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Abstract—Humans quickly solve tasks in novel systems with
complex dynamics, without requiring much interaction. While
deep reinforcement learning algorithms have achieved tremendous
success in many complex tasks, these algorithms need a large
number of samples to learn meaningful policies. In this letter, we
present a task for navigating a marble to the center of a circular
maze. While this system is very intuitive and easy for humans to
solve, it can be very difficult and inefficient for standard rein-
forcement learning algorithms to learn meaningful policies. We
present a model that learns to move a marble in the complex
environment within minutes of interacting with the real system.
Learning consists of initializing a physics engine with parameters
estimated using data from the real system. The error in the physics
engine is then corrected using Gaussian process regression, which
is used to model the residual between real observations and physics
engine simulations. The physics engine augmented with the residual
model is then used to control the marble in the maze environment
using a model-predictive feedback over a receding horizon. To the
best of our knowledge, this is the first time that a hybrid model
consisting of a full physics engine along with a statistical function
approximator has been used to control a complex physical system
in real-time using nonlinear model-predictive control (NMPC).

Index Terms—Reinforcement learning, cognitive control
architectures.

I. INTRODUCTION

ARTIFICIAL Intelligence has long had the goal of design-
ing robotic agents that can interact with the (complex)

physical world in flexible, data-efficient and generalizable ways
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[1], [2]. Model-based control methods form plans based on
predefined models of the world dynamics. However, although
data-efficient, these systems require accurate dynamics models,
which may not exist for complex tasks. Model-free methods
on the other hand rely on reinforcement learning, where the
agents simultaneously learn a model of the world dynamics
and a control policy [3], [4]. However, although these methods
can learn policies to solve tasks involving complex dynamics,
training these policies is inefficient, as they require many sam-
ples. Furthermore, these method are typically not generalizable
beyond the trained scenarios.

Our aim in this letter is to combine the best of both method-
ologies: our system uses nonlinear model predictive control with
a predefined (inaccurate) model of dynamics at its core, but
updates that model by learning residuals between predictions
and real-world observations via physical parameter estimation
and Gaussian process regression [5]. We take inspiration from
cognitive science for this approach, as people can interact with
and manipulate novel objects well with little or no prior ex-
perience [6]. Research suggests people have internal models of
physics that are well calibrated to the world [7], [8], and that they
use these models to learn how to use new objects to accomplish
novel goals in just a handful of interactions [9]. Thus, we suggest
that any agent that can perform flexible physical problem solving
should have both prior knowledge of the dynamics of the world,
as well as a way to augment those dynamics in a way that
supports their interactions with the scene. Note that we do not
suggest that this specific approach corresponds to the way that
humans learn or reason about physics, but instead that we believe
augmented simulation is key to human sample efficiency, and
therefore should be important for robotic sample efficiency as
well. Fig. 1 provides an idea of the proposed approach.

Our testbed for this problem is a circular maze environment
(CME; see Fig. 1), in which the goal is to tip and tilt the maze so
as to move a marble from an outer ring into an inner circle.
This is an interesting domain for studying real-time control
because it is intuitively easy to pick up for people — even
children play with similar toys without prior experience with
these mazes — and yet is a complex learning domain for artificial
agents due to its constrained geometry, underactuated control,
nonlinear dynamics, and long planning horizon with several
discontinuities [10], [11]. Adding to this challenge, the CME
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Fig. 1. We train a reinforcement learning agent that initializes a policy with
a general purpose physics engine, then corrects its dynamics model using
parameter estimation and residual learning. The agent uses this augmented model
in a circular maze to drive a marble to the center.

is a system that is usually in motion, so planning and control
must be done in real-time, or else the ball will continue to roll
in possibly unintended ways.

The learning approach we present in this letter falls under the
umbrella of Model-Based Reinforcement Learning (MBRL). In
MBRL, a task-agnostic predictive model of the system dynamics
is learned from exploration data. This model is then used to
synthesize a controller which is used to perform the desired
task using a suitable cost function. The model in our case
is represented by a physics engine that roughly describes the
CME with its physical properties. Additionally, we learn the
residual between the actual system and the physics system using
Gaussian process regression [5]. Such an augmented simulator
– a combination of a physics engine and a statistical function
approximator – allows us to efficiently learn models for physical
systems while using minimal domain knowledge.

