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Abstract—Planning for sequential robotics tasks often requires
integrated symbolic and geometric reasoning. TAMP algorithms
typically solve these problems by performing a tree search over
high-level task sequences while checking for kinematic and dy-
namic feasibility. This can be inefficient because, typically, candi-
date task plans resulting from the tree search ignore geometric in-
formation. This often leads to motion planning failures that require
expensive backtracking steps to find alternative task plans. We
propose a novel approach to TAMP called Stein Task and Motion
Planning (STAMP) that relaxes the hybrid optimization problem
into a continuous domain. This allows us to leverage gradients
from differentiable physics simulation to fully optimize discrete and
continuous plan parameters for TAMP. In particular, we solve the
optimization problem using a gradient-based variational inference
algorithm called Stein Variational Gradient Descent. This allows us
to find a distribution of solutions within a single optimization run.
Furthermore, we use an off-the-shelf differentiable physics simula-
tor that is parallelized on the GPU to run parallelized inference over
diverse plan parameters. We demonstrate our method on a variety
of problems and show that it can find multiple diverse plans in a
single optimization run while also being significantly faster than
existing approaches.

Index Terms—Task and motion planning,
inference.

probabilistic

I. INTRODUCTION

ASK and Motion Planning (TAMP) is central to many
sequential decision-making problems in robotics, which
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Fig. 1. Demonstrations of the top-3 block-pushing plans with up to two tasks
(K = 2) found by STAMP on a Franka manipulator. Task plans from left to
right: (a) push the East side; (b) push the East side, then the North side; (c) push
the North side. STAMP found all three solutions in parallel in one run.

often require integrated logical and geometric reasoning to gen-
erate a feasible symbolic action and motion plan that achieves
a particular goal [1]. In this letter, we present a novel algorithm
called STAMP, which uses SVGD [2], [3], a variational inference
method, to efficiently generate a distribution of optimal solu-
tions upon convergence. Unlike existing methods, we transform
TAMP problems, which operate over both discrete symbolic
variables and continuous motion variables, into the continu-
ous domain. This allows us to run gradient-based inference
using SVGD and differentiable physics simulation to generate a
diversity of plans.

Prior works such as [4], [5], [6], [7], [8] solve TAMP problems
by performing a tree search over discrete logical plans and inte-
grating this with motion optimization and feasibility checking.
By leveraging gradient information, STAMP forgoes the need
to conduct a computationally expensive tree search that might
involve backtracking and might be hard to parallelize. Instead,
STAMP infers the relaxed logical action sequences jointly with
continuous motion plans, without a tree search.

Further, by solving a Bayesian inference problem over the
search space and utilizing GPU parallelization, STAMP con-
ducts a parallelized optimization over multiple logical and ge-
ometric plans at once. As a result, it produces large, diverse
plan sets that are crucial in downstream tasks with replan-
ning, unknown user preferences, or uncertain environments.
While several diverse planning methods have been developed
for purely symbolic planning [9], [10], most TAMP algorithms
do not explicitly solve for multiple plans and suffer from an
exploration-versus-computation time trade-off.

Why would we need multiple solutions if only one will eventu-
ally be executed? One reason is that having access to a diverse set
of solutions provides added flexibility in selecting a feasible plan
based on criteria that were not initially considered. Second, the
push for diverse solutions might lead to unexpected, but feasible
plans. Third, when TAMP is used as a generating process for
training data for imitation learning [11], a diverse set of solutions
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Fig.2. Overview of STAMP algorithm pipeline. The particles 6 represent the task and motion plan 6 = [a1.x, ug: k1], or the task plan and a parametrization

of the motion plan 6 = [a1.x, g1. x| if Dynamic Movement Primitives dependent on goals g;.x are used (see Section IV-B). The resulting controls are passed
through a differentiable physics simulator, and particles are updated in parallel using two phases of optimization: an inference phase of SVGD that balances loss
minimization with diversification of particles followed by a finetuning phase of SGD so that particles can reach the local optima.

is preferable to learn policies that induce multi-modal trajectory
distributions.

