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Abstract 

Does human behavior exploit deep and accurate knowledge about how the world works, 

or does it rely on shallow and often inaccurate heuristics? This fundamental question is 

rooted in a classic dichotomy in psychology: human intuitions about even simple 

scenarios can be poor, yet their behaviors can exceed the capabilities of even the most 

advanced machines. One domain where such a dichotomy has classically been 

demonstrated is intuitive physics. Here we demonstrate that this dichotomy is rooted in 

how physical knowledge is measured: extrapolation of ballistic motion is idiosyncratic 

and erroneous when people draw the trajectories, but consistent with accurate physical 

inferences under uncertainty when people use the same trajectories to catch a ball or 

release it to hit a target. Our results suggest that the contrast between rich and calibrated, 

versus poor and inaccurate patterns of physical reasoning exist as a result of using 

different systems of knowledge across tasks, rather than as a universal system of 

knowledge that is inconsistent across physical principles. 

 

Keywords: domains of behavior, domains of knowledge, intuitive physics, rationality, 

heuristics 
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1 Introduction 

Humans function remarkably well in varied, uncertain environments, but 

psychological research has documented many dramatic failures of human reasoning: we 

can walk over precarious terrain and stack dishes in elaborate arrangements in a drying 

rack, but we have trouble explaining how gravity works in basic situations (Hecht & 

Bertamini, 2000; McCloskey, Washburn, & Felch, 1983). Such discrepancies between 

robust, effective behavior and dramatic errors in simple problems have fueled key 

debates in behavioral economics (Camerer, 1987), communication (Piantadosi, Tily, & 

Gibson, 2011), reasoning (Tversky & Kahneman, 1983), and recently in the domain of 

intuitive physics (Marcus & Davis, 2013). Here we argue for a resolution to these 

tensions in intuitive physics: these differences in accuracy are not caused because we 

have a unified set of knowledge with large variance in accuracy across domains, but 

rather that we have different systems of knowledge – some more accurate than others – 

that we select depending on the task at hand.  

People often make surprising errors in simple intuitive physics judgments such as 

drawing future trajectories of an object that has rolled off a cliff, has been dropped from a 

moving airplane, or released from a circular ramp (Caramazza, McCloskey, & Green, 

1981; McCloskey, Caramazza, & Green, 1980; McCloskey & Kohl, 1983; Proffitt & 

Gilden, 1989; Ranney, 1994), but when people predict trajectories of billiard balls, 

estimate properties of colliding objects, determine how fluids will pour, or judge the 

stability of towers, their physical reasoning is often very accurate and consistent with the 

principles of Newtonian mechanics (Bates, Battaglia, Yildirim, & Tenenbaum, 2015; 

Battaglia, Hamrick, & Tenenbaum, 2013; Gerstenberg, Peterson, Goodman, Lagnado, & 
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Tenenbaum, 2017; Kubricht et al., 2016; Sanborn, Mansinghka, & Griffiths, 2013; Smith 

& Vul, 2013). Prior literature has attempted to explain this discrepancy by suggesting that 

some human knowledge of physical principles is accurate, while other knowledge is 

erroneous (e.g., people can estimate the stability of stacked objects, but have erroneous 

conceptions of ballistic motion; Marcus & Davis, 2013). This theory suggests that there 

are discrepancies across domains of physics: our system for intuitive physics includes 

accurate accounts of certain physical principles, but erroneous explanations of others. 

However, there are also differences between these experiments in how this 

knowledge is measured: studies that demonstrate failures of physical knowledge tend to 

rely on asking participants to draw the future trajectory of objects or verbally explain how 

the world will unfold (e.g., diSessa, 1993; McCloskey et al., 1980; Shanon, 1976), while 

studies that show accurate knowledge tend to require people to make single judgments 

about a continuous physical property such as weight or future location (e.g., Battaglia et 

al., 2013; Sanborn et al., 2013; Smith & Vul, 2013). Differences in the literature might 

therefore be due to the types of tasks used rather than the types of knowledge required. 

Hegarty (2004) proposed that we employ different modes of physical reasoning 

depending on the format of the task, but to this date no one has directly tested for a 

difference in how people reason on tasks that require identical physical principles to 

solve but differ in how knowledge is queried. If intuitive physics is all derived from the 

same base of knowledge, we expect that people would demonstrate similar errors and 

biases across tasks that query knowledge in different ways; if people rely on different 

sources of knowledge, on the other hand, we would expect distinct patterns of behavior 

across different tasks. 
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In this paper, we test whether participants’ behavior might differ between tasks 

that rely on the same physical principle using the classically-studied test-case of judging 

the ballistic trajectory of a ball released from a pendulum after the cord has been cut, and, 

if it does differ, how accurate physical reasoning is across tasks. In Experiment 1, 

participants each performed three distinct tasks: one drawing task, and two interactive 

tasks, catching and releasing. The drawing task replicated a classic failure of intuitive 

physics in which participants were shown static pictures of pendulums and asked to draw 

the path that a ball would take if the cord were cut at various points (Caramazza et al., 

1981). In the catching and releasing tasks participants observed a pendulum in motion 

and were asked either to position a bucket to catch the ball once the pendulum cord were 

cut by a “knife” or release the ball from the pendulum so that it would be projected into a 

fixed bucket. All three of these tasks entailed solving the same physical problem – 

extrapolating the ballistic trajectory of a pendulum bob after the cord has been cut – so 

the systematic differences between human judgments in each task could arise only from 

the structure of the task itself, rather than differences in the underlying physical 

principles. We find that while people’s drawings of such scenarios reveal behavior 

inconsistent with performance on the other two tasks, both catching and releasing 

predictions are consistent with the hypothesis that people form physical inferences using 

relatively accurate physical models perturbed by uncertainty (Battaglia et al., 2013; 

Sanborn et al., 2013; Smith & Vul, 2013).  

In Experiment 2, we evaluated whether the differences between the tasks were 

due to the nature of the response format, or differences in the stimulus presentations. In 

the catching and releasing tasks, participants observed the pendulum in motion, but in the 
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drawing task participants only observed a diagram of a pendulum on a sheet of paper. 

Because observing motion has been found to improve physical reasoning in certain tasks 

(Kaiser, Proffitt, & Anderson, 1985; Kaiser, Proffitt, Whelan, & Hecht, 1992), we 

investigated whether participants would demonstrate accurate physical knowledge on the 

drawing task only in the presence of pendulum motion. Although participants’ judgments 

were different after observing motion, we find that these differences were driven by 

additional information about the velocity of the ball on the pendulum, but found no 

evidence that people used different, more accurate physical principles when they had 

access to richer stimulus information. 

Together, these results suggest that differences in people’s physical reasoning is 

not mainly driven by differences in domains of knowledge, but rather by the task they are 

solving. It is not the case that most poor performance is based on concepts within our 

physical knowledge that are categorically erroneous, but instead our capabilities differ 

based on the problem that we are using them to solve.  
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2 Experiment 1: Differences in behavior between tasks 

2.1 Methods 

2.1.1 Participants  

Thirty-five UC San Diego undergraduates (with normal or corrected vision) participated 

in this experiment for course credit. All participants gave informed consent to participate 

in accordance with guidelines set by the UC San Diego Institutional Review Board. 

Participants were collected over a span of two weeks, and the number of participants was 

deemed appropriate before analysis based on pilot work (Smith, Battaglia, & Vul, 2013). 

Three participants were removed from analysis because their performance indicated that 

they were often responding randomly (see Supplemental Material, Figure S1 for details). 

 

2.1.2 Procedure  

Participants performed three blocked tasks that involved predicting the ballistic trajectory 

of a ball released from a pendulum: catching, releasing, and drawing. Participants always 

performed the drawing task after the other two tasks, but the order of the catching and 

releasing tasks was randomized across participants. 