Contributions. Our main contributions are as follows:
� We present a novel framework where a hybrid model

consisting of a full physics engine augmented with a ma-
chine learning model is used to control a complex physical
system using NMPC in real time.

� We demonstrate that our proposed approach leads to
sample-efficient learning in the CME: our agent learns to
solve the maze within a couple of minutes of interaction.

We have released our code for the CME as it is a complex, low-
dimensional system that can be used to study real-time physical
control.1

II. RELATED WORK

Our work is motivated by the recent advances in (deep)
reinforcement learning to solve complex tasks in areas such as
computer games [12] and robotics [3], [13]. While these al-
gorithms have been very successful for solving simulated tasks,
their applicability in real systems is sometimes questionable due
to their relative sample inefficiency. This has motivated a lot of
research in the area of transferring knowledge from a simulation
environment to the real world [10], [14]–[16]. However, most
of these techniques end up being very data intensive. Here we
attempt to study complex physical puzzles using model-based
agents in an attempt to learn to interact with the world in a
sample-efficient manner.

1https://www.merl.com/research/license/CME

Recently the robotics community has seen a surge in interest in
the use of general-purpose physics engines which can represent
complex, multi-body dynamics [17]. These engines have been
developed with the intention to allow real-time control of robotic
systems while using them as an approximation of the physical
world. However, these simulators still cannot model or represent
the physical system accurately enough for control, and this has
driven a lot of work in the area of sim-to-real transfer [18], [19].
The goal of these methods is to train an agent in simulation and
then transfer them to the real system using minimum involve-
ment of the real system during training. However, most of these
approaches use a model-free learning approach and thus tend
to be sample inefficient. In contrast, we propose a method that
trains a MBRL sim-to-real agent and thus achieves very good
sample efficiency.

The idea of using residual models for model correction, or
hybrid learning models for control of physical systems dur-
ing learning in physical systems has also been studied in the
past [11], [20]–[23]. However, most of these studies use prior
physics information in the form of differential equations, which
requires domain expertise and thus the methods also become
very domain specific. While we rely on some amount of domain
expertise and assumptions, using a general purpose physics
engine to represent the physical system will allow for more
readily generalization across a wide range of systems.

A similar CME has been solved with MBRL and deep rein-
forcement learning, in [11] and [10], respectively. In [11], the
analytical equations of motion of the CME have been derived
to learn a semi-parametric GP model [24], [25] of the system,
and then combined with an optimal controller. In [10], a sim-
to-real approach has been proposed, where a policy to control
the marble(s) is learned on a simulator from images, and then
transferred to the real CME. However, the transfer learning still
requires a large amount of data from the real CME.

While approaches that combine physical predictions and
residuals have been used for control in the past [26], here we
demonstrate that this combination can be used as part of a
model-predictive controller (MPC) of a much more complex
system in real-time. An important point to note here is that the
work presented in [26] uses MPC in a discrete action space,
whereas for the current system we have to use nonlinear model-
predictive control (NMPC) that requires a solution to a nonlinear,
continuous control problem in real-time (which requires non-
trivial, compute-expensive optimization) [27]. Consequently,
the present study deals with a more complicated learning and
control problem that is relevant to a wide range of robotic
systems.

III. PROBLEM FORMULATION

We consider the problem of moving the marble to the center
of the CME. Our goal is to study the sim-to-real problem in a
model-based setting where an agent uses a physics engine as
its initial knowledge of the environment’s physics. Under these
settings, we study and attempt to answer the following questions
in the present paper.

1) What is needed in a model-based sim-to-real architecture
for efficient learning in physical systems?
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2) How can we design a sim-to-real agent that behaves and
learns in a data-efficient manner?

3) How does the performance and learning of our agent
compare against how humans learn to solve these tasks?

