight accurate’ condition were more likely to choose the side with

more weight across all trials (50% vs. 36%; χ2(1) = 5.88, p = 0.015), and for each of the different

beam classes (CW: 72% vs. 50%, CD: 31% vs. 18%, CB: 47% vs. 38%;

χ2(2) = 11.3, p = 0.0035; Fig. 16). Thus we find evidence that exposing participants to sets of

balance beams where the weight rule is more helpful causes them to use the weight rule more
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Figure 16. Proportion of trials predicted to fall to the side with more weight, split by beam type (x-axis) and

training condition. Each point represents a participant’s predictions in that condition, with box plots

representing the median participant and interquartile range. Across all beam types, participants in the

“weight accurate” training condition were more likely to predict that the side with more weight would fall,

suggesting that they are relying more on the weight rule to make their predictions.

often on subsequent problems, as would be expected under a resource-rational framework.

9 Discussion

Here we argue that human physical reasoning is not solely based on a system of rules, nor

solely on mental simulations of physics. Instead, people bring both rules and simulation to bear

when reasoning about the physical world, and combine them in a way that trades off between

accuracy and efficiency.

We studied this trade-off in the domain of judgments of stability – a domain that has been
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explained both as based on rules as well as using simulation. Using scenes of balance beams that

are more realistic and more varied than the diagrammatic stimuli typically used for these tasks, we

found that participants’ predictions were not well explained by the system of rules that has

historically been used to explain balance beam judgments, nor by pure simulation. Instead, they

can be explained by a system that combines both rules and physical simulation as a set of

integrated strategies that are selected as a resource-rational trade-off. This framework can

naturally explain previous findings like the torque-difference effect (Ferretti & Butterfield, 1986) that

have been difficult to reconcile with pure use of rules, as well as why people shift their use of rules

in response to different expectations about the problems they are expected to solve.

This provides further evidence that we use different cognitive systems for different types of

physical reasoning (Schwartz & Black, 1996b; Kozhevnikov & Hegarty, 2001; Zago & Lacquaniti,

2005; Smith et al., 2018), but extends the previous work with a framework for understanding how

these cognitive systems are chosen by treating the selection of these systems as a

resource-rational trade-off (Griffiths et al., 2015; Lieder & Griffiths, 2020). Nonetheless, while the

ISR framework describes the structure of cognitive systems used to trade off between simulation

and rules to solve physical problems, the way that these systems are implemented in the mind

requires further study. In the remainder of this discussion, we first consider the commitments made

by the ISR framework and different ways the framework might be instantiated, then discuss the

structure of the individual simulation and rule-based systems including their relation to more

general dual-process theories.

9.1 Implications of the ISR framework

The Integration of Simulation and Rules framework describes the process that people use to

combine simulation and rule-based systems for solving physical problems, suggesting that we (1)

have access to a set of primitive strategies that we combine into integrated strategies, (2) choose

integrated strategies to use in a way consistent with resource rationality, and (3) we apply those

integrated strategies to models of the world filtered through the uncertainty of perception (see
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Section 2.5 and Fig. 2). This framework commits to the general ordering of information processing

and types of representations and systems available in order to implement strategy selection and

usage.

However, within this general framework, there are many ways in which the mind could

instantiate the various component cognitive systems. Here we discuss three particular

considerations that will require further research. First, are the various strategies constructed

beforehand and retrieved during the problem solving process, or are they constructed on the fly?

Next, within an integrated strategy, are the primitive strategies executed sequentially or in parallel?

Finally, how does the mind determine the relevant utilities and costs in order to perform strategy

selection?

9.1.1 The timing of strategy formation. The ISR framework contains the assumption

that people have access to a set of primitive strategies that they form into integrated strategies, but

is agnostic to when the strategies are constructed. Here we discuss whether both the primitive and

integrated strategies exist prior to their use in the ISR, or whether they are constructed in response

to a physical problem.

Primitive strategies are heterogeneous, consisting of (at least) simulation and rule-based

approaches, and thus the prior availability might differ depending on the primitive strategy.

Simulation, for instance, is considered a general purpose system for physical cognition (Battaglia

et al., 2013) that is thought to underlie even infants’ earliest reasoning about the physical world

(Ullman et al., 2017; Smith et al., 2019; Ullman & Tenenbaum, 2020). Thus we might expect that

simulation is a generally available primitive strategy that can be used across a range of physical

problems. However, the particular way in which the simulator is used might depend on the problem

context. For instance, how far into the future should simulations look to decide if a balance beam

will fall? Too long would be wasteful if blocks are predicted to be just sitting on the ground, but too

short might cause one to inappropriately decide that a teetering beam will balance. More nuanced

uses are possible (for instance, “simulate until either the beam has touched the ground or there

has been no motion for X seconds”), but these require using the simulator in a way that is more
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tailored to a particular physical problem. So the particular use of physical simulation might need to

be determined in response to a particular problem; for certain common events (e.g., determining if

an object is “falling”) we might have readily available ways of using the simulator, but this will not

always be the case.

On the other hand, it is less clear whether the rules that people use have been previously

formed, or whether they are constructed on the fly (diSessa, 2014). Historically, knowledge of

physics was considered to be derived from flawed “intuitive theories” (McCloskey, 1983). This

would suggest that our intuitions about what causes a set of objects to be stable or fall are derived

from preexisting knowledge applied to a particular scenario. But others have proposed a theory of

“knowledge in pieces” that suggests that we construct explanations from a loose collection of

conceptions about the world (some erroneous; diSessa, 1993). Under this theory heuristics like

the weight rule would not be prespecified, but instead created on the fly using more primitive bits of

knowledge like “heavier things push down harder”. Finally, “framework theories” propose a

combination of both of the prior theories, suggesting that we have loose conceptual frameworks for

understanding the world that can be chosen from or combined for any particular causal

explanation (Vosniadou, 2019); thus some rules might be readily accessible while others might be

constructed as needed.

