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Fig. 1: Humans can learn to solve complex physical tasks with very little interaction with a system. Studies in cognitive
science suggests that people have internal models of physics which are calibrated as they interact with new systems. In
this paper, we train a reinforcement learning agent that initializes a policy with a general purpose physics engine, then we
correct its model of dynamics using parameter estimation and residual model learning. We compare this learning method on
a marble-in-a-maze puzzle and compare its behavior with how people perform in this environment.

Abstract— Humans quickly solve tasks in novel systems with
complex dynamics, without requiring much interaction. While
deep reinforcement learning algorithms have achieved tremen-
dous success in many complex tasks, these algorithms need a
large number of samples to learn meaningful policies. In this
paper, we present a task for navigating a marble to the center
of a circular maze. While this system is very intuitive and easy
for humans to solve, it can be very difficult and inefficient for
standard reinforcement learning algorithms to learn meaningful
policies. We present a model that learns to move a marble in
the complex environment within minutes of interacting with the
real system. Learning consists of initializing a physics engine
with parameters estimated using data from the real system.
The error in the physics engine is then corrected using Gaussian
process regression, which is used to model the residual between
real observations and physics engine simulations. The physics
engine equipped with the residual model is then used to control
the marble in the maze environment using a model-predictive
feedback over a receding horizon. We contrast the learning
behavior against the time taken by humans to solve the problem
to show comparable behavior. To the best of our knowledge,
this is the first time that a hybrid model consisting of a full
physics engine along with a statistical function approximator
has been used to control a complex physical system in real-
time using nonlinear model-predictive control (NMPC). Codes
for the simulation environment can be downloaded here1. A
video describing our method could be found here2.

I. INTRODUCTION

People have remarkable capabilities to interact with the
world in flexible and generalizable ways. With very little

1https://www.merl.com/research/license/CME
2https://youtu.be/xaxNCXBovpc

effort, they can figure out how to use novel objects to
accomplish their goals, or manipulate existing objects in
new ways [1]. Artificial intelligence has long had the goal of
designing robotic agents that can interact with the physical
world in these human-like ways [2], [3]. Some of this work
uses model-based control methods that form plans based on
predefined models of the world dynamics. However, these
systems require the accurate dynamics models, but even the
best simulators diverge from the real world in some ways.
Other recent work in machine learning has treated this as a
reinforcement learning problem, assuming that their agents
will learn a model of the world dynamics in tandem with
control policies [4], [5], [6]. However, whereas these systems
perform well in the scenarios they were trained to solve, they
often fail to learn a model that is as flexible or efficient as
people have [7], [8].

Our aim in this paper is to combine the best of both
methodologies: our system uses nonlinear model predictive
control with a predefined model of dynamics at its core, but
updates that model by learning residuals between predictions
and real-world observations via physical parameter estimation
and Gaussian process regression [9]. This approach is inspired
by work from cognitive science that suggests people have
internal models of physics that are well calibrated to the
world [10], [11], and that they use these models to learn how
to use new objects to accomplish novel goals in just a handful
of interactions [12]. In this way, we hope to attain human
levels of physical control, while also achieving human levels
of sample efficiency. A broad idea of the proposed approach
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is provided in Fig. 1.
Our testbed for this problem is a circular maze environment

(CME; see Fig. 1), in which the goal is to tip and tilt the
maze so as to move a marble from an outer ring into an inner
circle. This is an interesting domain for studying real-time
control because it is intuitively easy to pick up for people —
even children play with similar toys without prior experience
with these mazes — and yet is a complex learning domain for
artificial agents due to its constrained geometry, underactuated
control, nonlinear dynamics, and long planning horizon with
several discontinuities [13], [14]. Adding to this challenge,
the CME is a system that is usually in motion, so planning
and control must be done in real-time, or else the ball will
continue to roll in possibly unintended ways.

The learning approach we present in this paper falls
under the umbrella of Model-Based Reinforcement Learning
(MBRL). In MBRL, a task-agnostic predictive model of the
system dynamics is learned from exploration data. This model
is then used to synthesize a controller which is used to perform
the desired task using a suitable cost function. The model
in our case is represented by a physics engine that roughly
describes the CME with its physical properties. Additionally,
we learn the residual between the actual system and the
physics system using Gaussian process regression [9]. Such
a combination of a physics engine and a statistical function
approximator allows us to efficiently learn models for physical
systems while using minimal domain knowledge.