We use the CME as our test environment for the studies
presented in this letter. However, our models and controller
design are general-purpose and thus, we expect the proposed
techniques could find generalized use in robotic systems. For
the rest of the paper, we call the CME together with the tip-tilt
platform the circular maze system (CMS). At this point, we
would like to note that we make some simplifications for the
CMS to model actuation delays and tackle discontinuities for
controller design as we describe in the following text.

The goal of the learning agent is to learn an accurate model of
the marble dynamics, that can be used in a controller, π(uk|xk),
in a model-predictive fashion which allows the CMS to choose
an action uk given the state observation xk to drive a marble
from an initial condition to the target state. We assume that the
system is fully defined by the combination of the state xk and
the control inputs uk, and it evolves according to the dynamics
p(xk+1|xk,uk) which are composed of the marble dynamics
in the maze and the tip-tilt platform dynamics.

As a simplification, we assume that the marble dynamics is
independent of the radial dynamics in each of the individual
rings, i.e., we quantize the radius of the marble position into the
4 rings of the maze. We include the orientation of the tip-tilt
platform as part of the state for our dynamical system, obtaining
a five-dimensional state representation for the system, i.e., x =
(rd, β, γ, θ, θ̇, ). It can be noted that the radius rd is a discrete
variable, whereas the rest of the state variables are continuous.
The terms β, γ represent the X and Y -orientation of the maze
platform, respectively, and θ, θ̇ represent the angular position
and velocity of the marble, measured with respect to a fixed
frame of reference. Since rd is fixed for each ring of the CME, we
remove rd from the state representation of the CMS for the rest of
the paper. Thus, the state is represented by a four-dimensional
vector x = (β, γ, θ, θ̇). The angles β, γ are measured using a
laser sensor that is mounted on the tip-tilt platform (see Figure 1)
while the state of the ball could be observed from a camera
mounted above the CMS. For more details, interested readers
are referred to [11].

We assume that there is a discrete planner, which can return
a sequence of gates that the marble can then follow to move to
the center. Furthermore, from the human experiments we have
observed that human subjects always try to bring the marble in
front of the gate, and then tilt the CME to move it to the next ring.
Therefore, we design a lower level controller to move the marble
to the next ring when the marble is placed in front of the gate to
the next ring. Thus, the task of the learned controller is to move
the marble in a controlled way so that it can transition through the
sequence of gates to reach the center of the CME. This makes our
underlying control problem tractable by avoiding discontinuities
in the marble movement (as the marble moves from one ring to
the next).

Before describing our approach, we introduce additional
nomenclature we will use in this letter. We represent the physics
engine by fPE, the residual dynamics model by fGP, and the real
system model by f real, such that f real(xk,uk) ≈ fPE(xk,uk) +

fGP(xk,uk). We use MuJoCo [17] as the physics engine, how-
ever, we note that our approach is agnostic to the choice of
physics engine. In the following sections, we describe how we
design our sim-to-real agent in simulation, as well as on the real
system.

IV. APPROACH

Our approach for designing the learning agent is inspired by
human physical reasoning: people can solve novel manipulation
tasks with a handful of trials. This is mainly because we rely on
already-learned notions of physics. Following a similar princi-
ple, we design an agent whose notion of physics comes from a
physics engine. The proposed approach is shown as a schematic
in Fig. 2.

We want to design a sim-to-real agent, which can bridge the
gap between the simulation environment and the real world in a
principled fashion. The gap between the simulated environment
and the real world can be attributed to mainly two factors. First,
physics engines represent an approximation of the physics of the
real systems, because they are designed based on limited laws
of physics, domain knowledge, and convenient approximations
often made for mathematical tractability. Second, there are addi-
tional errors due to system-level problems, such as observation
noise and delays, actuation noise and delays, finite computation
time to update controllers based on observations, etc.

Consequently, we train our agent by first estimating the pa-
rameters of the physics engine, and then compensate for the
different system-level problems as the agent tries to interact with
the real system. Finally, Gaussian process Regression is used to
model the residual dynamics of the real system that cannot be
described by the best estimated parameters of the physics engine.
In the rest of this section, we describe the details of the physics
engine for the CME, and provide our approach for correcting
the physics engine as well as modeling other system-level issues
with the CMS.