The formation and selection of integrated strategies will generally occur after primitive

strategies are available, though again it is unclear whether these are pre-computed or constructed

on the fly. For commonplace problem types, it is likely that people have already learned the most

appropriate integrated strategy to deploy (e.g., to add two numbers children understand early on

that retrieval from memory should be the first primitive strategy to use, followed by a strategy that

performs the addition from scratch; Siegler & Shipley, 1995). However, the process of choosing an

integrated strategy might be intertwined with primitive strategy formation: if existing strategies

cannot provide a reasonable answer, a new primitive strategy would need to be formed (Shrager &

Siegler, 1998).

Nonetheless, the precise timing of strategy performing is not crucial within the
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ISR framework; it only matters that both the primitive and integrated strategies are available as

needed. However, determining exactly how the mind implements this framework will require further

study of how and when strategies are formed or recalled.

9.1.2 Sequential choice or parallel systems? In this paper we propose that the

selection between cognitive strategies for physical reasoning is itself a choice, even if this choice is

implicit. Here we consider an alternative framework for explaining these results: that all relevant

primitive strategies are automatically activated simultaneously and accumulate evidence until they

reach a confidence threshold. Under this framework, the primitive strategy that reaches this

threshold first is the one that produces a decision for the particular scenario. This framework is

similar to the evidence accumulation models (Ratcliff, Smith, Brown, & McKoon, 2016; N. J. Evans

& Wagenmakers, 2019) that have been proposed for simple decision systems where evidence

accumulates for separate choices from a single system – for instance, deciding whether to push a

button in the (possible) presence of a stop signal (Matzke, Love, & Heathcote, 2017) or

determining which of two letters was briefly observed (Ratcliff & Rouder, 2000).

While this framework suggests that all rules and simulation should be activated

simultaneously in order to accumulate evidence, there is a choice inherent in the framework: these

models often have a free “drift rate” parameter that controls how quickly evidence is accumulated

(Ratcliff et al., 2016).10 If people are making judgments based on the evidence accumulation

framework, this rate parameter must be flexibly set; without this flexibility, it would be impossible to

explain how people shift their use of the weight rule based on prior experiences (Section 8). And

so while the evidence accumulation framework proposes a different process for choosing the

cognitive systems to use to make physical judgments, it serves a similar purpose of selecting

systems based on their expected utility via the drift rate parameter. The current experiments

suggest only that this choice is necessary and that it is made in a way that is equivalent to a

resource-rational trade-off, but further work is required to explain precisely how the relevant

10 Alternately, this parameter can be recast as the evidence threshold where faster accumulation is equivalent to a

lower threshold, but these formulations are typically indistinguishable (N. J. Evans & Wagenmakers, 2019).
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cognitive systems are selected and activated.

Nonetheless, it is possible that the integrated strategies are a combination between

automatically activated and selected systems. For instance, the symmetry rule is found to be the

first primitive strategy used in both integrated strategies that people use, and symmetry may be

perceived pre-attentively (Wolfe & Friedman-Hill, 1992). And so it could be that symmetry is

noticed automatically, and thus can be applied with effectively no effort while the decision to use

(or not use) the weight rule prior to simulation is a choice.

9.1.3 Deciding between cognitive systems. This work expands upon past research

that has suggested that human physical reasoning is based on multiple cognitive systems that

often posits “rules of thumb” for choosing between those systems (Kaiser et al., 1992; Schwartz,

1995). We propose that this choice between different systems for physical reasoning can be

understood as selecting strategies that are expected to maximize cognitive efficiency: being

accurate enough while expending as little cognitive effort as possible. While only tested here in the

case of balance beams, this provides a generalizable framework for understanding human physical

reasoning, and shares principles that are thought to underlie how people decide how far ahead to

plan (Callaway et al., 2018; Ho et al., 2021) or select general cognitive strategies (Lieder &

Griffiths, 2017).

This framework unifies the “rules of thumb” that have previously been used to explain the

dichotomy between simulation and rules in physical reasoning: all of the manipulations that are

expected to induce simulation are those that would make simulation more informative or less costly,

thus increasing its utility. For instance, a perceptual-motor task that involves predicting where a

ball will land requires fine-grained information about object trajectories that can be extracted from

simulation but not from simple rules about ballistic motion, and so will be much more likely to rely

on simulation (Smith et al., 2018). Conversely, additional details in a diagram (Schwartz, 1995) or

motion information (Kaiser et al., 1992) provide information that might be irrelevant for rules, but is

an important part of the scene representation that underlies simulation, and so simulating scenes

with some features unknown might be either less informative or harder to do.
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This strategy choice framework also comes with an inherent challenge: it requires holding

calibrated expectations for how well each strategy will perform in a given scenario, as well as the

associated cognitive costs. But it is impossible to precisely know the costs and utilities of using a

strategy to solve a problem before actually using that strategy (Russell & Wefald, 1991), which

defeats the point of selecting a strategy in the first place. Instead, deciding how to approach a

problem has been framed in computer science as selecting heuristics that best approximate these

values (Russell & Wefald, 1991; Gershman et al., 2015). Cognitive scientists have studied this

value approximation as a learning problem, suggesting that people up-weight strategies that have

been successful in the past (Siegler, 1988; Siegler & McGilly, 1989), or directly learn the

approximate values of using individual strategies (Lieder & Griffiths, 2017).

Yet it is precisely the challenge of determining the relevant costs and benefits that might

explain individual differences in the use of rules versus simulation. While across all participants,

the trade-off between strategies that included or did not include the weight rule was in line with

what would be expected under a resource-rational trade-off, there was a large amount of

heterogeneity in how individual participants decided between strategies: some effectively never

used strategies that included the weight rule, while others almost always used it where applicable

(see Appendix Section A3.2). It is possible that this is because forming simulations or applying

rules is more or less costly for some people, but this could also be due to differences in individuals’

estimates of the utility of each strategy. Determining the stability of a balance beam from a static

image is not a task that most people perform regularly, and thus individual strategy use choices

might reflect differences in value estimates driven by prior experiences. Nonetheless, the fact that

strategy choice is sensitive to the statistics of the environment suggests that with further

experience, individual value estimates can be refined to better match the true costs and benefits.