While approaches that combine physical predictions and
residuals have been used for control in the past [15], here we
demonstrate that this combination can be used as part of a
model-predictive controller (MPC) of a much more complex
system in real-time. An important point to note here is that the
work presented in [15] uses MPC in a discrete action space,
whereas for the current system we have to use nonlinear
model-predictive control (NMPC) that requires a solution to
a nonlinear, continuous control problem in real-time (which
requires non-trivial, compute-expensive optimization) [16].
Consequently, the present study deals with a more complicated
learning and control problem that is relevant to a wide range
of robotic systems. To the best of our knowledge, this is the
first time that a hybrid model consisting of a full physics
engine along with a statistical function approximator has been
used to control a complex physical system in real-time using
NMPC. We are also releasing our code for the CME as it
is a complex, low-dimensional system that can be used to
study real-time physical control3.

II. RELATED WORK

Our work is motivated by the recent advances in (deep)
reinforcement learning to solve complex tasks in areas such
as computer games [17], [18] and robotics [4], [19]. While
these algorithms have been very successful for solving simu-
lated tasks, their applicability in real systems is sometimes
questionable due to their relative sample inefficiency. This has

3https://www.merl.com/research/license/CME

motivated a lot of research in the area of transferring knowl-
edge from a simulation environment to the real world [20],
[21], [22], [23], [24], [13]. However, most of these techniques
end up being very data intensive, and the agents trained with
these algorithms act very differently from how humans solve
complex manipulation tasks. Inspired by this mismatch, we
attempt to study complex physical puzzles, using model-based
agents. Our goal is to understand if a model-based approach
is closer to human-like learning.

Recently the robotics community has seen a surge in
interest in the use of general-purpose physics engines which
can represent complex, multi-body dynamics [25], [26]. These
engines have been developed with the intention to allow
real-time control of robotic systems while using them as
an approximation of the physical world. However, these
simulators still cannot model or represent the physical system
accurately enough for control, and this has driven a lot of work
in the area of sim-to-real transfer [27], [28], [29]. The goal
of these methods is to train an agent in simulation and then
transfer them to the real system using minimum involvement
of the real system during training. However, most of these
approaches use a model-free learning approach and thus tend
to be sample inefficient. In contrast, we propose a method
that trains a MBRL sim-to-real agent and thus achieves very
good sample efficiency.

The idea of using residual models for model correction,
or hybrid learning models for control of physical systems
during learning in physical systems has also been studied in
the past [30], [31], [32], [33], [14], [34]. However, most of
these studies use prior physics information in the form of
differential equations, which requires domain expertise and
thus the methods also become very domain specific. While we
rely on some amount of domain expertise and assumptions,
using a general purpose physics engine to represent the
physical system will allow for more readily generalization
across a wide range of systems.

A similar CME has been solved with MBRL and deep
reinforcement learning, in [14] and [13], respectively. In [14],
the analytical equations of motion of the CME have been
derived to learn a semi-parametric GP model [35], [36] of
the system, and then combined with an optimal controller.
In [13], a sim-to-real approach has been proposed, where a
policy to control the marble(s) is learned on a simulator from
images, and then transferred to the real CME. However, the
transfer learning still requires a large amount of data from
the real CME.

III. PROBLEM FORMULATION

We consider the problem of moving the marble to the
center of the CME. Our goal is to study the sim-to-real
problem as depicted in Fig. 2 in a model-based setting where
an agent uses a physics engine as its initial knowledge of the
environment’s physics.

Under these settings, we study and attempt to answer the
following questions in the present paper.

1) What is needed in a model-based sim-to-real architec-
ture for efficient learning in physical systems?

https://www.merl.com/research/license/CME


Fig. 2: The sim-to-real problem studied in this paper. We put
the real CME on a tip-tilt platform for experiments in the
paper. The platform is 3D printed, uses off-the-shelf hobby-
grade servo motors and an approximate sensor to measure
tip and tilt of the platform. This results in noisy actuations
and observations of system states. In addition to different
physics (for example, the physics engine cannot accurately
model static friction behavior), the simulator has an idealized
actuation compared to the real system, i.e., no delays and
noise, no approximate tip and tilt sensor.

2) How can we design a sim-to-real agent that behaves
and learns in a data-efficient, human-like manner?

3) How does the performance and learning of our agent
compare against the way humans learn to solve these
tasks? Can we draw similarities between the human
learning policy and the way our RL agent learns?