The main contributions of our work are (a) introducing a
relaxation of the discrete symbolic actions and thus reformu-
lating TAMP as an inference problem on continuous variables
to avoid tree search; (b) solving the resulting problem with
gradient-based SVGD inference updates using an off-the-shelf
differentiable physics simulator; and (c) parallelizing the infer-
ence process on the GPU, so that multiple diverse plans can be
found in one optimization run.

II. RELATED WORK

Task and Motion Planning Guo et al. [12] categorize TAMP
solvers into sampling-based methods [4], [13], [14], [15], [16],
[17]; hierarchical methods [18], [19], [20]; constraint-based
methods [21], [22], [23]; and optimization-based methods [5],
[24], [25]. Our method falls under optimization-based methods,
which find a complete task and motion plan that optimizes a
predefined cost function.

Probabilistic Planning: Our work is inspired by the idea of
approaching planning as inference [26]. Prior works such as [19],
[27], [28], [29], [30], [31], [32], [33], [34] have explored the
intersection of probability and TAMP. Ha et al. [28] developed
probabilistic Logic Geometric Programming (LGP) for solving
TAMP in stochastic environments, Shah et al. [27] developed an
anytime algorithm for TAMP in stochastic environments, and
Kaelbling and Lozano-Pérez extended Hierarchical Planning
in the Now [18] to handle current and future state uncertainty.
STAMP’s probabilistic interpretation is similar to [28], [35] in
that we run inference over a posterior plan distribution, but
differs in that our distribution is defined over both discrete
and continuous plan parameters rather than over only contin-
uous parameters. While many stochastic TAMP methods can
be computationally expensive [12], our method runs efficient,
gradient-based inference through parallelization.

Diverse Planning: Diverse or top-k symbolic planners like
SYM-K and FORBID-K are used to produce sets of feasible task
plans [9], [10]. Existing work in TAMP generate different log-
ical plans by adapting diverse symbolic planners, which are
iteratively updated with feasibility feedback from the motion
planner [6], [8]. Ren et al. [8] rely on a top-k planner to generate
a set of candidate logical plans, but only to efficiently find a
single TAMP solution rather than a distribution of diverse plans.
More similarly to TAMP, Ortiz et al. [6] seek to generate a set of
plans based on a novelty criteria, but enforce task diversity by
iteratively forbidding paths in the logical planner. In contrast,
STAMP finds diverse plans by solving TAMP as an inference
problem over plan parameters.

Differentiable Physics Simulation & TAMP: Differentiable
physics simulators [36], [37], [38], [39], [40], [41], [42], [43]
solve a mathematical model of a physical system while allowing
the computation of the first-order gradient of the output directly
with respect to the parameters or inputs of the system. They
have been used to optimize trajectories [39], controls [44], or
policies [45]; and for system identification [40], [46]. Toussaint
et al. [47] have used differentiable simulation within LGP for
sequential manipulation tasks by leveraging simulation gradi-
ents for optimization at the path-level. In contrast, STAMP uses
simulation gradients to optimize both symbolic and geometric
parameters.

Envall et al. [48] used gradient-based optimization for task
assignment and motion planning. Their problem formulation
allows task assignments to emerge implicitly in the solution. In
contrast, we optimize the task plan explicitly through continuous
relaxations, use gradient-based inference to solve TAMP, and
obtain gradients from differentiable simulation.

III. PRELIMINARIES

A. Stein Variational Gradient Descent

SVGD is a variational inference algorithm that uses particles
to fit a target distribution. Particles are sampled randomly at
initialization and updated iteratively until convergence, using
gradients of the target distribution with respect to each par-
ticle [2]. SVGD is fast, parallelizable, and able to fit both
continuous [2] and discrete [3] distributions.