Calling this selection process a “choice” also does not imply that this is a conscious decision

that people are making. Rather, the claim is that there is some cognitive system that forms and

applies the integrated strategy, and that this system performs the selection of the integrated

strategy in a way that accounts for the relevant expected utilities and costs of applying that
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strategy, as well as the range of problems expected to be encountered. While this choice might be

performed implicitly, however, it is subject to conscious control: if people are asked to imagine a

physical process before answering a question, they are less likely to make judgments that are

thought to result from biased rules (Frick et al., 2005; Schwartz & Black, 1999), suggesting that the

use of simulation can be consciously imposed.

9.2 Systems for physical reasoning

9.2.1 Comparisons to dual process theories. Psychologists have long theorized that

people use multiple cognitive systems for reasoning about many different domains, from numeric

cognition (Feigenson, Dehaene, & Spelke, 2004) to decision making (Kahneman, 2011). In

physical reasoning in particular, multiple systems have been proposed due to both behavioral

evidence (Schwartz & Black, 1996b; Kozhevnikov & Hegarty, 2001; Smith et al., 2018), as well as

evidence from cognitive neuroscience: people recruit different brain areas for making predictions

(Fischer et al., 2016) or inferences about mass or stability (Schwettmann, Tenenbaum, &

Kanwisher, 2019; Pramod, Cohen, Tenenbaum, & Kanwisher, 2021) than they do for solving word

problems that require physical knowledge (Jack et al., 2013; Mason & Just, 2016). Here we

consider how these systems fit within broader theories of human cognitive architecture, and why

having multiple systems to rely upon for physical reasoning might be desirable.

At first blush, the cognitive systems studied in this paper appear to map onto a common

dichotomy found in the psychological literature, that we have two systems for reasoning about the

world: a fast, effortless, intuitive system (System 1) and a slower, deliberative system (System 2;

Kahneman, 2011; J. S. B. T. Evans, 2008). The physical simulation can be thought of as a ‘System

1’ process, as it is a domain-specific system that operates automatically, even in the absence of a

task that would rely on this system (Fischer et al., 2016). Conversely, rules for physical

understanding are logical, sequential, and use a style of decision making – decision trees – that

have been proposed as the basis of rule-based reasoning outside the domain of physics (e.g.,

Gigerenzer & Goldstein, 1996).
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However, there are key differences between the dual systems proposed here and the typical

description of Systems 1 and 2. Often System 1 processes are considered to be ‘heuristics’ that

work quickly based on incomplete information, and the ‘analytic’ System 2 can override those

heuristic judgments with slower but unbiased reasoning (J. S. B. T. Evans, 2006). In the case of

physical reasoning, on the other hand, simulation is considered to be relatively well calibrated to

real-world physics (Battaglia et al., 2013; Sanborn et al., 2013; Smith et al., 2018), but the weight

rule considered here is a heuristic that throws away relevant information about the location of

objects on the balance beam. And while System 1 processes are often thought to be rapid (or

automatic) and less costly than engaging System 2 processes, in this case it is the analytic rules

that seem to accrue lower cognitive costs than simulation.

These differences re-raises the question of why we have multiple systems for physical

reasoning. Many theories of System 1 vs. System 2 processing explain this as a difference in

cost-benefit trade-offs: System 1 processes provide us with rapid, cognitively cheap, and typically

accurate information, but System 2 processes can provide us with the correct answer in situations

where System 1 processes fail, albeit at a greater cognitive cost (J. S. B. T. Evans, 2008). Yet if

physical rules are incomplete and potentially erroneous while our intuitive simulation system is

unbiased, why should we use those rules?

One reason that biased rules might sometimes be preferable over simulation is that our

simulations, despite being unbiased, are also noisy and uncertain. Simulation must be robust to

variability in the real world, including uncertainty in the perception of objects (Battaglia et al., 2013)

as well as variability in the dynamics of object motions as they interact with each other (Smith &

Vul, 2013). Thus even a system calibrated to real-world physics will produce variability in

responses (Smith & Vul, 2015) as well as potentially biased judgments (Sanborn et al., 2013). One

key characteristic of rules, however, is that they are deterministic and invariant to small differences

between scenarios that do not cross rule boundaries (Jansen et al., 2007). Thus rules can be

helpful to provide us with certainty in cases where simulation can be uncertain, even if they provide

the wrong answer in some situations. This benefit can been observed in how participants’
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accuracy changed in the ‘shapes’ experiment from the pure blocks to the beams with non-standard

blocks: when the beams were stacked with standard blocks only (making the weight rule easier to

apply) participants were significantly more accurate where the weight rule would help (the ‘weight’

and ‘conflict-weight’ configurations) because simulation provides less certainty, but this comes at

the cost of being less accurate in situations where the weight rule would provide a clearly incorrect

answer (the ‘conflict-distance’ configurations; see Figure A1). Thus while simulation can provide us

with predictions of how the world might unfold across a wide range of physical scenarios, rules can

provide us with additional certainty in specific situations where that certainty is helpful.

9.2.2 The accuracy of physical simulation. Much of the prior research that has found

that people use simulation for physical reasoning has suggested that this simulation is based on

approximately correct physical principles (Battaglia et al., 2013; Smith et al., 2018; Sanborn et al.,

2013; Gerstenberg et al., 2021; Warren, Kim, & Husney, 1987; Deeb, Cesanek, & Domini, 2021),

but still may include ‘simplifications’ to Newtonian physics that can give rise to erroneous

predictions, including around balance judgments (Ullman et al., 2017). While an unbiased

simulator cannot reasonably produce the biases we observe in people’s judgments of balance

beams (Marcus & Davis, 2013), a system that inappropriately integrates weight and distance to

calculate torque could be engineered to produce similar weight-biases to human judgments.

Yet we argue that assuming a biased simulator cannot explain the full set of data here.