We use the CME as our test environment for the studies
presented in this paper. However, our models and controller
design are general-purpose and thus, we expect the proposed
techniques could find generalized use in robotic systems. For
the rest of the paper, we call the CME together with the
tip-tilt platform the circular maze system (CMS).

The goal of the learning agent is to learn an accurate model
of the marble dynamics, that can be used in a controller,
π(uk|xk), in a model-predictive fashion which allows the
CMS to choose an action uk given the state observation
xk to drive a marble from an initial condition to the target
state. We assume that the system is fully defined by the
combination of the state xk and the control inputs uk, and
it evolves according to the dynamics p(xk+1|xk,uk) which
are composed of the marble dynamics in the maze and the
tip-tilt platform dynamics.

As a simplification, we assume that the marble dynamics is
independent of the radial dynamics in each of the individual
rings, i.e., we quantize the radius of the marble position
into the 4 rings of the maze. We include the orientation of
the tip-tilt platform as part of the state for our dynamical
system, obtaining a five-dimensional state representation for
the system, i.e., x = (rd, β, γ, θ, θ̇, ). It can be noted that
the radius rd is a discrete variable, whereas the rest of the
state variables are continuous. The terms β, γ represent the
X and Y -orientation of the maze platform, respectively, and
θ, θ̇ represent the angular position and velocity of the marble,
measured with respect to a fixed frame of reference. Since
rd is fixed for each ring of the CME, we remove rd from
the state representation of the CMS for the rest of the paper.

Thus, the state is represented by a four-dimensional vector
x = (β, γ, θ, θ̇). As can be seen in Fig. 2, the angles β, γ are
measured using a laser sensor that is mounted on the tip-tilt
platform while the state of the ball could be observed from a
camera mounted above the CMS. For more details, interested
readers are referred to [14].

We assume that there is a discrete planner, which can return
a sequence of gates that the marble can then follow to move
to the center. Furthermore, from the human experiments we
have observed that human subjects always try to bring the
marble in front of the gate, and then tilt the CME to move it
to the next ring. Therefore, we design a lower level controller
to move the marble to the next ring when the marble is placed
in front of the gate to the next ring. Thus, the task of the
learned controller is to move the marble in a controlled way
so that it can transition through the sequence of gates to reach
the center of the CME.

Before describing our approach, we introduce additional
nomenclature we will use in this paper. We represent the
physics engine by fPE, the residual dynamics model by fGP,
and the real system model by f real, such that f real(xk,uk) ≈
fPE(xk,uk) + fGP(xk,uk). We use MuJoCo [25] as the
physics engine, however, we note that our approach is agnostic
to the choice of physics engine. In the following sections, we
describe how we design our sim-to-real agent in simulation,
as well as on the real system.

IV. APPROACH

Our approach for designing the learning agent is inspired
by human physical reasoning: people can solve novel manip-
ulation tasks with a handful of trials. This is mainly because
we rely on already-learned notions of physics. Following a
similar principle, we design an agent whose notion of physics
comes from a physics engine. The proposed approach is
shown as a schematic in Fig. 3.

As described earlier in Fig 2, we want to design a sim-to-
real agent, which can bridge the gap between the simulation
environment and the real world in a principled fashion.
The gap between the simulated environment and the real
world can be attributed to mainly two factors. First, physics
engines represent an approximation of the physics of the real
systems, because they are designed based on limited laws of
physics, domain knowledge, and convenient approximations
often made for mathematical tractability. Second, there are
additional errors due to system-level problems, such as
observation noise and delays, actuation noise and delays, finite
computation time to update controllers based on observations,
etc.

Consequently, we train our agent to bridge the sim-to-real
gap by first estimating the parameters of the physics engine,
and then compensate for the different system-level problems
as the agent tries to interact with the real system. We use a
Gaussian process model to model the residual dynamics of
the real system that cannot be modeled by the best estimated
parameters of the physics engine. In the rest of this section,
we describe the details of the physics engine for the CME,



Fig. 3: The learning approach used in this paper to create a predictive model for the physics of the CME in the real system.
We create a predictive model for the marble dynamics in the CME using a physics engine. We start with a MuJoCo-based
physics engine (PE) with random initial parameters for dynamics, and estimate these parameters µ∗ from the residual error
between simulated and real CME using CMA-ES. The remaining residual error between simulated and real CME is then
compensated by using Gaussian process (GP) regression during iterative learning. Finally, we use the estimated model to
control the real CME with NMPC policy.

and provide our approach for correcting the physics engine
as well as modeling other system-level issues with the CMS.