1) SVGD for Continuous Distributions [2]: Given a target
distribution p(0), 6 € R?, a randomly initialized set of particles
{6;}"_,, a positive definite kernel k(6,0’), and step size e,
SVGD iteratively applies the following update rule on {6; }"_; to
approximate the target distribution p(#) (where kj; = k(6;,6;)
for brevity):

n

€
0; < 0+ — Y [Vo, logp(0)kji + Vo, ki) (1)
n =1 | S
® (®)

Term (A), which is a kernel-weighted gradient, encourages the
particles to converge towards high-density regions in the target
distribution. Term (B) induces a “repulsive force” that prevents
all particles from collapsing to a maximum a posteriori solution,
i.e., it encourages exploration while searching over continuous
parameters. This property allows STAMP to find multiple di-
verse solutions in parallel.

2) SVGD for Discrete Distributions [3]: Given a target dis-
tribution p,.(z),z € Z on a discrete set Z, DSVGD introduces
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Fig. 3. Fitting a Gaussian mixture with discrete-and-continuous SVGD. Left:
random initialization of particles. Right: particles after 500 updates. Note that
same-color particles have been assigned to the same mode.

relaxations to Z that reformulates discrete inference as infer-
ence on a continuous domain. In our case, z denotes a sym-
bolic/discrete action. To do the relaxation, we construct a dif-
ferentiable and continuous surrogate distribution p(6),6 € R4,
that approximates the discrete distribution p,(z). Crucially, a
map I': R? — Z is defined such that it divides an arbitrary
base distribution py(6),6 € R? (e.g., a Gaussian or uniform
distribution) into K partitions with equal probability. That is,

| w1

Then, the surrogate distribution p(6) can be defined as p(f)
po(0)p.(T'(0)) [3], where $.(6), § € R simply denotes p.(z),
z € Z defined on the continuous domain. I'(6) is a smooth
relaxation of I'(#); for instance, I'(6) = softmax(6) is a smooth
relaxation of I'(§) = max (). Afterinitializing particles {6; } ¥
defined on the continuous domain, DSVGD uses the surrogate
to update {6;}¥, via 6; < 0; + eA0;, where k;; = k(6,,0;),
w =3 ;w, p; = p(f;), and:

=T(0)] d6 = 1/K )

D (f(9j))
p- (I'(65))
3)
Intuitively, weights w; correct for the bias introduced by employ-
ing the surrogate distribution in place of the discrete distribution.
We use the RBF kernel for k(+), which is a popular choice in the
SVGD literature. Post-convergence, the discrete counterpart of

each particle can be recovered by evaluating {z; = I'(6;)}Y ;.

| = Z % (Vo, log pikji + Vo, kji) , w; =

B. Differentiable Physics Simulation

Physics simulators roll out the future states of a system given
its initial pose xg, control inputs wug.7—1, and in some cases,
the discrete actions ag.r—1. We represent simulator rollouts
as x1.7 = fsim(®o, @071, wo.r—1). Simulating future rollouts
involves solving the dynamics equation

Mi = J " F(z,&) + C(x, 1) + 7(x, &, u), 4)

where F' denotes the external force, C' the Coriolis force, and 7
the joint actuations. The Warp simulator [41] used in our letter
solves (4) for future states via time integration based on Semi-
Implicit Euler [49] or XPBD [50], [S1] schemes, while resolving
contacts using a spring-based non-penetrative model [45], [52]
and enforcing joint limits for articulated bodies using the spring
model in [45]. Forward simulations in Warp can be parallelized
on the GPU. As a differentiable physics simulator, Warp can
also compute auto-differentiation gradients of future states and
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Fig. 4. Sample solutions STAMP found for the billiards problem. Subcap-
tions indicate which walls the cue ball hits before hitting the target ball. The
18t/2nd/31d/4™ digit correspond to hitting the top/bottom/left/right wall. A 1
means the wall is hit during the shot; a 0 means that it is not. The caption also
indicates in which pocket the target ball is shot.

parameters with respect to past states and parameters. In other
words, given aloss £ defined over the final or intermediate states,
gradients can be backpropagated through the entire trajectory
with respect to simulation and plan parameters. As we will
explain in following sections, we leverage the differentiability
of Warp to compute the gradients Vg, log p(f;) in term (A) of
(D.