Although a biased simulator could reproduce any single set of biased judgments, it cannot explain

why people shift their judgments based on previously encountered balance beams (Section 8) –

this would require a theory that suggests that people are overwriting the physical knowledge they

had a lifetime to learn to become more biased, despite only watching videos with accurate

Newtonian physics. And so while characterizing the precise simplifications that the mind makes to

perform efficient physical reasoning is an area of outstanding research (Ullman et al., 2017; Li et

al., 2022; Bass, Smith, Bonawitz, & Ullman, 2021), it is unlikely that these simplifications can

explain people’s judgments of how balance beams fall.
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9.2.3 The reduced use of rules compared with prior studies. The dominant theory

about how people solve balance beam problems for the past half century has been that they use a

system of rules, and for good reason: the Rule Assessment Methodology has typically been able

classify over 90% of people’s judgments (Siegler, 1976), and clustering algorithms group most

people together in sets that are expected to make near-deterministic judgments that map on to the

expected judgments from those rule sets (Jansen & van der Maas, 1997). Yet despite those

successes, the same systems of rules cannot explain how people solved the tasks described in

this paper – rules alone cannot explain judgments on the simplest beams that are identical in

principle to problems used in prior work (Section 4.4), and the combination of simple rules and

simulation that explains human judgments best does not include anything beyond the simplest

weight and symmetry rules (e.g., people do not use a ‘distance’ rule).

These differences could be driven by variations in how stimuli were constructed. In prior

work, participants were typically presented with pen-and-paper or computerized diagrams of a

balance beam (Ferretti & Butterfield, 1986; Jansen & van der Maas, 2002; van der Maas & Jansen,

2003; Boom et al., 2001), though Siegler (1976) did allow children to play with real balance beams.

While we also used computerized scenes, our images of balance beams were developed in a 3-D

rendering engine to be as realistic as possible. Less realistic, more diagrammatic displays are

more likely to elicit analytic solutions from people (Schwartz, 1995; Schwartz & Black, 1996a).

Thus the realism of our scenes might cause people to be less reliant on rules, so those rules alone

cannot explain the more complex judgments of more naturalistic stimuli.

Another difference between the stimuli we used and prior work is that previous diagrams of

balance beams typically include posts marked on the beam on which the blocks could rest, while

the blocks in our experiments were stacked on the beam without these supports. These posts

provide more certain information about how far a stack of blocks rests from the center pivot – e.g.,

a stack on the third post is three times as far as a stack on the first post – whereas this value must

be estimated based on the perceptual distance when the struts are not available. This could affect

people’s judgments in two ways.
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First, if the perception of distance is not noisy, then simulation will provide more accurate

judgments on the pure ‘distance’ configurations, and if the certainty increases enough, these

judgments will be indistinguishable from the prototypical distance rule. This would imply that the

“distance rule” is not in fact a rule but instead an epiphenomenon of physical simulation. However,

this explanation is unlikely because use of the distance rule has been found to be stable in the past

(Jansen & van der Maas, 2002), and children self-report that they are using an explicit rule based

on the distance (Siegler, 1976).

Alternatively, the posts themselves could make the distance dimension more salient.

Because the posts are spaced at regular intervals and constrain where the blocks can be placed

on the beam, people might infer that the dimension that defines those posts – the distance – is

important and should be incorporated into any system of rules that they use. This would assume

that people do not have a consistent set of rules that are universally applied to all judgments of

balance beams, but rather that rules are constructed from more primitive pieces of knowledge

about the world (diSessa, 1993; Kloos & Van Orden, 2009). But this would be a simple extension

of the reason that young children do not use a distance rule: they do not encode the distance

properly (Siegler, 1976), but if given training where the distance dimension is salient, they begin to

use this rule (Jansen et al., 2007). Thus we may not observe the distance rule in these

experiments because people do not explicitly notice that distance is an important dimension to

consider.

A final difference between the stimuli used in our experiments versus prior experiments is

that many of our experiments contained balance beam variations for which basic rules are less

easy to apply – for instance, if the pivot is off center, people might recognize that the weight of the

beam needs to be accounted for but do not have a rule that captures this intuition. This might have

led participants to quickly learn that attempting to apply rules would provide less utility in general,

since they are more likely to provide no information about the outcome of the scene. As people

can adapt their use of various strategies based on learned utilities (Section 8), this could cause a

shift away from strategies purely based on rules.
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There are therefore a number of differences between the experiments described in this

paper that could explain why people are less likely to use rules to make their judgments about the

stability of a balance beam. However, each of these differences make the stimuli here more similar

to real-world scenarios. Imagine, for instance, a waiter picking up a tray filled with different dishes

in one hand and judging whether it will be stable. This is a realistic scene, there are no markings

indicating how far from the center each dish is, the dishes might have different sizes or weights,

and the waiter might pick up the tray in a point that is not directly in the middle. Thus the attributes

of the diagrams that make people more likely to rely on rules are less prevalent in real-world

judgments of stability, and so we argue that most day-to-day physical reasoning will be based on a

combination of rules and simulation, rather than on rules alone.

9.2.4 Developing biased rules. In this work, and in a large portion of prior research into

people’s balance beam judgments, it is assumed that from an early age, people have access to

rules that they can use to determine how beams will fall, and that the weight rule is most easily

accessible (Siegler, 1976; Wilkening & Anderson, 1982; Jansen & van der Maas, 2002; though see

also Section 9.1.1). Yet it remains an open question how people develop a rule that is biased

despite ample evidence of cases where it does not work, and how this development is so

consistent even in young children.

One theory of physical understanding suggests that people hold a large set of ‘axioms’ or

‘proto-knowledge’ that can be flexibly combined to create explanations for arbitrary physical

systems (Hayes, 1979; diSessa, 1993; Kloos & Van Orden, 2009; Rule, Tenenbaum, & Piantadosi,

2020). This suggests that we do not carry around specific rules for every situation, but instead

construct those rules on the fly when we encounter a situation in which they might be needed.

Thus a weight rule that applies to (rarely encountered) judgments about balance beams might be

developed as a response to being asked to make that judgment.

But then why is it the weight rule in particular that people consistently consider, from children

to adults? Some prior research has suggested that young children can only encode one feature at

a time, and that weight readily comes to mind as an explanation for tipping things over, given prior
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experience (Siegler, 1976); this could explain why 5-6-year-olds appear to rely on the weight rule

alone. Yet misconceptions and errors persist even up to adulthood, when people should be able to

encode and combine multiple features: even teenagers still do not appropriately integrate weight

and distance, mostly being classified as users of Rule III (Siegler, 1976).