A. Physics Engine Model Description

As described earlier, we use MuJoCo [25] as our physics
engine, fPE. Note that in our model we ignore the radial
movement of the marble in each ring, and describe the state
only with the angular position of the marble as described
in Sec. III. Consequently, we restrict the physics engine to
consider only the angular dynamics of the marble in each ring,
i.e., the radius of the marble position is fixed. However, in
order to study the performance of the agent in simulation, we
also create a full model of the CME where the marble does
not have the angular state constraint. Thus, we create two
different physics engine models: fPE

red represents the reduced
physics engine available to our RL model, and fPE

full uses the
full internal state of the simulator. fPE

red differs from fPE
full in

two key ways. In the forward dynamics of the fPE
red model,

we set the location of the marble to be in the center of each
ring, while this is tracked in fPE

full. Additionally, because we
cannot observe the spin of the ball in real experiments, we
do not include it in fPE

red , while it is included in fPE
full. We use

this fPE
full model for analyzing the behavior of our agent in the

preliminary studies in simulation. This serves as an analog
to the real system in the simulation studies we present in
the paper. We call this set of experiments sim-to-sim. These
experiments are done to determine whether the agent can
successfully adapt its physics engine when initialized with
an approximation of a more complicated environment.

B. Model Learning

We consider a discrete-time system:

xk+1 = f(xk,uk) + ek, (1)

where xk ∈ R4 denotes the state, uk ∈ R2 the actions, and
ek is assumed to be a zero mean white Gaussian noise with
diagonal covariance that represents the uncertainty about the
state at the discrete time instant k ∈ [1, ..., T ].

Algorithm 1 Model learning procedure

1: Collect N episodes in the real system using Alg. 2
2: Compute simulator trajectories as fPE

red,µ(x
real
k ,ureal

k ), from
the real system N episodes

3: Estimate physical parameters using CMA-ES
4: while Model performance not converged do
5: Collect N episodes in CMS using Alg. 2
6: Compute simulator trajectories xsim

k+1 for data in D
7: Train residual GP model
8: end while

Algorithm 2 Rollout an episode using NMPC

1: Initialize time index k ← 0
2: Reset the real system by randomly placing the marble to

outermost ring
3: while The marble does not reach innermost ring and not

exceed time limit do
4: Set real state to simulator xsim

k ← xreal
k

5: Compute trajectory (Xsim, U sim) using NMPC
6: Apply initial action ureal

k = usim
0 to the real system

7: Store transition D ← D ∪ {xreal
k ,ureal

k ,xreal
k+1}

8: Increment time step k ← k + 1
9: end while

In the proposed approach, the unknown dynamics f in
Eq. 1 represents the CMS dynamics, f real, and it is modeled
as the sum of two components:

f real(xk,uk) ≈ fPE
red(xk,uk) + fGP(xk,uk), (2)

where fPE
red denotes the physics engine model defined in the

previous section, and fGP denotes a Gaussian process model
that learns the residual between real dynamics and simulator
dynamics. We learn both the components fPE

red and fGP to
improve model accuracy. The approach is presented as psuedo-
code in Algorithm 1 and described as follows.



Fig. 4: The agent learns an inverse model of the servo motors
to compensate for the delay in actuation when interacting
with the real system.

1) Physical Parameter Estimation: We first estimate phys-
ical parameters of the real system. As measuring physical
parameters directly in the real system is difficult, we estimate
four friction parameters of MuJoCo by using CMA-ES [37].
More formally, we denote the physical parameters as µ ∈ R4,
and the physics engine with the parameters as fPE

red,µ.
As described in Algorithm 1, we first collect multiple

episodes with the real system using the NMPC controller
described in Sec. IV-D. Then, CMA-ES is used to estimate
the best friction parameters µ∗ that minimizes the difference
between the movement of the marble in the real system and
in simulation as:

µ∗ = argmin
µ

1

‖D‖
∑

(xreal
k ,ureal

k ,xreal
k+1)∈D

‖xreal
k+1 − fPE

red,µ(x
real
k ,ureal

k )‖2Wµ
,

(3)

where D represents the collected transitions in the real system,
Wµ is the weight matrix whose value is 1 only related to the
angular position term of the marble θk+1 in the state xk+1.