A. Physics Engine Model Description

As described earlier, we use MuJoCo as our physics engine,
fPE. Note that in our model we ignore the radial movement
of the marble in each ring, and describe the state only with
the angular position of the marble as described in Section III.
Consequently, we restrict the physics engine to consider only
the angular dynamics of the marble in each ring, i.e., the radius
of the marble position is fixed. However, in order to study the
performance of the agent in simulation, we also create a full
model of the CME where the marble does not have the angular
state constraint. Thus, we create two different physics engine
models: fPE

red represents the reduced physics engine available
to our RL model, and fPE

full uses the full internal state of the
simulator. fPE

red differs from fPE
full in two key ways. In the forward

dynamics of the fPE
red model, we set the location of the marble

to be in the center of each ring because we cannot observe the
accurate radial location of the marble in the real system, while
this is tracked in fPE

full. Additionally, because we cannot observe
the spin of the ball in real experiments, we do not include it
in fPE

red, while it is included in fPE
full. We use this fPE

full model for
analyzing the behavior of our agent in the preliminary studies
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Fig. 2. The learning approach used in this letter to create a predictive model for the physics of the CME in the real system. We create a predictive model for
the marble dynamics in the CME using a physics engine. We start with a MuJoCo-based physics engine (PE) with random initial parameters for dynamics, and
estimate these parameters µ∗ from the residual error between simulated and real CME using CMA-ES. The remaining residual error between simulated and real
CME is then compensated using Gaussian process (GP) regression during iterative learning. Finally, we use the augmented simulation model to control the real
CME with NMPC policy.

Algorithm 1: Model Learning Procedure.
1: Collect N episodes in the real system using Alg. 2
2: Compute simulator trajectories as fPE

red,µ(x
real
k ,ureal

k ),
from the real system N episodes

3: Estimate physical parameters using CMA-ES
4: while Model performance not converged do
5: Collect N episodes in CMS using Alg. 2
6: Compute simulator trajectories xsim

k+1 for data in D
7: Train residual GP model
8: end while

in simulation. This serves as an analog to the real system in
the simulation studies we present in the paper. We call this set
of experiments sim-to-sim. These experiments are done to deter-
mine whether the agent can successfully adapt its physics engine
when initialized with an approximation of a more complicated
environment.

B. Model Learning

We consider a discrete-time system:

xk+1 = f(xk,uk) + ek, (1)

where xk ∈ R4 denotes the state, uk ∈ R2 the actions, and
ek is assumed to be a zero mean white Gaussian noise with
diagonal covariance, at the discrete time instant k ∈ [1, ..., T ].

In the proposed approach, the unknown dynamics f in Eq. 1
represents the CMS dynamics, f real, and it is modeled as the sum
of two components:

f real(xk,uk) ≈ fPE
red(xk,uk) + fGP(xk,uk), (2)

where fPE
red denotes the physics engine model defined in the

previous section, and fGP denotes a Gaussian process model
that learns the residual between real dynamics and simulator
dynamics. We learn both the componentsfPE

red andfGP to improve
model accuracy. The approach is presented as psuedo-code in
Algorithm 1 and described as follows.

Algorithm 2: Rollout an Episode Using NMPC.
1: Initialize time index k ← 0
2: Reset the real system by randomly placing the marble

to outermost ring
3: while The marble does not reach innermost ring and

not exceed time limit do
4: Set real state to simulator xsim

k ← xreal
k

5: Compute trajectory (Xsim, U sim) using NMPC
6: Apply initial action ureal

k = usim
0 to the real system

7: Store transition D ← D ∪ {xreal
k ,ureal

k ,xreal
k+1}

8: Increment time step k ← k + 1
9: end while

1) Physical Parameter Estimation: We first estimate phys-
ical parameters of the real system. As measuring physical pa-
rameters directly in the real system is difficult, we estimate four
friction parameters of MuJoCo by using CMA-ES [28]. More
formally, we denote the physical parameters as µ ∈ R4, and the
physics engine with the parameters as fPE

red,µ.
As described in Algorithm 1, we first collect multiple episodes

with the real system using the NMPC controller described in
Section IV-D. Then, CMA-ES is used to estimate the best
friction parameters µ∗ that minimizes the difference between
the movement of the marble in the real system and in simulation
as:

µ∗ = arg minµ
1

‖D‖
∑

(xreal
k ,ureal

k ,xreal
k+1)∈D

‖xreal
k+1 − fPE

red,µ(x
real
k ,ureal

k )‖2Wµ
, (3)

where D represents the collected transitions in the real system,
Wµ is the weight matrix whose value is 1 only related to the
angular position term of the marble θk+1 in the state xk+1.