In the interactive tasks, participants viewed a computer monitor from a distance of 

approximately 60 cm, which initially depicted a ball swinging from a cord, consistent 

with pendulum motion. At some point in time the cord would be cut and the ball would 

be released, thus entering ballistic motion. A bucket was placed beneath the pendulum, 

and on each trial the participant's goal was to get the ball to drop into the bucket after 

being released. How they were allowed to interact with the scene differed between the 
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catching and releasing tasks: participants could move the bucket but had no control over 

the point of release (catching) or could choose when to cut the cord to hit a fixed bucket 

(releasing). With the exception of one initial practice trial per task that familiarized 

participants with the scenario, the path of the falling ball was occluded in order to 

minimize learning. At the end of each trial, participants were given binary feedback that 

indicated whether or not the ball successfully landed in the bucket (we found no evidence 

of learning from this feedback; see Supplemental Materials section S2). A success earned 

participants a point, and each participant’s score was totaled across all trials. This score 

was used solely as motivation to engage with the task and did not influence compensation 

or any of our analyses. 

 

2.1.2.1 Catching task 

Participants were instructed to adjust the bucket's horizontal position using the 

mouse so that the ball would land in the bucket after being released. The release time was 

pre-determined and varied across trials. Participants were notified of where the cord 

would be cut by an icon of a knife, which would darken when the cord was about to be 

cut. This knife let participants know where and in which direction the ball would be 

released from the pendulum so that they could begin forming their prediction before the 

cord was cut, thereby avoiding motor limitations from being unable to position the bucket 

quickly enough. The center of the bucket was recorded as the participant’s judgment 

about where the ball would land (Figure 1, top; Movie S1). 
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2.1.2.2 Releasing task 

The bucket was held fixed at a pre-determined position and participants were 

instructed to cut the pendulum cord by clicking the mouse at a time that would cause the 

ball to drop into the bucket. Cutting the cord was not allowed for an initial period of time 

randomly determined between 1.2-3.6 s to avoid biases from participants who would 

attempt to cut the cord as quickly as possible. The time at which the cord was cut was 

recorded for each trial (Figure 1, bottom; Movie S2). 

 

 

 

 

Figure 1: Diagram of trials in the catching (top) and releasing (bottom) trials. Catching: A. 

Participants observe a ball swinging on a pendulum and the ‘knife’ that will cut the cord. They 

move the bucket horizontally with the mouse. B. When the cord is cut, the trajectory of the ball is 

obscured. C. Binary feedback is provided after each trial. Releasing: D. Participants observe the 

ball on the pendulum.  The coloring of the ball indicates a timer, such that once the red color is 

gone, participants can click the mouse to release the ball from the cord. E. The trajectory of the 

released ball is obscured. F. Binary feedback is provided. 

 



Running	head:	Different	Physical	Intuitions	Between	Tasks,	Not	Domains	

	 10	

For each of the these two tasks, participants repeated 48 different trials five times 

each in a randomized order. Trials were matched across tasks such that where the ball 

landed in a catching trial was the bucket position in the matched releasing trial. In the 

catching task, there were 16 distinct release times, crossed with three vertical distances 

between the nadir of the pendulum and position of the bucket – either 20, 35 or 50% of 

the total screen height. 

Both tasks and all trials used the same pendulum. This pendulum had a length of 

half of the screen, and reached a maximum angle of 35° from vertical at its apex. The 

period (2.5s) and force of gravity were set to obey Newtonian mechanics as if the 

pendulum were positioned at a depth of 6m from the participants. This depth was selected 

to conform to participants' general expectations about the natural period of the pendulum 

as seen on the 2D computer screen used in the experiment, as determined by pre-

experimental norming. To determine the motion of the pendulum, the cord was assumed 

to have negligible mass as compared to the ball, and so we could use simplified physical 

models to calculate the position of the pendulum at any point in time.  

 

2.1.2.3 Drawing task 

After the two computer-based tasks, participants were given a two-page packet to 

fill out. On the first page was the drawing task – a set of four diagrams depicting 

pendulums at different points in their swings. Participants were asked to draw the path 

that the ball would take if the cord were cut at the time depicted in the diagram (Figure 

2). On the second page was a brief survey that asked about the participant’s number of 

prior physics courses and strategies used in the experiment. These questions were 
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reviewed to check whether participants were responding based on surface-level features 

or using other strategies that did not involve prediction – however, we did not find 

evidence of this. 

 

Figure 2: Handout provided to participants for the drawing task. Instructions and stimuli were 

based on Caramazza et al. (1981). 

 

To match drawing predictions to those from the catching and releasing tasks, we 

translated the drawing predictions to continuous measures by determining where 
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participants would position the bucket in the catching task if their predictions were based 

on their drawings. To perform this translation, we first fit either linear or quadratic 

functions through the ball and the lines participants drew.1 The first author and three 

research assistants at UCSD marked on each drawing at least five points along the drawn 

path, producing on average 54 points per drawing. We then fit two lines – linear and 

quadratic – through those points using least squares estimation. The quadratic fit was 

used for extrapolation unless either it had a positive quadratic term (implying the ball 

would move upwards), or the average distance between each point and the linear line was 

less than 1/8th cm more than the average distance from the quadratic line. In this way we 

allowed for curved drawings when appropriate but prevented inappropriate curvature that 

could bias results when the drawing itself was mostly linear. Additionally, this 

extrapolation smoothed out motor noise during production of the drawings. We then 

recorded where that extrapolated line crossed each of the three bucket heights, producing 

three “pseudo-catching” results per drawing – this yielded 12 results per participant. 

In addition, similar to Caramazza et al. (1981), drawings were classified into one of 

eleven patterns that were either classifications from that experiment, or were observed in 

a pilot experiment (Smith et al., 2013). Three undergraduate research assistants from both 

UCSD and MIT who were naïve to the hypothesis performed this classification 

independently, and were told to match each participant’s drawings to one of the given 

patterns as best as they were able, or rate the participant as unclassifiable if there was no 

matching pattern. A participant’s drawing was considered matching a pattern if at least 

																																																								
1 We could not simply determine where the drawn predictions crossed the line of each bucket height, since many 

drawings did not extend that far or ended at the left or right side of the drawing area. Therefore, we used a common 

extrapolation technique for all drawings.  
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two of the three raters agreed; if all raters disagreed, the participant’s drawings were 

considered unclassifiable. There was high inter-rater reliability (Fleiss’ κ = 0.736), and 

all three raters agreed on the classification for 23 of the 32 participants.  

2.1.3 Models of physical reasoning 

Even if people are using accurate physical principles to make predictions, 

uncertainty about the scene or motion of objects can cause biases in the predictions 

themselves (Battaglia et al., 2013; Sanborn et al., 2013; Smith & Vul, 2013). Therefore, 

to test whether participants were using accurate physical principles, we designed a model 

of physical prediction to determine how people would behave if they were basing their 

predictions on Newtonian mechanics. This ‘calibrated’ model assumes an idealized 

mental representation of the pendulum system, perturbed only by uncertainty about the 

depth location of the pendulum, and by accumulated noise in the trajectory of the ball 

throughout extrapolation (Smith & Vul, 2013). 

We split this model into two parts: the predictive forward model, and the task 

action. The predictive forward model describes how a trajectory is extrapolated, and thus 

the physical understanding presumed under the model. For this task, this is instantiated as 

a prediction of where the ball will go when cut from the cord. This forward model is a set 

of rules shared across the catching and releasing tasks. We define the forward model as a 

function R(trel,y) which returns the predicted position where the ball would cross a line at 

height y if released at time trel. 