Failure to discover the correct rule could be viewed as a generalization of the efficiency

trade-off in strategy construction that is studied in this work. If discovering complex rules that

appropriately integrate weight and distance is costly or time-consuming, people might stop when

they discover ‘good enough’ rules that explain a majority but not all of their prior experiences or

imagined scenarios. Nevertheless, characterizing both the knowledge base and systems for

constructing these rules for arbitrary scenes remains an outstanding challenge for future research.

9.3 Conclusion

For decades, research into human physical reasoning has claimed both that it is based on

simulation and that it is based on logical rules. Here we argue that this is not a question of which

type of reasoning we use, but instead how these different types of reasoning combine to help us

understand and interact with the physical world. By viewing this problem as a selection between

cognitive strategies that maximizes efficiency, we can explain not just how people make judgments

about stability, but perhaps how people construct strategies for understanding the world in general.
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Appendix

A1 Additional behavioral results

Here we report additional details on the behavioral results from the first three experiments.

While these results were mainly designed to be analyzed based on models of human predictions,

analysis of participants’ patterns of accuracy and specific choices can provide further evidence

that they are not using a set of rules that are invariant across all instances under which they are

expected to be invariant.

A1.1 Experiment 1: Shapes

In the first experiment, we tested how judgments of balance would be affected if the

balanced objects were made up from irregular shapes that would make weight judgments less

certain. If participants were using rules alone to make judgments about these balance beams,

then as estimates of weights become more uncertain we would expect that participants would find

it more difficult to apply a rule that relied on weights, and therefore judgments should become

more noisy, but should always become closer to chance (33% accuracy).

We find that the block vs. arbitrary shape distinction does affect participants’ predictions

(see Figure A1, Left). Accuracy differed according to the beam classification

(F(5,126) = 48.38, p≈ 0) and the use of shapes (F(2,126) = 3.27, p = 0.041). Most importantly

though, the change in accuracy across shape types was modulated by the beam classification type

(F(10,126) = 5.60, p = 6.9∗10−7), suggesting that making weight more difficult to judge has a

different impact across the various balance beam types.

As the blocks become more irregular shapes and it became harder to judge their weight,

there is a significant drop in accuracy in the balance trials (red), the weight trials (green), and a

lesser drop in the accuracy of the conflict-weight trials (dark blue). These trials are ones in which

simple rules that account for symmetry or weight comparisons provide the correct answer – and so

noise in the weights makes judging symmetry or comparing weights more difficult, leading to a

decrease in accuracy. However, there is a drastic increase in the accuracy in the conflict-distance
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trials (pink), where weight comparison rules lead people astray. This cannot be explained by the

use of rules alone.

Thus as rules become more difficult to apply, people appear to rely less on those rules,

which hinders performance where those rules are beneficial, but conversely helps performance in

cases where heuristic rules are incorrect.
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Figure A1. Empirical accuracy across experiments by trial type. Each panel represents a different

classification of beam types from the three experiments, splitting Experiment 3 trials into the two subtypes.

Colors represent the Sielger beam classifications for trials – from left to right they represent balance,

conflict-balance, weight, distance, conflict-weight, and conflict-distance trials. The pivot location trials had a

separate classification, with dark red representing trials that were conflict-weight when the pivot was

centered and conflict-distance when uncentered, and vice versa for orange. The x-axis splits trials by the

relevant dimension being tested in each experiment. The y-axis is the average accuracy across all trials in

that classification. Bars represent 95% confidence intervals on the estimated mean accuracy.

A1.2 Experiment 2: Materials

In the second experiment, we tested how a density affected participants’ judgments of

balance beams. It is possible that rule-based judgments about balance beams could either

account for the different weights of blocks of different materials, or could work solely on numeric
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properties of the scene (e.g., counting blocks). However, physical simulation does use the different

densities and masses of objects to model the world (Hamrick et al., 2016; Yildirim et al., 2018;

Schwettmann et al., 2019), so if people do not account for the different materials it would suggest

that they are using a mental process other than the intuitive physics engine.1

While there was a large difference in accuracy across the beam configuration types

(F(5,132) = 224, p≈ 0), there was no evidence of a difference depending on whether the blocks

were all the same or multiple materials (F(1,132) = 0.05, p = 0.82), nor was there an interaction

between the two (F(5,132) = 0.13, p = 0.98; see Figure A1, Middle-Left). This suggests that

participants were accounting for differences in weight between the blocks, and that their estimation

of the relative densities was calibrated to the actual densities used in this experiment (likely

because this information was provided in the instructions).

A1.3 Experiment 3: Pivots

The pivot experiment was designed to test whether people appropriately account for the way

the pivot supports the balance beam. Because changes in the size or location of the pivot will

sometimes have effects on the way the beam actually falls, there is not an obvious way that we

should expect these changes will affect participants’ accuracy (see Figure A1, middle-right and

right). Instead, we can investigate the particular ways that participants react to these changes.

If participants understood that wider pivots provided more support and therefore were more

likely to balance, we should expect them to respond ’balance’ more often with wider pivots, and

indeed we find this to be true (F(3,152) = 17.36, p = 9.6∗10−10, Fig. A2A). However, if

participants did not think the beam would balance, we would not expect the size of the pivot to

change whether participants believed the beam would fall left or right, and participants did not

(F(3,152) = 0.11, p = 0.95, Fig. A2B).

We also tested whether participants incorporated the weight of the balance beam into their

judgments. If the position of the pivot is shifted along with the blocks configuration, the only thing

1 Also see Appendix Section A4 for an additional experiment that directly tested material versus pure shape judgments.
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Figure A2. How balance and fall judgments change over pivot sizes in Experiment 3. A: As the pivot

becomes wider, participants are more likely to believe that a beam will balance. B: However, if participants

do not believe the beam will balance, their judgment of which direction the beam will fall is unaffected by

pivot size.

that will change is that the beam itself will contribute part of its weight to destabilize the balance in

the opposite direction of the shift. We find that our participants do act in this manner: their

predictions that a beam will fall opposite to the direction of the pivot location increased by 10.1%

as compared to the unshifted trials (t(23) = 4.54, p = 0.00015), suggesting they do incorporate

the beam into their balance judgments.