2) Residual Model Learning Using Gaussian Process: After
estimating the physical parameters, a mismatch remains between
the simulator and the real system because of the modeling
limitations described in the beginning of this section. To get
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a more accurate model, we train a Gaussian Process (GP) model
via marginal likelihood maximization [5], with a standard lin-
ear kernel, to learn the residual between the two systems by
minimizing the following objective:

LGP =
1

‖D‖
∑

(xreal
k ,ureal

k ,xreal
k+1)∈D

‖ (xreal
k+1 − fPE

red,µ∗(x
real
k ,ureal

k )
)− fGP(xreal

k ,ureal
k )‖2.

(4)

Note that after collecting the trajectories in the real system,
we collect the simulator estimates of the next state xsim

k+1 using
the physics engine with the estimated physical parameters µ∗.
This is done by resetting the state of the simulator to every
state xreal

k along the collected trajectory and applying the action
ureal
k to obtain the resulted next statexsim

k+1 = fPE
red,µ∗(x

real
k ,ureal

k ),
and store the tuple {xreal

k ,ureal
k ,xsim

k+1}. Thus, the GPs learn
the input-output relationship: fGP(xreal

k ,ureal
k ) = xreal

k+1 − xsim
k+1.

Two independent GP models are trained, one each for the po-
sition and velocity of the marble. We found GP models ideal
for this system because of their accuracy in data prediction
and data efficiency which is fundamental when working with
real systems. However, other machine learning models could be
adopted in different applications.

3) Modeling Motor Behavior: The tip-tilt platform in the
CMS is actuated by hobby-grade servo motors which work in
position control mode. These motors use a controller with a
finite settling time which is longer than the control interval used
in our experiments. This results in actuation delays for the action
computed by any control algorithm, and the platform always has
non-zero velocity. The physics engine, on the other hand, works
in discrete time and thus the CME comes to a complete rest after
completing a given action in a control interval. Consequently,
there is a discrepancy between the simulation and the real system
in the sense that the real system gets delayed actions. Such
actuation delays are common in most (robotic) control systems
and thus, needs to be considered during controller design for
any application. To compensate for this problem, we learn
an inverse model for motor actuation. This inverse model of
the motor predicts the action to be sent to the motors for the
tip-tilt platform to achieve a desired state (βdes

k+1, γ
des
k+1) given

the current state (βk, γk) at instant k. Thus, the control signals
computed by the optimization process are passed through this
function that generates the commands (ux, uy) for the servo
motors. We represent this inverse motor model by fimm. The
motor model fimm is learned using a standard autoregressive
model with external input. This is learned by collecting motor
response data by exciting the CMS using sinusoidal inputs for
the motors before the model learning procedure in Algorithm 1.

C. Trajectory Optimization Using iLQR

We use the iterative LQR (iLQR) as the optimization al-
gorithm for model-based control [29]. While there exist opti-
mization solvers which can generate better optimal solutions
for model-based control [30], we use iLQR as it provides a
compute-efficient way of solving the optimization problem for

designing the controller. Formally, we solve the following tra-
jectory optimization problem to manipulate the controls uk over
a certain number of time steps [T − 1]

min
xk,uk

∑

k∈[T ]

�(xk,uk)

s.t. xk+1 = f(xk,uk)

x0 = x̃0. (5)

For the state cost, we use a quadratic cost function for the state
error measured from the target state xtarget (which in the current
case is the nearest gate for the marble), as represented by the
following equation:

�(x) = ||x− xtarget||2W , (6)

where the matrix W represents weights used for different states.
For the control cost, we penalize the control using a quadratic
cost as well, given by the following equation:

�(u) = λu‖u‖2. (7)

Other smoother versions of the cost function [29] did not
change the behavior of the iLQR optimization. The discrete-time
dynamics xk+1 = f(xk,uk) and the cost function are used to
compute locally linear models and a quadratic cost function for
the system along a trajectory. These linear models are then used
to compute optimal control inputs and local gain matrices by
iteratively solving the associated LQR problem. For more details
of iLQR, interested readers are referred to [29]. The solution to
the trajectory optimization problem returns an optimal sequence
of states and control inputs for the system to follow. We call
this the reference trajectory for the system, denoted by X ref ≡
x0,x1, . . . ,xT , and U ref ≡ u0,u1, . . . ,uT−1. The matrix W
used for the experiments is diagonal,W = diag(4, 4, 1, 0.4) and
λu = 20. These weights were tuned empirically only once at the
beginning of learning.

D. Online Control Using Nonlinear Model-Predictive Control

While it is easy to control the movement of the marble in the
simulation environment, controlling the movement of the marble
in the real system is much more challenging. This is mainly due
to complications such as static friction (which remains poorly
modeled by the physics engine), or delays in actuation. As a
result, the real system requires online model-based feedback
control. While re-computing an entire new trajectory upon a
new observation would be the optimal strategy, due to lack of
computation time in the real system, we use a trajectory-tracking
MPC controller. We use an iLQR-based NMPC controller to
track the trajectory obtained from the trajectory optimization
module to control the system in real-time. The controller uses
the least-squares tracking cost function given by the following
equation:

�tracking(x) = ‖xk − xref
k ‖2Q, (8)

where xk is the system state at instant k, xref
k is the reference

state at instant k, and the matrix Q is a weight matrix. The
matrix Q and the cost coefficient for control are kept the same
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Fig. 3. Comparison of real trajectories (red), predicted trajectories (blue) using
the estimated physical properties using CMA-ES, and trajectories using the
default physical properties (green) in the sim-to-sim experiment. The trajectories
are generated with a random policy from random initial points.

as during trajectory optimization. The system trajectory is rolled
out forward in time from the observed state, and the objective in
Eq. 8 is minimized to obtain the desired control signals.

We implement the control on both the real and the simulation
environment at a control rate of 30 Hz. As a result, there is
not enough time for the optimizer to converge to the optimal
feedback solution. Thus, we warm-start the optimizer with a
previously computed trajectory. Furthermore, the derivatives
during the system linearization in the backward step of iLQR
and the forward rollout of the iLQR are obtained using parallel
computing in order to satisfy the time constraints to compute the
feedback step.

V. EXPERIMENTS

In this section we test how our proposed approach performs
on the CMS, and how it compares to human performance.

A. Physical Property Estimation Using CMA-ES

We first demonstrate how physical parameter estimation
works in two different environments; sim-to-sim and sim-to-real
settings. For sim-to-sim setting, we regard the full model fPE

full as
a real system because it contains full internal state that is difficult
to observe in the real setup as described in Section IV-A. Also, we
regard the reduced model fPE

red, which has the same state that can
be observed in the real system, as a simulator. For fPE

red, we start
with default values given by MuJoCo, and we set smaller friction
parameters to fPE

full in the sim-to-sim setting, because we found
the real maze board is much more slippery than what default
MuJoCo’s parameters would imply. For sim-to-real setting, we
measure the difference between the real system and the reduced
model fPE

red.
To verify the performance of physical parameter estimation,

we collected samples using the NMPC controller computed
using current fPE

red models on both settings, which corresponds to
line 1-3 of Algorithm 1, and found the objective defined in (3)
converges only ∼ 10 transitions for each ring. For sim-to-sim
experiment, the RMSE of ball location θ in two dynamics
becomes ≈ 2e− 3 [rad] (≈ 0.1 [deg]), which we conclude the
CMA-ES produces accurate enough parameters. Figure 3 shows
the real trajectories obtained by fPE