IV. OUR METHOD: STEIN TASK AND MOTION PLANNING

STAMP solves TAMP as a variational inference problem
over discrete symbolic actions and continuous motion plans,
conditioned on them being optimal. An analogy to this is trying
to sample particles from a known mixture of Gaussians, in
which each Gaussian has a distinct class. SVGD must move
the particles towards high-density regions in the Gaussian (thus
learning the continuous parameters) and also learn the correct
classes. In TAMP, the Gaussian mixture is analogous to a target
distribution where higher likelihood is assigned to optimal so-
lutions, the discrete class is analogous to the discrete task plan,
and the continuous parameters are analogous to the motion plan.
Fig. 3 illustrates how, after SVGD, particles with the same color
usually belong to the same Gaussian.

A. Problem Formulation

Given a problem domain, we are interested in sampling
optimal symbolic/discrete actions z1.x € Z K and continuous
controls ug. g1 € RET from the posterior

p(z1:x, uo.x7-1 | O = 1) ©)

where O € {0, 1} indicates optimality of the plan; K is the
number of symbolic action sequences; 7' is the number of
timesteps by which we discretize each action sequence; and Z
is a discrete set of all m possible symbolic actions that can
be executed in the domain (i.e., |Z| = m). z1.x and ug. 71
fully parameterize a task and motion plan, since they can be
input to a physics simulator fg, along with the initial state
o to roll out the system’s state at every timestep, that is,
17 = fim(T0, 21, Yok 1)"

'We later introduce a1 . i, a continuous relaxation of z1. i . The forward simu-
lation can also berolled outusing a1. g as 1. k7 = fsim (%0, 1.5, V0. KT-1)>
which will ensure gradients can be taken with respect to a1. i . This is important
as z1.x is discrete.
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Fig. 5. Evolution of mean cost over all particles averaged across 5 runs. The
red curve shows the mean cost when running SVGD inference, while the blue
curve shows the mean cost after switching to SGD plan refinement after SVGD
converges. Switching from SVGD to SGD allows STAMP to refine the plans
towards exact optima. This is shown by the further reduction in mean cost that
SGD achieves as compared to running SVGD only.

We wuse SVGD to sample optimal plans from
p(21:5, wo. k-1 | O = 1). As pis defined over both continuous
and discrete domains, to use SVGD’s gradient-based update
rule, we follow Han et al. [3]’s approach and construct a
differentiable surrogate distribution for p defined over a
continuous domain. We denote this surrogate by p.

To construct the surrogate, we first relax the discrete variables
by introducing a map from the real domain to Z% that evenly
partitions some base distribution pg. For any problem domain
with m symbolic actions, we define Z = {e;}*, as a collection
of m-dimensional one-hot vectors®. Then, z1.x € Z%,implying
that we commit to one action (e;) in each of the K action phases.
Further, we use a uniform distribution for the base distribution
po. Given this formulation, we can define our map3 I:R™K
ZK and its differentiable surrogate I as the following:

I(a1.x) = [max{al} . max{aK}]T = 21K

f(alzK) = [softmax{al} . softmax{aK}]T =Z1.x. (6)

The above map partitions pg evenly when py is the uniform dis-
tribution. By constructing the above map, we can run inference
over purely continuous variables a1.x € R™K and ug. o1 €
RAT=1 and recover the discrete plan parameters post-inference
via z1.x = F(al;K). We denote aq.x € R™K and Uo:KkT-1 €
RET-L collectively as a particle, that is, § = [a1.5¢, uo.x7-1]
and randomly initialize {6;}}"; to run SVGD inference. The
target distribution we aim to infer is a differentiable surrogate p
of the posterior p defined as:

p(air,uo.rr-1]0 =1) (7)
o polar:k) p (f(ach),uo;KTq | O = 1) . )

In practice, because pg(a1.x) can be treated as a constant by
making its boundary arbitrarily large, we simply remove pg from
the expression above.