A2 Model details

Here we provide further details on the structure of the Integration of Simulation and

Rules model, including both how the perceptual system gives rise to a scene representation, and

how the individual primitive strategies function.
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A2.1 Noisy Perception

The noisy perception module was designed to capture how people might take the visual

image of a balance beam in each of the experiments and translate it into a mental representation

useful for making predictions. While we believe that the internal representation that people hold is

a 3-D model from which we can simulate the future (Battaglia et al., 2013) or extract information

about the weight of individual objects (Hamrick et al., 2016), for computational efficiency this model

uses a minimal equivalent representation: each stack of blocks or shapes is assumed to be a point

mass at a its center point on the beam, the beam itself has a weight, and the pivot is represented

by its position and width.2

Therefore, for a basic trial that consists of just stacks of uniform blocks with the pivot

centered, for each stack, noisy perception would encode the number of blocks as the weight of the

stack and would place the stack at a position drawn from a Gaussian distribution centered around

the actual position with a standard deviation of σd .3 The pivot was typically assumed to be

centered but could provide support to beams along a constant width of widthpivot , so that any

system of the beam and blocks with a center of mass the rested within this width would be

predicted to balance in simulation. The weight of the beam itself was irrelevant when the pivot was

centered, and so was not taken into account for basic beams.

However, because the beams differed across the three experiments, the way that the stimuli

that deviated from the most basic type were encoded also differed:

Experiment 1: Shapes The only difference between the basic balance beams and the ones

2 Even if people see the pivot ending at a near point, modeling a pivot with some width could capture uncertainty in

simulation about whether the center of mass of the rest of the beam would like close enough to the pivot that it would

not fall.

3 We investigated whether the perception of weight of each stack of pure blocks was uncertain as well, but the

parameter fits for the noise in weight perception were indistinguishable from zero and did not increase model fit. This

suggests that people do encode all blocks as identical, which could in part explain why prior experiments could explain

behavior well without any perceptual uncertainty.
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with shapes is that the stacks of oddly shaped blocks were not as easy to judge the weight of as a

set of identical wooden blocks. The noisy perception module therefore encoded their weight

probabilistically, as the true weight multiplied by a log-normal distribution ln N (0,σshape).

Experiment 2: Materials The materials stimuli were perceived in the same way as the basic

beams, except the weight of each of the blocks was judged to be proportional to its actual density.

While we tested for bias and uncertainty in the relative densities of the materials, adding this

flexibility did not increase the model’s explanatory power at all. Because the material densities

were different enough that small errors in their assessment would not materially affect judgments,

and because participants were explicitly notified of the relative densities of the materials in the

introduction, we believe that participants’ perception was calibrated to the densities of the stimuli

well enough that bias and uncertainty were not required.

Experiment 3: Pivot For the pivot stimuli, the stacks of blocks were perceived identically to

the basic stimuli. However, the perception of the pivot and beam differed in two ways. First,

because the weight of the beam can affect the stability when the pivot is off center, the model

perceives the total weight of the beam noisily as a draw from an exponential distribution with rate

parameter weightbeam. Second, because the width of the pivot can affect how unbalanced a beam

can be supported, the effective width of support differed across all four different pivot widths, for

four support parameters: width2.5, width5, width10, and width20.

A2.2 Primitive strategies

Symmetry judgments. This primitive strategy tests whether the structures on both sides of

the pivot are identical and symmetrically placed, and judges the beam to ‘balance’ if so. Symmetry

is thought to be an easy feature to detect in scenes (Wolfe & Friedman-Hill, 1992), and thus is a

good candidate for one way people might quickly judge whether objects will balance.4 Because

perception is noisy, this requires testing whether all object stacks are ‘close enough’ to be

4 While the symmetry rule has not been directly proposed in the prior literature, it falls out naturally: if the weight is

judged the same on both sides, and then the distance is judged the same, the beam is predicted to balance.
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considered the same: for every stack of objects on one side, there must be a stack on the other

side of approximately the same weight (such that the difference is weights is below some ‘just

noticeable difference’ constant, w jnd), and approximately the same distance from the pivot (such

that the difference in distance is below a constant, d jnd). If all blocks are matched, then this rule

predicts ‘balance’, but is undecidable if there are any mismatches.

Weight rule. The weight rule is an implementation of the rule proposed by Siegler (1976):

the weights on both sides of the pivot are summed and compared, mostly irrespective of the

position of the objects on each side of the beam.5 Similar to the symmetry judgment, the weight

rule accounts for uncertainty in its representation by assuming that one side is heavier only if there

is a noticeable difference in weight between the two sides, using the same difference constant

(w jnd). If a side does have noticeably more weight, this rule predicts that the beam will fall in the

direction of that side; otherwise this rule is undecidable.

Distance rule. The distance rule is also an implementation of the rule from Siegler (1976):

the side with objects further from the pivot is assumed to fall. This is implemented by comparing

the objects with the greatest distance from the pivot on each side, and testing whether the

difference in that distance is greater than the same noticeable distance used in the symmetry

judgment (d jnd). If there is a difference, this rule predicts the beam will fall towards the side with

more distance, but otherwise this rule is undecidable.

Physical simulation. The simulation module is assumed to operate in a similar fashion to

the Intuitive Physics Engine suggested by Battaglia et al. (2013): people run forward their internal

representation of the world and use that future world to determine whether the beam will balance,

or which direction the beam will fall. Because physical simulation is stochastic (Smith & Vul, 2013),

we also assume that the way the physics engine resolves torque to calculate balance is noisy.

For computational simplicity, this process was implemented in the model as a numeric

5 The only cases where distance is considered in this rule is in scenes with wide pivots. In these cases, if a stack rests

so that its center of mass is above the pivot, it is assumed to be supported by that pivot and so its weight is not

counted towards either side.
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calculation rather than using a computer physics engine. This was accomplished by first

calculating the center of mass of the combination of the beam and all object stacks (assuming the

center of the beam is at distbeam = 0), then perturbing this calculation with Gaussian noise with

standard deviation σCoM:

CoM ∼N
(

∑weights ∗dists
weightbeam +∑weights

,σCoM

)
(A1)

If this center of mass rests over the effective support width of the pivot, the physics module

deems the beam to be balanced. Otherwise, it deems the beam to fall to the left or right,

depending on where the center of mass rests with respect to the pivot.