full (in red), simulated trajecto-
ries obtained by fPE

red with optimized friction parameters (in blue),

and simulated trajectories before estimating friction parameters
(in green). This qualitatively shows that the estimated friction
parameters successfully bridge the gap between two different
dynamics. Since tuning friction parameters for MuJoCo is not
intuitive, it is evident that we can rely on CMA-ES to determine
more optimal friction parameters instead. Similarly, we find that
sim-to-real experiment, the RMSE of ball position θ between
the physics engine and real system decreased to ≈ 9e− 3 [rad]
after CMA-ES optimization. However, we believe this error
still diverges in rollout and we still suffer from static friction.
We also observed that CMA-ES optimization in the sim-to-real
experiments quickly finds a local minima with very few samples,
and further warm starting the optimization with more data results
in another set of parameters for the physics engine with similar
discrepancy between the physics engine and the real system.
Thus, we perform the CMA-ES parameter estimation only once
in the beginning and more finetuning to GP regression.

B. Control Performance on Real System

We found the sim-to-sim agent learns to perform well with just
CMA-ES finetuning, and thus we skip further control results for
the sim-to-sim agent, and only present results on the real system
with additional residual learning for improved performance.
While CMA-ES works well in the sim-to-sim transfer problem,
if we want a robot to solve the CME, there will necessarily be
differences between the internal model and real-world dynamics.
We take inspiration from how people understand dynamics –
they can both capture physical properties of items in the world,
and also learn the dynamics of arbitrary objects and scenes. For
this reason we augmented the CMA-ES model with machine
learning data-driven models that can improve the model accu-
racy as more experience (data) is acquired. We opted for GP as
data-driven models because of their high flexibility in describing
data distribution and data efficiency [31].

The CMA-ES model is then iteratively improved with the GP
residual model with data from 5 rollouts in each iteration. In the
following text, ‘CMA-ES’ represents the CMA-ES model with-
out any residual modeling, while ‘CMA-ES + GP1’ represents
a model that has learned a residual model from 5 rollouts of the
‘CMA-ES’ model. Similarly, ‘CMA-ES + GP2’ and ‘CMA-ES +
GP3’ learn the residual distribution from 10 experiments (5 with
‘CMA-ES’ and 5 with ‘CMA-ES + GP1’) and 15 experiments
(5 each from ‘CMA-ES’, ‘CMA-ES + GP1’ and ‘CMA-ES +
GP2’), respectively. The trajectory optimization and tracking
uses the mean prediction from the GP models.

Figure 4 shows the time spent in each ring averaged over 10
different rollouts at each iteration during training. As expected,
models trained with a larger amount of data consistently im-
prove the performance, i.e., spending less time in each ring.
The improvement in performance can be seen especially in the
outermost (Ring1; F (3, 36) = 3.02, p = 0.042) and innermost
ring (Ring4; F (3, 36) = 4.52, p = 0.009).2 The outermost ring
has the largest radius and is more prone to oscillations, which the

2Due to extreme heteroscedasticity in the data we use White’s corrected
estimators in the ANOVA [32].
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Fig. 4. Comparison of average time spent by the marble in each ring during
learning and the corresponding standard deviation over 10 trials. This plot
shows the improvement in the performance of the controller upon learning of
the residual model. Note that the controller completely fails without CMA-ES
initialization, and thus, those results are not included.

model learns to control. Similarly, in the innermost ring, static
friction causes small actions to have larger effects.

C. Comparison With Human Performance

To compare our system’s performance against human learn-
ing, we asked 15 participants to perform a similar CME task.
These participants were other members of the Mitsubishi Elec-
tric Research Laboratories who were not involved in this project
and were naive to the intent of the experiment. The particpants
were instructed to solve the CME five consecutive times. A 2
DoF joystick was provided to control the two servo motors of
the same experimental setup on which the learning algorithm
was trained. To familiarize participants with the joystick control,
they were given one minute to interact with the maze—without
marble. Because people can adapt to even unnatural joystick
mappings within minutes [33], we assumed that this familiar-
ization would provide a reasonable control mapping for our
participants, similar to how the model pre-learned the inverse
motor model fimm without learning ball dynamics. Since we
found no reliable evidence of improvement throughout the trials
(see below), we believe that any further motor control learning
beyond this period was at most marginal. Three participants had
prior experience solving the CME in the “convential” way by
holding it with both hands.