The task action determines how those predictions are used to position the bucket 

or choose when to cut the cord, after incorporating noise/uncertainty from either 
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accumulated prediction errors or motor control; these task actions differed across the two 

interactive tasks to account for the different ways of controlling the system (moving the 

bucket versus cutting the cord). 

In addition to testing whether participants’ predictions could be explained by 

calibrated physical reasoning, we also considered whether predictions could be explained 

by alternate, non-physical reasoning. To test these non-physical accounts, we compared 

variants with different non-physical forward models against one another (e.g., 

substituting the R function of the forward model); the task actions, however, stayed 

constant between models.  

 

2.1.3.1 Calibrated physics forward model 

The calibrated physics forward model assumes that people have an accurate 

knowledge of the laws of ballistic dynamics. To predict where the ball will land, the 

model uses Newtonian ballistic motion equations to extrapolate the path of the ball given 

its position and velocity at the moment of release, where [x0, y0] refers to the initial 

position, [vx0, vy0] refer to the initial velocity, t is the time since release, and g is the 

acceleration due to gravity: 

𝑥 𝑡 = 𝑥$ + 𝑣'$𝑡 

𝑦 𝑡 = 𝑦$ + 𝑣)$𝑡 −
1
2𝑔𝑡

. 

Although we assumed people have good knowledge of the laws underlying the 

pendulum system, we also assumed participants were uncertain about the distance of the 

pendulum in depth from the observer – a necessary assumption since the 2D image of a 
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pendulum on a computer screen is not interpreted as a physical pendulum literally at the 

depth of the computer screen. There is a lawful relationship between pendulum period, 

cord length, and the force of gravity that people are sensitive to (Pittenger, 1985), and 

participants directly observe the period of the pendulum and are assumed to have a sense 

of realistic Earth gravity (McIntyre, Zago, Berthoz, & Lacquaniti, 2001). But because the 

pendulum was presented on a computer screen with no depth cues, people must infer how 

far behind the screen they expect the pendulum to be positioned, and therefore the length 

of the pendulum cord. Because of the lawful relationship between pendulum length and 

gravity, changes in the depth of the pendulum have a direct correspondence to changes in 

gravity while holding the depth constant. Therefore for computational efficiency, our 

model assumed a constant cord length and estimated the effective strength of gravity (g) 

in px/s2.  

This means that calculating R(trel,y)	 involved	 determining	 the	 location	 [x0,	 y0]	

and	velocity	[vx0,	vy0]	of	the	ball	at	trel,	then	solving	the	differential	equations	above	

for	the	x-position	given	a	specific	y-position,	assuming	a	positive	t. 

 

2.1.3.2 Non-physical forward models 

Despite the body of literature studying the physical misconceptions that people 

hold, there is a dearth of formalized models about how people might understand ballistic 

motion. Most research has instead focused on conceptual descriptions of how gravity 

influences falling objects (Shanon, 1976) or how objects accelerate during their trajectory 

(Hecht & Bertamini, 2000). While Zago et al. (2004) suggest that people fail to account 

for gravitational acceleration in prediction, this only implies that non-physical models 
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should predict that the ball will travel in a straight line. This account does not predict, 

however, the direction in which the ball should move when released. We therefore 

assumed that the extrapolations might be based on the same biased principles that have 

been found in previous drawing studies of ballistic motion (Caramazza et al., 1981). To 

do so, we formalized alternate forward models that could capture the same patterns 

participants made on the drawing task to test whether these patterns would be extended 

into the catching and releasing tasks. Each of these non-physical drawings can be 

captured by extrapolating the ball’s path in a straight line at an angle away from the 

vertical (θr). For each model, this release angle was calculated as a function of the angle 

the pendulum cord made with the vertical at the moment of release (θc); however, the 

calculation of that angle varied by model (see Figure 3).2 

In addition, Kozhevnikov and Hegarty (2001) suggest that people use impetus 

physics as their default implicit beliefs about physical events. Although no participants 

displayed beliefs of impetus physics in our drawing task (and only 11% of participants 

did so in Caramazza et al., 1981), we aimed to test whether an impetus model might 

capture participants’ responses on the interactive tasks better than a calibrated physics 

model or other non-physical models. To formalize this model, we take the theory from 

Caramazza et al. (1981) and McCloskey (1983) that the ball will travel along the path of 

the pendulum (or beyond if near the apex) before losing all ‘impetus’ and falling down. 

																																																								
2 Non-linear extrapolated trajectories, such as adding a quadratic term to the path, would make these non-physical 

models equivalent to a physical model of a parabolic ballistic trajectory; thus only linear extrapolation paths are 

guaranteed to differ from physical extrapolation. 
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Figure 3: Diagrams of the forward model predictions for the path of the ball at four different cut 

points along the pendulum, using best fitting parameters. Ground truth is the path of the ball that 

was used to determine a successful catch in the experiment.  

 

We therefore tested four non-physical models: angled, outward, straight down, 

and impetus. The angled forward model calculated the ball angle as a piecewise linear 

function of the angle that the pendulum formed with a line down its middle at release. 

There were two intercepts and two slopes for this function, so that the ball could travel 

differently depending on whether it was swinging downwards or upwards, and the angles 

were mirrored when the ball was travelling leftward for symmetry: 

θ0 =
i2 + s2θ4 if	θ4 > 0
i. + s.θ4 otherwise 

The outward model assumed that the ball would continue along the path of the 

cord, but allowed for the angle to shift upon release.  Thus the ball angle was calculated 

as the same as the release angle, with an adjustment a as a free parameter: 

θ0 = a ∗ θ4 

The straight down model simply assumed that the ball would drop upon release, 

which was equivalent to setting the release angle to 0: 

θ0 = 0 
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For each of the first three non-physical models, R(trel,y)	 was	 calculated	 by	

finding	the	ball’s	position	[x0,	y0]	and	the	angle	of	the	string	θc at time trel,	then	using	

one	of	 the	equations	above	 to	 calculate	 the	 release	angle	θr.	 Finally,	 the	x-location	

where	the	ball	would	cross	the	given	y-location	was	calculated	by	solving	the	system	

of	equations:	

𝑥 𝑡 = 𝑥$ + 𝑡 ∗ sin	 𝜃C  

𝑦 𝑡 = 𝑦$ + 𝑡 ∗ cos	 𝜃C  

 

Finally, the impetus model assumed that the ball would continue to travel a constant 

distance along the pendulum’s arc in the direction of motion (possibly moving beyond 

the apex of the swing so that the ball could reach outside the horizontal confines of the 

pendulum arc), and then fall straight down. This formulation was chosen to match the 

diagrams representing impetus physics and participants’ descriptions that “the ball will 

continue for a short time along its original arc, and then will fall directly to the ground” 

from Caramazza et al. (1981). Because the pendulum was identical in all cases, we 

instantiated this motion by adding a constant angular offset (θo) from the angle where the 

ball was released (θc) in the direction of the ball’s motion, then assuming that the ball 

would fall straight down from that drop point (where L is the length of the pendulum): 

θE =
θ4 + θF if	swinging	rightward
θ4 − θF otherwise  

𝑥 = 𝐿 ∗ sin 𝜃J 	
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2.1.3.3 Task actions 

The forward models provide a single deterministic prediction of where the ball will 

travel given that the cord is cut in a certain position, but people must use this information 

to interact with the task, specifically choosing where to place the bucket in the catching 

task or when to cut the cord in the releasing task.  

In the catching task, participants observed when the ball was cut from the cord 

(rtr) and the height of the bucket (ytr), and were required to predict where it would land. 