2) Residual Model Learning Using Gaussian Process:
After estimating the physical parameters, a mismatch remains
between the simulator and the real system because of the
modeling limitations described in the beginning of this section.
To get a more accurate model, we train a Gaussian Process
(GP) model via marginal likelihood maximization [9], with a
standard linear kernel, to learn the residual between the two
systems by minimizing the following objective:

LGP =
1

‖D‖
∑

(xreal
k ,ureal

k ,xreal
k+1)∈D

‖
(
xreal
k+1 − fPE

red,µ∗(xreal
k ,ureal

k )
)
− fGP(xreal

k ,ureal
k )‖2.

(4)

Note that after collecting the trajectories in the real
system, we collect the simulator estimates of the next
state xsim

k+1 using the physics engine with the estimated
physical parameters µ∗. This is done by resetting the state
of the simulator to every state xreal

k along the collected
trajectory and applying the action ureal

k to obtain the resulted
next state xsim

k+1 = fPE
red,µ∗(xreal

k ,ureal
k ), and store the tuple

{xreal
k ,ureal

k ,xsim
k+1}. Thus, the GPs learn the input-output rela-

tionship: fGP(xreal
k ,ureal

k ) = xreal
k+1 − xsim

k+1. Two independent
GP models are trained, one each for the position and velocity
of the marble.

3) Modeling Motor Behavior: As shown in Fig. 2, the
tip-tilt platform in the CMS is actuated by hobby-grade servo
motors which work in position control mode. These motors
use a controller with a finite settling time which is longer

than the control interval used in our experiments. This results
in actuation delays for the action computed by any control
algorithm, and the platform always has non-zero velocity.
The physics engine, on the other hand, works in discrete time
and thus the CME comes to a complete rest after completing
a given action in a control interval. Consequently, there is
a discrepancy between the simulation and the real system
in the sense that the real system gets delayed actions. To
compensate for this problem, we learn an inverse model for
motor actuation. This inverse model of the motor predicts
the action to be sent to the motors for the tip-tilt platform to
achieve a desired state (βdes

k+1, γ
des
k+1) given the current state

(βk, γk) at instant k. Thus, the control signals computed by
the optimization process are passed through this function
that generates the commands (ux, uy) for the servo motors.
This is also shown as a schematic in Fig. 4 for clarity. We
represent this inverse motor model by fimm. The motor model
fimm is learned using a standard autoregressive model with
external input. This is learned by collecting motor response
data by exciting the CMS using sinusoidal inputs for the
motors before the model learning procedure in Algorithm 1.

C. Trajectory Optimization using iLQR

We use the iterative LQR (iLQR) as the optimization
algorithm for model-based control [38]. While there exist
optimization solvers which can generate better optimal
solutions for model-based control [39], we use iLQR as it
provides a compute-efficient way of solving the optimization
problem for designing the controller. Formally, we solve the
following trajectory optimization problem to manipulate the
controls uk over a certain number of time steps [T − 1]

min
xk,uk

∑
k∈[T ]

`(xk,uk)

s.t.xk+1 = f(xk,uk)

x0 = x̃0.

(5)

For the state cost, we use a quadratic cost function for the
state error measured from the target state xtarget (which in the
current case is the nearest gate for the marble), as represented
by the following equation:

`(x) = ||x− xtarget||2W , (6)

where the matrix W represents weights used for different
states. For the control cost, we penalize the control using a
quadratic cost as well, given by the following equation:

`(u) = λu‖u‖2. (7)

We tried using different smoother versions of the cost
function [38] but it did not change the behavior of the iLQR
optimization. The discrete-time dynamics xk+1 = f(xk,uk)
and the cost function are used to compute locally linear
models and a quadratic cost function for the system along
a trajectory. These linear models are then used to compute
optimal control inputs and local gain matrices by iteratively
solving the associated LQR problem. For more details of
iLQR, interested readers are referred to [38]. The solution



to the trajectory optimization problem returns an optimal
sequence of states and control inputs for the system to follow.
We call this the reference trajectory for the system, denoted
by X ref ≡ x0,x1, . . . ,xT , and U ref ≡ u0,u1, . . . ,uT−1.
The matrix W used for the experiments is diagonal, W =
diag(4, 4, 1, 0.4) and λu = 20.