Afterwards, the ball was placed at a random point in the
outermost ring, and participants were asked to guide the ball
to the center of the maze. They were asked to solve the CME
five times, and we recorded how long they took for each solution
and how much time the ball spent in each ring. Two participants
were excluded from analysis because they could not solve the
maze five times within the 15 minutes allotted to them.

Because people were given five maze attempts (and thus
between zero and four prior chances to learn during each at-
tempt), we compare human performance against the CMA-ES
and CMA-ES+GP1 versions of our model that have comparable
amounts of training.

We find that while there was a slight numerical decrease in
participants’ solution times over the course of the five trials, this

TABLE I
AVERAGE TIME SPENT IN EACH RING [SEC]

did not reach statistical reliability (χ2(1) = 1.63, p = 0.2): par-
ticipants spent an average of 110 seconds (95%CI : [66, 153]) to
solve the maze the first time, and 79 seconds (95%CI : [38, 120])
to solve the maze the last time, and only 8 of 13 participants
solved the maze faster on the last trial as compared to their first.
This is similar to the learning pattern found in our model, where
the solution time decreased from 33s using CMA-ES to 27s
using CMA-ES+GP1, which was also not statistically reliable
(t(15) = 0.56, p = 0.58).

In addition, Table I shows the time that people and the model
kept the ball in each ring. For statistical power we have averaged
over all human attempts, and across CMA-ES and CMA-ES
+ GP1 to equate to human learning. In debriefing interviews,
participants indicated that they found that solving the innermost
ring was the most difficult, as indicated by spending more time in
that ring than any others (all ps < 0.05 by Tukey HSD pairwise
comparisons). This is likely because small movements will
have the largest effect on the marble’s radial position, requiring
precise prediction and control. Similar to people, the model
also spends the most time in the inner ring (all ps < 0.002 by
Tukey HSD pairwise comparisons), suggesting that it shares
similar prediction and control challenges to people. In contrast,
a fully trained standard reinforcement learning algorithm – the
soft actor-critic (SAC) [34] – learns a different type of control
policy in simulation and spends the least amount of time in the
innermost ring, since the marble has the shortest distance to
travel (see Supplemental Materials for more detail).

VI. CONCLUSIONS AND FUTURE WORK

We take inspiration from cognitive science to build an agent
that can plan its actions using an augmented simulator in order to
learn to control its environment in a sample-efficient manner. We
presented a learning method for navigating a marble in a complex
circular maze environment. Learning consists of initializing
a physics engine, where the physics parameters are initially
estimated using the real system. The error in the physics engine
is then compensated using a Gaussian process regression model
which is used to model the residual dynamics. These models
are used to control the marble in the maze environment using
iLQR in a feedback MPC fashion. We showed that the proposed
method can learn to solve the task of driving the marble to the
center of the maze within a few minutes of interacting with the
system, in contrast to traditional reinforcement systems that are
data-hungry in simulation and cannot learn a good policy on a
real robot.

To implement our approach on the CMS, we made some
simplifications that are only applicable to the CMS, e.g., that the
problem can be segmented into moving through the gates in the
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rings. While this does limit the generality of the specific model
used, most physical systems require some degree of domain
knowledge to design an efficient and reliable control system.
Nonetheless, we believe our approach is a step towards learning
general-purpose, data-efficient controllers for complex robotic
systems. One of the benefits of our approach is its flexibility:
because it learns based off of a general-purpose physics engine,
this approach should generalize well to other real-time physical
control tasks. Furthermore, the separation of the dynamics and
control policy should facilitate transfer learning. If the maze
material or ball were changed (e.g., replacing it with a small die
or coin), then the physical properties and residual model would
need to be quickly relearned, but the control policy should be
relatively similar. In future work, we plan to test the generality
and transfer of this approach to different mazes and marbles. For
more effective use of physics engines for these kind of problems,
we would like to interface general-purpose robotics optimization
software [35] to make it more useful for general-purpose robotics
application.
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