This model captures human performance by using the forward model to determine where 

the ball should go given its release, and assumed that this would be the average location 

that participants would place the bucket. However, participants’ responses were variable, 

and the model must capture this. Noise in tasks that require catching a hidden falling 

object includes both predictive and motor uncertainty (Faisal & Wolpert, 2009), both of 

which were modeled together as Gaussian noise around the predicted position. Since 

prediction error accumulates throughout the path, the model’s uncertainty increases 

linearly with the vertical distance between the bucket and the release height of the ball 

(htr), where ac and bc are two free parameters to determine the linear fit: 

σL0 = a4 + b4 ∗ hL0 

Thus the choice of where to place the bucket on the catching task (S) on a specific 

trial can be described as a normal distribution around the predicted landing spot 

according to the forward model: 

SL0~𝒩 R tL0, yL0 , σL0  

 In the releasing task, participants needed to solve the inverse problem from the 

catching task: given a specific landing position (buckettr, ytr), where in the pendulum 
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period should the ball be when the cord is cut? We assume that people always have a 

reasonable sense of where the ball will go if released at each point in time. This was 

approximated analytically by determining R(t,ytr) for all t segmented in blocks of 10ms. 

From this information, we can form a function over possible release times that returns 1 if 

the ball will land in the bucket according to the model, and 0 otherwise: 

L t L0 =
1 if	R t, yL0 ∈ bucketL0
0 otherwise

 

Assuming that motor errors are symmetric in time (Dawson, 1988), the optimal 

time to release the ball (Tdec) would be the middle of any contiguous period in which the 

ball would land in the bucket (e.g., L(t) = 1). If there were two contiguous periods of 

success,3 we assumed that participants would be probabilistically more likely to choose 

the release point with the shorter vertical distance between the ball and the bucket (for a 

similar reason that we assume that uncertainty accumulates over vertical distance in the 

catching task). This choice was formalized as a logistic function on the difference 

between the ball heights at each point (h) with a single scaling parameter (sr), but no 

intercept shift (since we assumed that at equal heights, participants should be ambivalent 

about which time to choose): 

p T2 = logistic s0 ∗ h[2 − h[.  

Once the model chooses the time point that it aims to cut, its actual release time 

for a trial (Trel) was selected as value from around that choice with Gaussian noise fit as a 

free parameter (σterr) to reflect the motor errors that people make: 

																																																								
3 For instance, if the bucket were directly below the center of the pendulum, there are two periods when the ball could 

be released: when it is to the left of the bucket and traveling rightward, or when it is to the right of the bucket and 

traveling leftward. 
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TC\]~𝒩 TJ\^, σL_00  

 

Figure 4: Illustration of the calibrated physics account of human judgments in the catching and 

releasing tasks. (A) Participants estimate the physical depth (and thus length) of the pendulum 

given its 2D projection and use this to guide both catching and releasing behavior. (B) In the 

catching task, participants see where the cord will be cut, generate noisy projections about where 

the trajectory of the ball will cross the plane of the bucket, and move the bucket into that region 

(red color mapping indicates higher probability of placing the bucket around that point). (C) In the 

releasing task, participants must choose when to cut the cord, so they project the ball’s trajectory if 

released from different points spanning the pendulums’ period, and choose a time to cut the cord 

that will make it probable that the ball lands in the fixed bucket given their motor timing error (red 

areas represent pendulum locations that are more likely to be selected as the release point).  

 

2.2 Results 

2.2.1 Consistency and accuracy of predictions 

We tested how well each model captured human behavior by averaging over all 

predictions across all participants on a single trial – the average bucket placement for the 

catching task or average location where the ball hit the plane of the bucket for the 

releasing task – and compared that to an average of 500 noisy model predictions of the 
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same measure. Participants’ predictions in both of the interactive tasks were remarkably 

consistent with the calibrated physics model (catching: r=0.988, releasing: r=0.998, see 

Figure 5, left). Although participants' judgments were correlated with “ground truth” 

answers – responses under which the ball always landed in the center of the bucket 

(catching: r=0.969, cutting: r=0.989), judgments were systematically biased relative to 

ground truth (Figure 5, center). Moreover, these systematic biases were different between 

the catching and releasing tasks (error correlation of average bucket or landing position 

across matched trials: r=0.35), with participants typically positioning their buckets closer 

to the center of the screen in the catching task, and often overshooting the bucket in the 

releasing task (except near the edges, when they tended to undershoot the bucket). These 

unique task biases are expected under the calibrated physics model because each task 

reflects different sources of uncertainty subjected to the same non-linear transformation 

via Newtonian kinematics (model error correlation across matched trials: r=0.19); and 

indeed these systematic deviations of participants’ judgments from the ground truth 

model matched the deviations of the calibrated physics model within each task (catching: 

r=0.92, releasing: r=0.93). By capturing these systematic biases, the calibrated physics 

model correlated better with participants' behavior than ground truth (catching: z=2.26, 

p=0.02, releasing: z=4.28, p<.001). 

The positions where participants would place the bucket according to the imputed 

drawings were also well correlated with the calibrated physics model (r=0.946, Figure 5, 

bottom-left), but this appears to be due to the ability of the model to differentiate the four 

different drawing release points – this correlation is no different than comparing imputed 

drawings to ground truth (r=0.946, Figure 5, bottom-center). Furthermore, the errors 
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between the imputed drawings and ground truth are anti-correlated with the errors from 

the calibrated physics model (r=-0.41), suggesting that human responses in the drawing 

task cannot be explained by assuming that people are using accurate physical principles. 

 

 

Figure 5: The bias and variance of participants' average performance on the interactive (catching 

and releasing) tasks is better captured by the noisy calibrated physics model than ground truth or 

the angled non-physical model. The drawings, on the other hand, could not be explained as well 

by calibrated physics. Each point represents one of 48 unique trials in either the catching or 
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releasing tasks, or one of the 12 imputed drawing trials. On the x-axis are model predictions (in 

cm from the center of the screen) of the position of the bucket (catching, drawing), the landing 

position of the ball if released at the predicted time (releasing), while the y-axis represents the 

average bucket (catching), landing position (releasing), or position where the imputed drawing 

path would cross the plane of the bucket (drawing) across all participants for that trial.  

 

Behavior on the catching and releasing tasks also shows that non-physical 

forward models cannot explain human predictions. The calibrated physics model 

explained participants’ catching and releasing responses better than any of the alternative 

forward models (angled: ΔBIC = 2,981; outward: ΔBIC = 14,435; straight-down: ΔBIC = 

14,698; impetus: ΔBIC = 3,345; see Figure 6), suggesting that participants were not 

typically using an inaccurate heuristic to extrapolate the ball’s motion. 

   

Figure 6: How well do the different models fit human catching and releasing behavior? The 

calibrated physics model explains participants’ behavior better than any of the heuristic models. 

Log-likelihood above chance is the difference of the log-likelihoods of each of the models from 
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the log-likelihood of a random response model. Maximum possible fit is the log-likelihood of 

predicting behavior as well as possible from the behavior of other participants. Error bars are 95% 

confidence intervals, calculated from 500 bootstrapped samples each.  

 

2.2.2 Individual physical knowledge 

To test whether each participant was individually using accurate prediction, rather 

than such behavior arising only in the across-subject aggregate, we determined which of 

the calibrated physics and three heuristic models best described the behavior of each 

participant on the catching and releasing tasks. Of the 32 participants, 24 (75%) were best 

fit by the calibrated physics model, and 8 (25%) by non-physical models based on BIC. 