D. Online Control using Nonlinear Model-Predictive Control

While it is easy to control the movement of the marble
in the simulation environment, controlling the movement of
the marble in the real system is much more challenging.
This is mainly due to complications such as static friction
(which remains poorly modeled by the physics engine), or
delays in actuation. As a result, the real system requires
online model-based feedback control. While re-computing
an entire new trajectory upon a new observation would be
the optimal strategy, due to lack of computation time in the
real system, we use a trajectory-tracking MPC controller. We
use an iLQR-based NMPC controller to track the trajectory
obtained from the trajectory optimization module to control
the system in real-time. The controller uses the least-squares
tracking cost function given by the following equation:

`tracking(x) = ‖xk − xref
k ‖2Q, (8)

where xk is the system state at instant k, xref
k is the reference

state at instant k, and the matrix Q is a weight matrix. The cost
on the control actions remain the same as during trajectory
optimization. The system trajectory is rolled out forward in
time from the observed state, and the objective in Eq. 8 is
minimized to obtain the desired control signals.

We implement the control on both the real and the
simulation environment at a control rate of 30 Hz. As a
result, there is not enough time for the optimizer to converge
to the optimal feedback solution. Thus, we warm-start the
optimizer with a previously computed trajectory. Furthermore,
the derivatives during the system linearization in the backward
step of iLQR and the forward rollout of the iLQR are
computed using parallel computing in order to compute good
solutions within the time provided to compute a feedback
step.

V. EXPERIMENTS

In this section, we try to answer the following questions
with our experiments to describe the performance of our
agent.
• Can we learn to solve the desired task of moving the

marble to the center of the maze within minutes of
interacting with the environment?

• How does the proposed method compare against the
learning behavior shown by human subjects?

A. Physical Property Estimation using CMA-ES

We first demonstrate how physical parameter estimation
works in two different environments; sim-to-sim and sim-to-
real settings. For sim-to-sim setting, we regard the full model
fPE

full as a real system because it contains full internal state
that is difficult to observe in the real setup as described in

Fig. 5: Comparison of real trajectories (red), predicted tra-
jectories (blue) using the estimated physical properties using
CMA-ES, and trajectories using the default physical properties
(green) in the sim-to-sim experiment. The trajectories are
generated with a random policy from random initial points.

Sec. IV-A. Also, we regard the reduced model fPE
red , which has

the same state that can be observed in the real system, as a
simulator. For sim-to-real setting, we measure the difference
between the real system and the reduced model fPE

red . For fPE
red ,

we start with default values given by MuJoCo, and we set
smaller friction parameters to fPE

full in the sim-to-sim setting,
because we found the real maze board is much more slippery
than what default MuJoCo’s parameters would imply.

We collected samples using the NMPC controller computed
using current fPE

red models, and found the objective defined in
equation 3 converges only ∼ 10 transitions for each ring. For
sim-to-sim experiment, the RMSE of ball location θ in two
dynamics becomes ≈ 2e− 3 [rad] (≈ 0.1 [deg]), which we
conclude the CMA-ES produces accurate enough parameters.
Figure 5 shows the real trajectories obtained by fPE

full (in
red), simulated trajectories obtained by fPE

red with optimized
friction parameters (in blue), and simulated trajectories before
estimating friction parameters (in green). This qualitatively
shows that the estimated friction parameters successfully
bridge the gap between two different dynamics. Since tuning
friction parameters for MuJoCo is not intuitive, it is evident
that we can rely on CMA-ES to determine more optimal
friction parameters instead. Similarly, we find that sim-to-real
experiment, the RMSE of ball position θ between the physics
engine and real system decreased to ≈ 9e − 3 [rad] after
CMA-ES optimization. However, we believe this error still
diverges in rollout and we still suffer from static friction.
We also observed that CMA-ES optimization in the sim-to-
real experiments quickly finds a local minima with very few
samples, and further warm starting the optimization with
more data results in another set of parameters for the physics
engine with similar discrepancy between the physics engine
and the real system. Thus, we perform the CMA-ES parameter
estimation only once in the beginning and more finetuning
to GP regression.

B. Control Performance on Real System

We found the sim-to-sim agent learns to perform well with
just CMA-ES finetuning, and thus we skip further control
results for the sim-to-sim agent, and only present results on
the real system with additional residual learning for improved
performance. While CMA-ES works well in the sim-to-sim
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Fig. 6: Comparison of average time spent by the marble in
each ring during learning. This plot shows the improvement in
the performance of the controller upon learning of the residual
model. Note that the controller completely fails without CMA-
ES initialization, and thus, those results are not included.

transfer problem, if we want a robot to solve the CME,
there will necessarily be differences between the internal
model and real-world dynamics. We take inspiration from
how people understand dynamics – they can both capture
physical properties of items in the world, and also learn the
dynamics of arbitrary objects and scenes. For this reason we
augmented the CMA-ES model with machine learning data-
driven models that can improve the model accuracy as more
experience (data) is acquired. We opted for GP as data-driven
models because of their high flexibility in describing data
distribution and data efficiency [40].