A2.3 Model fitting

To obtain a probabilistic distribution over predictions for a given trial, this process was

repeated 500 times each trial and the model predictions were tallied.

The model parameters listed above were fit across all three experiments at the same time.6

Because of the stochastic nature of this model, parameter estimation was performed using the

simultaneous perturbation stochastic approximation (SPSA) technique for stochastic gradient

descent (Spall, 1992).

A3 Additional model results

A3.1 Additional model variants

Section 5.2 presented analyses showing that, compared to the baseline model that included

only the SP and SWP strategies, any model variants that allowed for additional strategies failed to

improve fits to human performance, whereas any variants that removed or replaced strategies

caused the model to fit human performance worse. Here we expand this analysis by comparing

the baseline model to all models that allow one additional strategy.

6 These did not vary appreciably if they were fit to each experiment individually.
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As can be seen in Figure A3, there is no individual strategy that reliably improves the

model’s ability to explain human performance, which, together with the analyses in Section 5.2,

suggests that peoples’ behavior can be sufficiently explained with only the symmetry->physical

simulation and symmetry->weight->physical simulation strategies.
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Figure A3. Differences in cross-validated log-likelihood for model variants versus the baseline model. Each

model includes one strategy in addition to the baseline SP/SWP. Points indicate mean difference in

log-likelihood over 50 samples, bars indicate the 10th to 90th quantiles. The dotted line indicates parity with

the baseline model.

A3.2 Individual differences in strategies vs. perception / dynamics

In Section 5.4, we assumed that the mixtures of strategies or rules could vary across

participants, while all other parameters were shared. Here we show that the majority of individual

differences are in fact in the strategies that people use, rather than in uncertainty about perception

or dynamics.
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Using the same cross-validation strategy as in Section 5.4 – splitting the trials into two equal

sets, optimizing parameters on one set, and comparing the likelihood on the held out set, then

repeating 50 times – we compare model fits assuming that all participants can be explained by a

single set of parameters with three variants: (1) allowing all parameters to vary per individual, (2)

allowing only parameters defining the mixture of strategies (SP/SWP/Guess) to vary by participant,

but sharing all perceptual and dynamic parameters, and (3) allowing the perception and dynamics

parameters to vary by individual, but assuming consistent strategy usage across participants.

As can be seen in Figure A4, the ISR’s explanatory power is improved by allowing all

parameters to vary by participant (∆LLH = 427, 90% CI= [382,466]), individual variation in

strategy usage explains about 80% of this difference (∆LLH = 338, 90% CI= [293,386]), while

individual variability in perception and dynamics explains much less (∆LLH = 108, 90%

CI= [83,132]). Thus while there may be some individual differences in the the way that people

perceive, judge, and simulate these balance beams, the biggest axis of individual variation is in

how they weight each strategy.

A3.3 Rationality analyses including distance

In Section 5.5, we showed that of the three primitive strategies that people seemed to use

(symmetry, weight, and simulation), under a range of assumptions about the cognitive costs of

those primitive strategies – in which simulation is moderately costly and the symmetry and weight

rules are relatively cheap – the integrated strategies that we observed people to use are the ones

that provide the highest value of computation, in line with resource rationality.

Figure 12 showed this in aggregate, but to compare strategies we defined a “reasonable

strategy to use” as one that provided the highest value of computation in at least 10% of

resampled trial sets. Figure A5 shows more detail for this analysis, splitting the integrated

strategies into the same groups used in Figure 12, but splitting these strategies out into individual

panels to show the proportion of the time each strategy group dominates. This figure shows that in

most individual cost regimes, when one strategy dominates it tends to be best across the majority



INTEGRATING HEURISTIC AND SIMULATION-BASED REASONING IN INTUITIVE PHYSICS 92

●

●

●

0

100

200

300

400

All

Stra
te

gy
Oth

er

Individual−varying Parameters

∆ 
C

ro
ss

va
lid

at
ed

 L
LH

Figure A4. Comparison of individually fitting model parameters versus setting all parameters to be the same

across all participants. Points represent difference in average cross-validated log-likelihood versus a model

that assumes the same parameters for all participants, with bars representing 90% CI across 50 samples.

Individual parameter fits included either all model parameters (All), parameters relating to the choice

between SP/SWP/Guess strategies (Strategy ), or all parameters describing perceptual uncertainty,

simulation uncertainty, and rule thresholds (Other ). Allowing all parameters to vary by individual provides

the best explanatory power, but most of the improvement is driven by the strategy parameters (2 parameters

per participant) and not the rest (9 parameters per participant).

of all trial sets. Nonetheless, when simulation and the weight rule are moderately costly and the

symmetry rule is cheap, the SP rule is best; however, if simulation is moderately costly but both the

symmetry and weight rules are cheap, then the SWP (or WSP) rule will dominate.

However, in the main paper we limited our analysis to just the symmetry, weight, and

simulation primitive strategies, since our participants did not appear to notice that the distance rule
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Figure A5. Proportion of resampled trial sets for which a strategy group provides the highest value of

computation against all other strategies consisting of the symmetry, weight, and simulation primitive

strategies. Each panel represents a separate strategy group, each structured like Figure 12: the sub-panels

represent different cost assumptions for simulation, while the x- and y-axes represent different cost

assumptions for the weight rule and symmetry rule respectively.

was an option. Here we further analyze the rationality of each strategy if we assume that the

distance rule can be used. Again splitting integrated strategies into different groups in which the

outcome will be equivalent (since the symmetry rule cannot trigger if either the weight or distance

rule does), we show the proportion of the time each strategy dominates in Figure A6. For simplicity

sake we assume that the weight rule and distance rule will always have identical cognitive costs,

since both rules are of approximately equal complexity.