Because of the sparsity of data from the drawing task, we could not reliably fit 

individual models to participants’ drawing data. Instead, we classified drawings in a 

similar way to Caramazza et al. (1981), using raters to match drawings to a series of 

potential patterns (see Section 2.1.2.3, Figure 7). Unlike the catching and releasing tasks, 

only 7 (22%) of participants were observed to draw paths roughly consistent with 

calibrated physics. 
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Figure 7: Classification of responses on the drawing task, grouped by type of forward model that 

could generate them. Few (6%) participants drew perfectly accurate paths for all four diagrams 

(classification i), suggesting that most participants are not using calibrated physical principles for 

performing this task. 

 

Participants’ drawings were also inconsistent from person to person: no more than 

22% of participants were classifiable into a single category of response patterns. This 

drawing variability mirrors behavioral variability in similar physical tasks (Caramazza et 

al., 1981; Kaiser, Proffitt, & McCloskey, 1985; Proffitt, Kaiser, & Whelan, 1990). This 

idiosyncrasy is highlighted by how well we can predict participants’ response errors from 
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the average errors of all other participants: if participants are all biased in a similar 

fashion, it suggests that they are relying on similar cognitive processes. Each participant’s 

error was highly correlated with the errors of other participants in the catching (mean 

r=0.76, 10-90% quantiles =[0.47,0.91]) and releasing tasks (mean r=0.53, 10-90% 

quantiles =[0.33, 0.64], see Figure S2), which is consistent with most participants relying 

on a similar mental model to that of other participants. In contrast, the correlation 

between each participant’s imputed drawing errors and that of other participants was 

lower (mean r=0.29, 10-90% quantiles =[-0.66, 0.89]; see Figure S2). This suggests that 

the drawing task either relies on a much noisier read-out from the same process, or that 

people use more idiosyncratic processes on the drawing task. 

Moreover, there were inconsistencies between individual participants’ behavior 

on the catching and releasing tasks, and the paths produced in the drawing task. We first 

tested whether participants’ imputed drawings could be predicted from their responses on 

the matched trials of the catching task. For each participant, we took the average 

responses across the 12 catching trial types that were matched to the imputed drawings, 

and asked whether those predictions reliably correlated with that participant’s imputed 

drawing path; however, we found no reliable evidence of this correlation across 

participants (mean r=0.17, 10-90% quantiles = [-0.43, 0.68]). Because this analysis 

relied on a sparser set of trials, we also checked whether we could reliably predict a 

relationship we expect to exist: predicting a single catching response from other 

responses in the same situation. Since each participant made judgments on the same 

catching trial type five times each, for the same 12 trial types we tested whether the 

average of four of those predictions reliably correlated with the held out prediction on the 
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same trial, making this as analogous to the comparison with imputed drawing predictions 

as possible. We randomly segmented predictions and calculated the correlations 100 

times for each participant, and did find a reliable correlation across participants (mean 

r=0.52, 10-90% quantiles = [0.22, 0.84], all rs > 0), and these correlations were 

statistically higher than the imputed drawing correlation (paired Wilcoxon test: V=54, 

p=0.0025).  

Furthermore, if we look at how the catching and releasing models compare to the 

classification of the drawings, none of the eight participants fit best by non-physical 

forward models on the catching and releasing tasks had drawn extrapolated trajectories 

consistent with the heuristic model that best captured their interactive task behavior (see 

Table 1).4 These results suggest that the population does not contain subsets who have 

universally incorrect knowledge of physics across cognitive domains. Instead, when 

interacting with physical scenes, people share a common system of physical knowledge, 

calibrated with the world, while their drawings of trajectories in those same scenes may 

be guided by idiosyncratic and often non-Newtonian heuristics. 

 

																																																								
4 Even if the ‘impetus’ model is not included (because no participants drew diagrams consistent with 

impetus physics), there are still no participants who shared a non-physical classification between the 

interactive and drawing tasks. All except one of the participants who were best fit by the impetus model 

would be best fit by the calibrated model if the impetus model was not included, and that participant drew a 

calibrated path but was best fit by the angled model. 
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  Model Fit  

  Calibrated Angled Outward S. Down Impetus 

Drawing 
Task 

Calibrated (i, ii) 5 0 0 0 2 

Angled (iii, iv, v) 12 0 0 0 0 

Outward (vi) 1 1 0 0 0 

Straight Down (vii) 1 0 0 0 0 

Unclass. 5 1 1 0 3 

 

Table 1: Best fitting model to joint catching/releasing predictions vs. classification on drawing 

task for each individual participant. Roman numerals refer to the drawing type classification from 

Figure 7. No participant was best fit by a non-physical model that could capture his or her drawing 

classification.	

3 Experiment 2: The impact of stimulus richness on physical knowledge 

 We found in Experiment 1 that interactive tasks tapped into relatively accurate 

models of physical reasoning, while participants relied on idiosyncratic and potentially 

erroneous physical reasoning to solve the drawing task. However, the tasks in Experiment 

1 differed not just in the way that we queried participants’ knowledge, but also in the 

information available to participants to perform the tasks: in the catching and releasing 

tasks, participants observed the pendulum in motion, while in the drawing task 

participants were given a sheet of paper displaying a static pendulum. Prior work has 

suggested that viewing moving stimuli can produce more accurate physical judgments 

(Kaiser, Proffitt, & Anderson, 1985; Kaiser et al., 1992). However, these experiments 

contrast full dynamic information – showing the motion of the pendulum system both 

before and after release – with static pendulums followed by choices between line 

trajectories, and with “kinematic” trajectories that follow the path of the line drawing at a 
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constant speed (e.g., not accelerating naturally due to gravity). Crucially, they find that 

only in the full dynamic condition do participants choose the correct trajectory more 

often.  

 Thus there are two possibilities for why performance in these experiments with 

moving stimuli is better: either it is because the nature of the response itself differs (e.g., 

it is easier to compare a mental simulation to a dynamic movie than to a static diagram, 

so simulation might be more preferred for dynamic stimuli), or because viewing the 

motion prior to release makes simulation using a calibrated model more likely (e.g., it is 

easier to create a mental model to simulate when additional dynamic information is 

available), or both. To tease these possibilities apart, we test how people perform the 

drawing task with a moving pendulum to determine whether participants with motion 

information would rely on more accurate physical principles than those that must rely on 

static stimuli. 

Although showing moving pendulums does change the predictions that people 

make on the drawing task, these changes are not due to people using more accurate 

physical principles but rather from making different inferences about the velocity of the 

ball at the moment the pendulum string is cut.  

 

3.1 Methods 

3.1.1 Participants 

Sixty-seven UC San Diego undergraduates (with normal or corrected vision) participated 

in this experiment as part of a set of experiments for course credit. All participants gave 
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informed consent to participate in accordance with guidelines set by the UC San Diego 

Institutional Review Board. We collected data until we had approximately twice the 

number of participants from the original task. Participants were randomly assigned to the 

Motion or Static conditions, resulting in 33 participants in the Motion condition and 34 

participants in the Static condition. 

 

3.1.2 Procedure 

Participants were instructed that they would need to judge the path of a ball that is cut 

from a pendulum, and that they would indicate the ball’s predicted path by clicking and 

dragging the mouse. Participants in the Motion condition observed the pendulum make 

one full swing then swing to the point where the string would be cut, while participants in 

the Static condition observed only the final position of the pendulum as the string is cut; 

therefore participants in both conditions observed identical images immediately before 

being asked to respond. The pendulum used here was identical to the pendulum used in 

the Catching and Releasing tasks, with the same arc and, for the Motion condition, the 

same period. 

 Participants indicated their predictions by clicking and dragging along the path 

they believed the ball would travel. To ensure that we captured paths of appropriate 

length, these paths were required to (a) start from within the image of the ball and (b) 

terminate within 10% of the edge of the lower half of the screen; if the path did not meet 

these criteria, participants were notified and asked to draw the path again. Finally, 
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participants would be asked to either confirm their path, or click a ‘Try Again’ button to 

re-draw it (see Figure 8: top). 