We considered models with incrementally more learning
for the data-driven residual model on top of the base CMA-
ES, in batches of 5 attempts. Namely, ‘CMA-ES’ represents
the base CMA-ES model without any residual modeling,
while ‘CMA-ES + GP1’ represents a model that has learned
a residual model from watching 5 attempts of the ‘CMA-ES’
model. Similarly, ‘CMA-ES + GP2’ and ‘CMA-ES + GP3’
learn the residual distribution from 10 experiments (5 with
‘CMA-ES’ and 5 with ‘CMA-ES + GP1’) and 15 experiments
(5 each from ‘CMA-ES’, ’CMA-ES + GP1’ and ‘CMA-ES +
GP2’), respectively.

Figure 6 shows the average time spent in each ring for all
four levels of training. As expected, models trained with a
larger amount of data consistently improve the performance,
i.e., spending less time in each ring. The improvement in
performance can be seen especially in the outermost (Ring1)
and innermost ring (Ring4). The outermost ring has the
largest radius and is more prone to oscillations, which the
model learns to control. Similarly, in the innermost ring,
static friction causes small actions to have larger effects.
In the middle two rings, where the ‘CMA-ES’ was already
performing well, we can still observe an improvement in
the reduction of the variability of the performance. A video
showing the performance at different stages of learning could

Fig. 7: The joystick system along with video feed of the
CME used for human experiments. Human subjects were
asked to solve the maze by looking at the video feed of the
marble movement. Similar to the MPC policy, the joystick
allows control of the two motors of the CMS, and is very
natural to control for lots of humans.

be found here4.

C. Comparison with Human Performance

To compare our system’s performance against human
learning, we asked 15 participants to perform a similar CME
task. Since the learning algorithm uses the two servo motors
to control the motion of the marble, the human subjects were
asked to control the CMS with a 2 DoF joystick (see Fig. 7).
To familiarize participants with the controls, they were given
one minute to play with the maze using the joystick, but there
was no ball in the maze during this time. This is similar to how
the model pre-learned the inverse motor model fimm without
learning ball dynamics. Afterwards, the ball was placed at
a random point in the outermost ring, and participants were
asked to guide the ball to the center of the maze. They were
asked to solve the CME five times, and we recorded how
long they took for each solution and how much time the
ball spent in each ring. Two participants were excluded from
analysis because they could not solve the maze five times
within the 15 minutes allotted to them.

Because people were given five maze attempts (and thus
between zero and four prior chances to learn during each
attempt), we compare human performance against the CMA-
ES and CMA-ES+GP1 versions of our model that have
comparable amounts of training.

We find that while there was a slight numerical decrease in
participants’ solution times over the course of the five trials,
this did not reach statistical reliability (χ2(1) = 1.63, p =
0.2): participants spent an average of 110 seconds (95%CI :
[66, 153]) to solve the maze the first time, and 79 seconds
(95%CI : [38, 120]) to solve the maze the last time, and
only 8 of 13 participants solved the maze faster on the last
trial as compared to their first. This is similar to the learning
pattern found in our model, where the solution time decreased
from 33s using CMA-ES to 27s using CMA-ES+GP1, which
similarly was not statistically reliable (t(15) = 0.56, p =

4https://youtu.be/xaxNCXBovpc

https://youtu.be/xaxNCXBovpc


TABLE I: Average time spent in each ring [sec].

Human CMA-ES + GP0/1

Ring 1 (outermost ring) 22.6 4.18
Ring 2 8.0 3.87
Ring 3 24.3 3.85
Ring 4 (innermost ring) 41.1 18.29

0.58). A qualitative comparison between the human subjects
and our proposed method could be seen in the videos5.

In addition, Table I shows the time that people and the
model kept the ball in each ring. For statistical power we
have averaged over all human attempts, and across CMA-
ES and CMA-ES + GP1 to equate to human learning. In
debriefing interviews, participants indicated that they found
that solving the innermost ring was the most difficult, as
indicated by spending more time in that ring than any others
(all ps < 0.05 by Tukey HSD pairwise comparisons). This is
likely because small movements will have the largest effect
on the marble’s radial position, requiring precise prediction
and control. Similar to people, the model also spends the
most time in the inner ring (all ps < 0.002 by Tukey HSD
pairwise comparisons), suggesting that it shares the same
prediction and control challenges as people. In contrast, a
fully trained standard reinforcement learning algorithm – the
soft actor-critic (SAC) [41] – learns a different type of control
policy in simulation and spends the least amount of time in
the innermost ring, since the marble has the shortest distance
to travel (see Appendix A for more detail).