Similar to the analysis excluding the distance rule, we find that the SP strategy dominates

when simulation is moderately expensive (the middle row), the symmetry rule is cheap (bottom of

each subfigure), and both the weight and distance rules are moderately expensive (to the right of
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each subfigure). However, when the weight and distance rules come less costly (left of each

subfigure), we find two main differences from the analysis without the distance rule. First, in many

cases it is optimal to include the distance rule as part of an integrated strategy as well as the

weight rule (SDMP/DSMP/DMSP). Second, under some conditions, using simulation is no longer

required to produce the most efficient strategy (SDM/DSM/DMS). This is because balance beams

for which neither the symmetry, weight, or distance rules apply are ones that are particularly

challenging, as the weights and configurations of each side will be very similar. In these cases,

noisy simulation is unlikely to provide a reliable answer, and therefore it is optimal to simply guess

and not accrue the cost of simulation. Thus it is an open question whether, if participants notice

the distance rule is an option (see Section 9.2.3), that they will in some cases eschew the use of

simulation and rely solely on the other three rules.

A4 Supplemental experiment: Physical versus geometric processing

We have suggested that judgments about balance beams are based on a combination of

rules and simulation that work over a physically plausible representation of the world. Yet many of

the prior proposed rules for making judgments about balance beams require a very sparse

representation of the world, capturing (at most) the number of blocks and where they are placed

on the beam, but not requiring information about physical attributes of the blocks, such as their

material properties or actual weights. Although the experiments with blocks of different materials

suggest that people do take into account these physical properties (Exp. 2 & 4), we have not

directly tested whether those judgments could be alternately explained by a purely “geometric”

parsing of the scene. In this experiment, we therefore asked participants to make judgments about

balance beams with blocks of different materials (similar to Experiment 2) such that accounting for

the physical material properties was required to accurately judge how the beam would fall.

A4.1 Experiment

We recruited 26 participants from Mechanical Turk, who were compensated $1.50 for their

time.
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The procedure was identical to the materials experiment; only the stimuli were different.

Participants each made judgments about 140 different balance beams, created in matched

pairs such that the geometric representation of the beam was identical across the pairs (e.g., the

same number of blocks were positioned the same distance from the pivot), but one of the pair was

made of blocks of the same materials (pure) while the other beam in the pair used blocks of

different materials. These configurations were designed so that the way the beam fell or balanced

would be different for each member of the pair, in one of five ways (see Figure A7, Left):

1. Balance -> Weight. The beam had a symmetric configuration of blocks so would balance

with no material differences, but would fall to the side with more weight with separate

materials.

2. Weight -> Weight. Blocks were placed in a typical ‘weight’ configuration such that the

distances were identical but there were more blocks on one side. When the materials

differed, however, the aggregate weight of the side with fewer blocks was large enough to

cause the beam to tip in that direction.

3. Conflict-balance -> Conflict-weight. The blocks were placed in a ‘conflict-balance’

configuration such that with the same material one side had more blocks and the other had

greater distance, but the torques were balanced. However, when the materials differed, the

side with more weight would be the one to fall.

4. Conflict-distance -> Conflict-weight. The blocks were placed in a ‘conflict-distance’

configuration such that with a single material type the side with fewer blocks and further

distance would fall; however, with different materials the weight of the side with more blocks

would overcome the distance and the beam would fall to that direction.

5. Other -> Conflict-balance. These beams were designed around the mixed blocks, so that

there was more weight on one side and more distance on the other, but the torques were

equal on both sides. On the other hand, the matched configurations with a single material
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type would fall, but the beam configuration was not well controlled – these could either be

conflict problems, or trivial problems that were never classified because either a simple focus

on weight or on distance would provide the correct answer.
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Figure A7 . Left: Example trials from the experiment. Across all matched trials, the configuration of blocks

was identical; only the distribution of materials differed. Right: Plot of accuracy on ‘pure’ material trials

(x-axis) versus accuracy on the matched ‘mixed’ materials trials, with each point representing a single

matched trial pair. A negative correlation would be expected if people were using purely geometric

reasoning, but no correlation was observed (r =−0.017).

A4.2 Results

If participants were using purely geometric information to make judgments about the balance

beams, then we would expect their judgments to be similar across the matched trials since the

only difference is the non-geometric material attributes of each block. And because the trials were

designed so that the correct answer differed across the matched pairs, we would then expect

accuracy to be anti-correlated across those pairs. However, as can be seen on the right side of

Figure A7, the correlation between the pure and mixed accuracies for each of these matched trials

is effectively nonexistent (r =−0.017, p = 0.90), which suggests that participants were not

treating the pairs identically.
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However, we also do not expect accuracies to be well correlated across the matched trials

either – even if participants are appropriately accounting for the different materials, people are

more accurate on some beam configurations than others. This can be observed in the right side of

Figure A7: with matched trials where the configurations are simple (purple: balance -> weight and

blue: weight -> weight), accuracy is very high for both the pure and mixed trials. Conversely, when

the pure blocks are in a difficult conflict configuration, but the mixed blocks make a conflict-weight

beam (which people are fairly accurate on), accuracy on the pure trials is low but accuracy on the

mixed trials is high. And in the ‘other -> conflict-balance’ trials, accuracy is low in the mixed,

conflict-balance trials, but varies on the pure trials because some configurations are trivial while

others are in difficult conflict patterns.

But despite the range of differences between trial pairs, the ISR model can explain

participants’ predictions well (see Figure A8, left). Just as with Experiments 4 and 5, we can re-use

the ISR model without re-fitting any parameters, and this model explains participants’ predictions

well in aggregate (r = 0.91), and across both the pure (r = 0.94) and mixed trials (r = 0.88).

We can also test how well a purely geometric model can explain participants’ predictions.

This model is identical to the ISR model, except it treats materials as all having identical density.

Even though this geometric model was fit on the data from this experiment, it still could not explain

participants’ predictions as well as as the hybrid model (r = 0.67, see Figure A8, right). Though it

does an adequate job explaining how people perform on the ‘pure’ trials where material

information is not required (r = 0.89), it fails to explain predictions on the ‘mixed’ trials (r = 0.46),

as it expects participants to do poorly on the ‘balance -> weight’ and ‘weight -> weight’ mixed trials

where accuracy is very high. Thus people are using physical information such as density in their

predictions rather than simply attending to the geometric configuration.
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Figure A8. Plot of model predicted accuracy for each trial (x-axis) versus observed empirical accuracy

(y-axis). Each point represents a trial, with colors representing the pair configuration and the shape

representing the material type (circles: pure; triangles: mixed). Left: Comparison of the ISR model. Right:

Comparison of the geometric processing model.