 All participants drew their predictions for the same four release points measured 

in the Drawing part of Experiment 1; the order of presentation was randomized across 

participants. For each drawing, we recorded each point along which participants dragged 

the mouse, measured every 20ms, from which we could reproduce the drawn path. 

 

3.1.3 Rating 

As with the Drawing task of Experiment 1, we asked three undergraduate raters from 

UCSD to classify each participant’s drawings. Because we hoped to test how judgments 

varied in detail, we asked the raters to judge the predictions individually by stimulus, 

rather than the pattern of predictions across all four stimuli. Raters classified each 

drawing into one of six types (see Figure 8: bottom), or judged an individual drawing to 

be unclassifiable. Raters were blind to which participant created each stimulus and to 

whether they were in the Motion or Static condition. 
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Figure 8: Top: Diagram of a trial. A: participants in the Motion condition only observed the 

pendulum swing through one full period, then swing to the final position. B: participants in both 

conditions would observe a static image of the pendulum string cut at one of four positions. C: 

participants click and drag the mouse to indicate their predictions for the ball’s motion. Bottom: 

The six potential paths raters could classify each drawing as (not including unclassified). All of 

the patterns from Experiment 1 or Caramazza et al. (1981) could be recreated from a combination 

of these path types. 

 

 Inter-rater reliability was lower than the reliability from Experiment 1 (Fleiss’ κ = 

0.596), but this effect was driven by one rater who had a higher threshold for classifying 

drawings (rating 42% of drawings as unclassifiable). Reliability where this rater 

classified drawings was very high (Fleiss’ κ = 0.826), and on the stimuli she determined 
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to be unclassifiable the other two raters agreed on a classification 79% of the time. 

Similar to Experiment 1, we classified each drawing as the majority classification of the 

raters, but if all three raters disagreed, we noted the drawing as unclassifiable (this was 

only true of 5% of the drawings). 

 

3.2 Results 

3.2.1 Differences in predictions by condition 

We first tested whether there was evidence of differences in participants’ predictions due 

to motion evidence for each pendulum cut point. If motion information does not affect 

physical reasoning, then we should expect no difference between participants’ predictions 

in the Motion and Static conditions. On the other hand, if motion information causes 

people to use accurate models of physics, then participants in the Motion condition 

should make different predictions from those in the Static condition, and should draw 

more curved paths to indicate the appropriate influence of gravity on the ball’s ballistic 

trajectory.   

We did find evidence that participants’ drawings differed between the two 

conditions in for both the Apex (χ2=13.4, psim=0.014) and the Nadir (χ2=10.7, 

psim=0.035) pendulums, but not in the Downswing (χ2=2.4, psim=0.71) or Upswing 

(χ2=8.3, psim=0.14) stimuli. The differences in Apex predictions appear to be driven by 

participants with motion information believing that the ball retains leftward velocity, 

while participants without motion information tend to believe the ball will drop (the 

correct answer) or travel to the right. The difference in Nadir predictions are driven by 
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participants without motion information indicating that the ball will drop straight down, 

while participants with motion information realize that the ball retains horizontal velocity 

(see Table 2).  

Although there is evidence that motion does influence peoples’ predictions, there 

is no evidence that it causes them to use more accurate physical principles for those 

predictions. For the Downswing, Nadir, and Upswing stimuli, there was no evidence that 

participants in either condition drew the correct ball path at different rates (path 5 from 

Figure 7; all χ2<0.5, all psim>0.5). There was a difference in accuracy with the Apex 

condition, but it was participants in the Static condition who were more likely to be 

correct (24% vs. 6%; χ2=4.4, psim=0.043). Thus pendulum motion provides different 

information about the ball’s velocity, but this information can be misleading (e.g., 

indicating the ball retains velocity at the apex) and does not cause people to produce 

more correct parabolic paths. 
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Apex 

Static 5 1 8 10 1 0 8 

Motion 10 9 2 5 1 0 7 

Downswing 

Static 0 2 2 18 7 0 6 

Motion 0 2 0 19 7 0 4 

Nadir 

Static 1 1 13 7 7 0 8 

Motion 0 0 5 16 5 0 4 

Upswing 

Static 0 7 1 8 8 3 6 

Motion 0 0 2 10 10 5 6 

 

Table 2: Classification of participants’ drawings, split by pendulum cut point and experimental 

condition. The veridical response was 5 in all cases except the Apex, where the veridical response 

was 3. Patterns of responses between the Static and Motion conditions differ in the Apex and 

Nadir scenarios based on differences in how participants interpret the ball’s velocity, but there is 

no evidence that the physical principles used differ between conditions. 

 

3.2.2 Consistency of Static and Motion predictions 

The drawing classifications demonstrated that gross visual features of drawings differed 

between conditions only for the Apex and Nadir stimuli, but we further tested whether 

this was due to differences or similarities in overall predictions between participants in 
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the Motion and Static conditions, or whether this was simply a difference in the features 

of the trajectories they drew. 

We extrapolated the drawings in the same way as Experiment 1 as a separate test 

of how consistent the Motion and Static predictions were (see Section 2.1.2.3).5 If people 

were making different predictions based on the motion information, then we would 

expect that any individual’s imputed drawings should be better explained by participants’ 

prediction from the same condition than from the opposite condition; conversely, if 

behavior can be equally well described by the predictions of both condition groups, it 

suggests that there are no differences in the overall predictions between the two groups. 

We therefore test how well the errors (as compared to ground truth) that each participant 

makes correlate with the average errors from participants in the same or the other 

condition. Because we expect large variability in individual’s drawings and have sparse 

data, any single correlation would not be informative, but averages across participants 

from each of the two conditions can suggest that, on average, people make similar or 

different predictions from others given the same motion information. 

Similar to Experiment 1, participants drawing errors were not well correlated with 

the average errors from all other participants and were extremely variable (mean r=0.29, 

10-90% quantiles =[-0.62, 0.89]). However, this did vary as a function of condition: 

extrapolated drawing errors from the Static condition were more correlated with other 

Static errors than Motion errors (Static: mean r=0.50, 10-90% quantiles =[-0.13, 0.89]; 

Motion: mean r=0.02, 10-90% quantiles =[-0.39, 0.47]), while the Motion extrapolation 

																																																								
5 Because we captured points along the drawn line as part of the task we did not have third parties mark each drawing, 

but the technique for extrapolating lines from the drawn points was identical. 
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errors were somewhat more similar to other Motion errors than Static (Static: mean 

r=0.07, 10-90% quantiles =[-0.78, 0.94]; Motion: mean r=0.16, 10-90% quantiles =[-

0.40, 0.65]). 

However, this effect was driven almost exclusively by differences in prediction 

for the Nadir cut point; excluding this stimulus, participants’ errors in the Static condition 

were equally well correlated with the average errors in both conditions (Static: mean 

r=0.45, 10-90% quantiles =[-0.49, 0.91]; Motion: mean r=0.42, 10-90% quantiles =[-

0.12, 0.87]), as were participants in the Motion condition (Static: mean r=0.17, 10-90% 

quantiles =[-0.80, 0.95]; Motion: mean r=0.22, 10-90% quantiles =[-0.67, 0.81]).  

  This provides further evidence that seeing the pendulum in motion provides 

additional information about the velocity of the ball at the moment that the string is cut: 

for the apex and nadir stimuli predictions do differ between groups as a result of this 

motion information, but we do not have evidence that people are using different 

processes to produce their drawings for the downswing and upswing stimuli. 