VI. CONCLUSIONS AND FUTURE WORK

Humans can learn and adapt their approach to perform
complex tasks within minutes of interaction with a novel
system. Studies from cognitive science suggest that this is
because people have internal models of physics that are
well calibrated to the world [12]. There has been much
recent interest in using this idea in robotic systems by basing
planning around physics engines. This is mainly based on the
vision that these physics engines can be used for real-time
control of robotic systems by providing the capability for
real-time physical reasoning.

Here we use this idea to design agents that can interact
with the world in a human-like fashion. We presented a
learning method for navigating a marble in a complex circular
maze environment. Learning consists of initializing a physics
engine, where the physics parameters are initially estimated
using the real system. The error in the physics engine is
then compensated using a Gaussian process regression model
which is used to model the residual dynamics. These models
are used to control the marble in the maze environment
using iLQR in a feedback MPC fashion. We showed that
the proposed method can learn to solve the task of driving
the marble to the center of the maze within a few minutes
of interacting with the system. We contrasted the learning
behavior against the time taken by humans to solve the
problem to show comparable behavior.

5https://youtu.be/xaxNCXBovpc

TABLE II: Average time spent each ring in simulation [sec].

CMA-ES SAC

Ring 1 (outermost ring) 1.50 0.78
Ring 2 1.00 0.83
Ring 3 2.60 0.86
Ring 4 (innermost ring) 7.17 0.73

One of the benefits of our approach is its flexibility: because
it learns based off of a general-purpose physics engine, this
approach should generalize well to other real-time physical
control tasks. Furthermore, the separation of the dynamics
and control policy should facilitate transfer learning. If the
maze material or ball were changed (e.g., replacing it with a
small die or coin), then the physical properties and residual
model would need to be quickly relearned, but the control
policy should be relatively similar. In future work, we plan to
test the generality and transfer of this approach to different
mazes and marbles. For more effective use of physics engines
for these kind of problems, we would like to interface general-
purpose robotics optimization software [42] to make it more
useful for general-purpose robotics application.

APPENDIX

A. Control Performance on Simulation

In order to compare the performance of our approach and a
model-free RL algorithm, we train a SAC [41] agent with fPE

full
dynamics in simulation. The hyperparameters, architectures,
activation function of SAC are the same as used in [41]. We
also evaluate the performance of our method in sim-to-sim
setting, which omits the GP part because CMA-ES quickly
matches the behavior of the simulator in the sim-to-sim setting,
as described in Sec. V-A.6

Table. II shows the average time spent in each ring for both
methods. The SAC model solves the maze faster than the
CMA-ES algorithm, but does so by speeding the ball through
each ring in approximately equal time, unlike both CMA-
ES and people. This is likely because the SAC agent had
extensive experience to learn its control policy: it was trained
for five million steps on the simulator, which is equivalent
to approximately two days training time if done on a real
system.

B. MuJoCo Model Setting

As written in Sec. IV-A, we prepare two different physics
engine models: fPE

red and fPE
full. Table. III summarizes the friction

parameters µ used for each environment. We note that these
initial parameters are optimized by CMA-ES. We set the
same friction parameters to all objects in the simulator: the
walls and bottom that construct the circular maze, and the
marble. We have modeled the mass and size of the marble,
and geometry of the circular maze based on our measurements
of the real CME used in CMS.

6We attempted to train SAC on the real CME, but were unable to
demonstrate any learning after three days, perhaps due to complications
like the continuous action space or high control frequency. However, [13]
demonstrated sim-to-real with transfer learning could solve a somewhat
different CME, suggesting a possible additional comparison for future work.

https://youtu.be/xaxNCXBovpc


TABLE III: Physical parameters used in sim-to-sim experi-
ments. The fPE

red uses default parameters of MuJoCo, whereas
the fPE

full is more slippery, because we found that the real
model is actually more slippery than what default parameters
would imply [43].

fPE
full fPE

red

Slide friction 1e− 3 1
Spin friction 1e− 6 5e− 3
Roll friction 1e− 7 1e− 4
Friction loss 1e− 6 0
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