4 Discussion 

Across two experiments we asked people to make physical judgments in several 

different tasks, all of which depended on identical underlying physical principles. In 

Experiment 1, participants used relatively accurate principles to predict the ballistic 

trajectory of a ball cut from a pendulum, but were idiosyncratic and inaccurate when 

drawing that trajectory. In Experiment 2, participants continued to use erroneous physical 

principles for drawing trajectories, even with richer, less abstract stimulus information. 
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4.1 Differences in intuitive physics systems by task 

Across these experiments we demonstrate that it is not simply the case that people 

have accurate internal models of some physical principles and inaccurate models of 

others; instead, the knowledge we bring to bear depends on the requirements of the task 

at hand. This raises the crucial question of what causes this difference between tasks.  

4.1.1 Cognitive systems for physical reasoning 

Addressing why we see different behavior by tasks requires us to hypothesize 

what cognitive systems underlie behavior in the current experiments so that we can assess 

how features of each task might drive the use of different systems. Behavior on both the 

catching and releasing tasks was best explained by a model of physics that approximates 

Newtonian mechanics perturbed by uncertainty – a hallmark of the “intuitive physics 

engine” proposed by Battaglia et al. (2013). This theory suggests that we build mental 

models of the world that we can simulate forwards to predict how the world will unfold. 

On the other hand, previous studies that have found erroneous conceptions of ballistic 

motion have asked participants to produce (McCloskey, 1983)  or assess  (Hecht & 

Bertamini, 2000) verbal descriptions of events. These judgments therefore may be 

formed from discrete, verbalizable atoms of knowledge (diSessa, 1993) that can be 

combined into logical or rule-based explanations and decisions (e.g., “the ball will fall 

downwards and to the right”). In support of this theory, Caramazza et al. (1981) found 

that biases are attenuated by formal instruction which suggests that this cognitive process 

can be easily changed by verbal information. To summarize, the “intuitive physics 

engine” requires rich information about the world but can provide more precise, 
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quantitative information, whereas rule-based systems can handle less specified world 

models, but cannot provide as precise outcomes (Davis, Marcus, & Frazier-Logue, 2017). 

4.1.2 Prior accounts of simulation versus logic 

Previous work has suggested cases where simulation-based physical reasoning is 

prioritized over logical or analytic strategies, but these explanations cannot capture the 

differences observed in the current experiments. For instance, Schwartz and Black (1996) 

find that when people are given realistic pictures of a physical system, they are more 

likely to use mental simulation to answer questions about that system; conversely, with 

abstract diagrams they are more likely to use analytic processes. However, the pendulums 

observed in the drawing task of Experiment 2 were identical to the pendulums of the 

catching and releasing tasks of Experiment 1, and so in this case it was only a difference 

of response modality and not stimulus realism that drove the difference in behavior. 

Kozhevnikov and Hegarty (2001) suggest that when people must make immediate 

responses they rely on default, implicit beliefs, but when they have a chance to reflect, 

they can override these intuitions with explicit, verbalizable knowledge. However, our 

findings are not captured by this framework either. First, Kozhevnikov and Hegarty 

(2001) find that implicit knowledge is erroneous and explicit knowledge can correct these 

misconceptions, whereas we find more accurate physical principles from the system that 

would map onto the “intuitive” beliefs. Second, both the catching and releasing trials 

were not immediate – they took a few seconds to resolve each – and yet we found no 

evidence that any of our participants were systematically using the same information they 

used on the drawing task. 
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4.1.3 Metareasoning over cognitive systems 

Instead, we hypothesize that the cognitive system people use for physical 

reasoning is chosen based on both (a) the ease of recruiting analog, simulation-based 

versus logical, rule-based mental models based on the way the stimulus is presented, and 

(b) the information that must be produced to solve the task at hand. Choosing a cognitive 

system can be construed as metareasoning: deciding how to deploy cognitive resources in 

an efficient manner, considering both the expected utility and expected costs rather than 

using the most accurate strategy regardless of resource usage (Russell & Wefald, 1991). 

This framework has been shown to explain general human strategy selection (Lieder & 

Griffiths, 2017; Payne, Bettman, & Johnson, 1988), and has been used to describe how 

people allocate cognitive resources within a strategy for physical prediction (Hamrick, 

Smith, Griffiths, & Vul, 2015). 

While past work (e.g., Schwartz & Black, 1996) has focused on how the stimulus 

presentation affects strategy choice, we focus instead on the differences that arise by task. 

Here, both the catching and releasing tasks require a precise, continuous response to get 

the ball in the bucket, since a small difference in the bucket position or release time could 

be the difference between a correct and incorrect answer. On the other hand, the 

pragmatic implication of asking people to “draw the path of the ball” might require less 

precision. Participants were not given a metric of success against which their drawings 

would be measured, and therefore may assume that the experimenter is assessing their 

predictions in a less strict fashion: it might be unreasonable to believe that the 

experimenter will match up the drawing against the exact trajectory, but reasonable to 

think that they only need to communicate the general direction that the ball will travel 
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after release. This would, for instance, explain why participants often did not draw 

trajectories to the edge of the diagram in the first experiment, necessitating the 

requirement that drawings reach the edge of the screen in Experiment 2. In this case, it 

might be cognitively costly to read out multiple points from a simulated trajectory, 

whereas it is easy to use a simple logical analysis of the scene to produce a drawing (e.g., 

“the ball has rightward velocity and gravity will make it fall, so it will travel down and to 

the right”). Thus using simulation versus logical analysis might provide a greater 

expected benefit for the catching and releasing tasks, but the opposite could be true for 

the drawing task. An important area for future research would be to directly test this 

theory by, for instance, changing the level of precision implied in the drawing task. 

Framing the choice of intuitive physics systems as a metareasoning problem can 

also provide an alternate account of why people are better at judging accurate ballistic 

trajectories in the presence of full dynamic information versus static diagrams – even 

though in theory both should require knowledge of the full trajectory of the object. Prior 

work has explained this finding by positing a perceptual system that can differentiate 

natural from non-natural motion, but suggests that people cannot easily use this system 

for other judgments about dynamic stimuli (Kaiser, Proffitt, & Anderson, 1985). Yet if 

people are simply asked to imagine a pendulum swinging before making explicit 

judgments about its motion, their judgments are more accurate (Frick, Huber, Reips, & 

Krist, 2005), suggesting that this information can in fact be made accessible for more 

explicit judgments. We propose that there is no special system for judging perceptual 

naturalness, but instead that naturalness judgments happen to be well-suited for the 

output of an analog simulation system in a way that judging static trajectories is not: 
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naturalness judgments require tracking and matching the precise position of an object 

over time, and therefore requires more precision than producing a trajectory in the same 

scene or comparing static trajectory diagrams that do not have the same motion over 

time. Future research is needed to disambiguate these two hypotheses, but investigating 

task differences could explain why we find differences across the two types of tasks. 

4.1.4 An alternate account: one system, differential noise 

An alternate hypothesis to tasks relying on multiple systems, however, is that the 

drawing task relies on a noisier readout from the same intuitive physics engine as the 

catching and releasing tasks, perhaps because extracting multiple points leads to an 

autocorrelation bias, or because of the pragmatic implication that less precision is needed. 

In this case, a few noisy queries from a parabolic path might be described in a roughly 

linear way, which would show up both in drawing classification and as errors in 

extrapolation. This theory would still suggest that responses should differ by task, but 

differences should arise from noise in responses rather than a difference in cognitive 

processes. However, this theory would also conflict with prior interpretations of intuitive 

physics results: people’s verbal descriptions of object motions often contain the same 

errors as their drawn trajectories (McCloskey, 1983; McCloskey et al., 1980), which is 

taken as evidence of using the same principles to produce both drawings and descriptions. 

If the drawings are just noise-corrupted read-outs from an accurate physical model, then 

these explicit descriptions could only be post-hoc reasoning that fits the previously 

produced drawings; yet people still produce erroneous descriptions even without drawing 

a trajectory first (Hecht & Bertamini, 2000; Shanon, 1976). However, this theory would 

require that naïve explanations of physics are all based on noisy readouts from our 
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intuitive physics engine, rather than logically constructed from memory or more atomic 

pieces of information as previously proposed (diSessa, 1993). Thus in light of prior 

research into the construction of physics explanations, it is more likely that people are 

using two cognitive systems for intuitive physics rather than one system with differential 

noise. 

4.2 Systems of reasoning 

These findings mirror a broader pattern of results in the psychological literature: 

people’s behavior differs between tasks that require interaction with the environment, and 

those that require verbal responses (Chen, Ross, & Murphy, 2014; Glaser, 

Trommershäuser, Mamassian, & Maloney, 2012; Wu, Delgado, & Maloney, 2009). Some 

behavior, especially in lower level perceptual and motor domains, is near optimal given 

the information and processing constraints associated with a particular task (Griffiths & 

Tenenbaum, 2006; Stocker & Simoncelli, 2006; Trommershäuser, Landy, & Maloney, 

2006; Wolpert, Ghahramani, & Jordan, 1995) while other behavior, especially in higher 

level cognition, is subject to gross biases and errors (McCloskey et al., 1980; Tversky & 

Kahneman, 1983). This dichotomy mirrors a well-known theory in the decision making 

literature: our intuitive decisions are often thought to be based on a different system of 

reasoning than deliberative choices (System 1 vs. System 2; Kahneman, 2011). 

Often these dichotomies are characterized as ‘automatic systems’ (System 1) and 

‘deliberative systems’ (System 2), and this split may be appropriate for physical 

reasoning as well. When we are throwing a ball to a friend we are unaware of the 

complex calculations that must be done to determine the exact force and angle that we 

will throw the ball with, yet when we solve simple high school physics problems many of 
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us are well aware of the effort that it can take. Thus our ‘intuitive physics engine’ 

(Battaglia et al., 2013) may be the analog to the ‘automatic’ system – one that works in a 

cognitively impenetrable way and perhaps is brought online without conscious effort in 

the presence of suitable physical motion (Fischer, Mikhael, Tenenbaum, & Kanwisher, 

2016). But in addition, we can also use other verbalizable knowledge to ‘deliberatively’ 

structure explanations and descriptions of events (diSessa, 1993). 

4.3 Intuitive physics for action 

While we propose that participants use two different systems in these 

experiments, this is not meant to be exhaustive. For instance, Zago and Lacquaniti (2005) 

further differentiate between perceptual knowledge and motor knowledge, suggesting 

that we rely on different cognitive systems for, e.g., determining when a falling ball will 

cross a line versus catching that ball at the same point (Zago et al., 2004). This is similar 

to the visuomotor control literature that shows that the motor system is not biased by the 

same illusions that affect perception (e.g., Aglioti, DeSouza, & Goodale, 1995), 

suggesting a distinction between “vision for perception” and “vision for action” (Glover, 

2004; Goodale & Milner, 1992). 

Similarly, there may be a distinction between “physics for perception” and 

“physics for action”, where motor control for, e.g., grasping moving objects relies on a 

separate cognitive system (Zago et al., 2004). The experiments in this paper involved 

interacting with the objects via a computer mouse rather than directly manipulating them 

and so would rely on a perceptual system according to this distinction; however, it will be 

important in future work to map out whether there is a shared or different intuitive 

physics engines for perception and action. 
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4.4 The accuracy of the intuitive physics engine 

We found that participants’ behavior when interacting with the scene in the 

catching and releasing tasks was consistent with accurate physical principles. This 

contrasts with the theory of Kozhevnikov and Hegarty (2001) who suggest that “implicit” 

knowledge of physics is erroneous but could be corrected by explicit knowledge, and the 

theory of Zago and Lacquaniti (2005), who propose that that perceptual physics 

knowledge is biased but our motor predictions use calibrated physics. The theories 

suggesting biased “implicit” physics have been based on evidence from the 

“representational momentum” literature that memory for the location of objects is shifted 

based on the dynamics of impetus physics rather than Newtonian mechanics (e.g., if two 

objects are moving downward on the screen then disappear, people will remember the 

larger object as having "fallen" further than the smaller object; Hubbard, 1997). However, 

it is unclear whether these representational momentum phenomena arise from object 

dynamics or from perceptual biases (Kerzel, 2002), and therefore these findings may not 

be applicable to our implicit physical reasoning. Zago et al. (2004) additionally suggest 

that our perceptual predictions do not account for gravity because people’s timing to 

press a button in response to a falling ball passing a marker appeared to be unaffected by 

gravitational acceleration. Here we did not measure when participants believed that the 

ball might hit the bucket, which might suggest that the timing estimates in physical 

prediction might be distorted compared to reality. However, the results here suggest that 

we do take the curvature of gravity into account to extrapolate the path we believe the 

ball will take. 
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Note that this claim of accuracy is not a claim that we explicitly solve Newtonian 

equations whenever we predict the motion of an object, or even that our predictions are 

perfectly matched with Newtonian calculations. Indeed, analytically computing the future 

state of a system with more than two bodies and collisions may be impossible (Diacu, 

1996), and even our best algorithms for physical simulation – computer physics engines – 

necessarily only approximate accurate Newtonian mechanics (Millington, 2010). 

This is also not a claim that all of our physical intuitions are perfectly accurate, 

but rather that the approximations the mind makes when simulating everyday physical 

events are good enough to accomplish prediction and planning. Errors may still arise 

from approximations within our simulation engines: for instance, people often incorrectly 

judge the stability of asymmetric objects (Cholewiak, Fleming, & Singh, 2013) or how 

fast a wheel rim will roll down a slope (Proffitt et al., 1990), but these errors could be 

driven by simplifications in our representations of the shape of those objects (Ullman, 

Spelke, Battaglia, & Tenenbaum, 2017). 

Instead we claim that for scenes with simple objects and physical principles that 

we encounter regularly (e.g., ballistic motion), our simulations will closely match the 

outcome of Newtonian equations. Using the terminology of Marr (1982), we suggest that 

people solve physical problems according to Newtonian mechanics at the computational 

level, but we do not make claims for how the mind does so at the process level. Studying 

exactly how people perform this physical simulation efficiently and mostly accurately is 

an exciting and open area for future research.	
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4.5 Conclusion 

While casual observation and careful experimentation often suggest we exploit rich and 

accurate knowledge to interact with the world, the many errors and biases we make in 

other task regimes have driven important debates as to whether cognition is generally 

rational (Anderson, 1990; Tenenbaum, Kemp, Griffiths, & Goodman, 2011) or whether it 

is based on a set of ad hoc heuristics (Gigerenzer & Gaissmaier, 2011; Marcus & Davis, 

2013). We find that in the domain of physical reasoning, there is a separate contrast: just 

as a basketball player might weave past opponents to score a basket but not be able to 

explain what he is about to do, or as we can all speak coherently without explicit 

knowledge of how to conjugate verbs, our ability to reason about physical events differs 

depending on how and why we are applying that knowledge. Thus the contrast between 

calibrated actions and error-prone reasoning is not just a result of having an 

approximately accurate understanding of some principles but not others, but rather 

because different domains of behavior rely on different cognitive facilities. Rather than 

argue whether people do or do not understand certain physical principles, we should 

therefore study the different systems people have for physical reasoning and how we 

choose to apply those systems across different tasks. 
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