Note that it is not necessary to normalize the p as the normal-
ization constant vanishes by taking the gradient of log p in the
SVGD updates. We now quantify the surrogate of the posterior
distribution. We begin by applying Bayes’ rule and obtain the
following factorization of p(6 | O = 1):

p(0] O =1)xp(O=1]80)p0) )

2The ith element of e; is 1 and all other elements are 0.
3Givenay, € R™, max{a k} returns a m-dimensional one-hot encoding e;
iff the ¢th element of ay, is the larger than all other elements.
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Since the likelihood function is synonymous with a plan’s opti-
mality, we formulate the likelihood via the total cost C associated
with the relaxed task and motion plan 6:

p(O =1]0) x exp —C(0,x0.x7) (10)

Meanwhile, the prior p() is defined over 6 only and as such,
we use it to impose constraints on the plan parameters (e.g.,
kinematic constraints on robot joints).

Related to the Logic Geometric Programming (LGP) [5],
[28], [47], [53], [54] framework, which optimizes a cost subject
to constraint functions that activate or deactivate when kine-
matic/logical action transition events occur, C'(#) in our method
is a sum of relaxed versions of both the cost and constraint
functions. Here, “relaxed” refers to removing the cost and con-
traints’ dependence on the discrete logical variables through
our relaxations, and defining costs/constraint functions that are
differentiable w.r.t. our plan parameters 6.

B. Problem Reduction Using Motion Primitives

Rather than running inference over = [ay1.x, uo.x7-1] >
we can run inference over a smaller number of dimensions
by parametrizing the continuous motion plan ug.x7—1. There
are many ways to do this, such as using splines to represent
the motion plan, but we use goal-conditioned dynamic motion
primitives (DMP). DMPs [55] model complex movements via a
system of differential equations:

T0=K(g—x)—Dv—K(g—x0)s+ Kf(s)
Z,wﬂ/h(S)S

T =vf(s) = S 0i(s)

TS = —Qs

(1)

Given a demonstration dataset, we “train” a DMP offline by
fitting the (linear) parameters w; of the DMP in (11) via solv-
ing linear least squares. At runtime, we use the offline-trained
weights w; to generate new motions simply by specifying the
robot’s initial state xy and goal state g, and integrating the
above system of equations for an entire trajectory. In other
words, we can redefine the particle as § = [a1.x, g1.x] ', Where
g1:x € RE? denotes goal poses for the system after executing
action k, and d is the DOF of the system. With just g, we

Algorithm 1: Stein TAMP (STAMP).

1 let: step size = €, phase = SVGD

2 initialize: n particles (candidate task and motion plans)
{0;}i=, randomly, where 0; = [a1.x,u0:kT 1)i

3 while not converged do

4 [xl:KT]i = fsim(x079i)

s | p(0:i|0O=1) o< exp{—C(0;, [xo:xr]:) }p(6:)

6 if phase = SVGD then

1< .
7 AO; = w Z;wj [ng log pjk;ji + Vo, kji] Vi
i=
8 if (absolute change in ), log p;) < ¢ then
| phase = SGD

10 else if phase = SGD then
11 L AO; =V, logpB; |O=1) Vi

12 | 0; < 0; +eAf; Vi in parallel
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(b) K = 2. STAMP found 825 solutions in (12.92 £ 0.04) s. Diverse LGP and PDDLStream
are invoked 150 times, for a total of (3390 £ 90) s and (3330 =+ 1) s, respectively.

Distribution of plans found by STAMP, Diverse LGP, and PDDLStream. The vertical axis shows the number of times a particular symbolic plan was

discovered normalized by the total number of plans found. Results are averages across 10 seeds; error bars represent standard deviation. STAMP’s distribution is
of lower entropy, because as a probabilistic inference method, more of its particles converge to plans with higher likelihood, whereas the baselines, which were
modified to ignore previously-found plans, find plans more uniformly. Without this modification, the baselines would have O entropy.

recover the full trajectory zo.x7r-1 by integrating (11) and
computing the controls ug.x7—1 using a PD controller. This
new inference problem over [a1.x, g1. K] T is more tractable than
the original inference problem over [a1.x, uo.x7—1] " due to the
reduced dimensionality. We use DMPs for our block-pushing
and pick-and-place experiments, which have high DOF and
planning horizon.

C. STAMP Algorithm

Given a problem domain with cost C'(6) and n randomly ini-
tialized particles @ = {6;}!"_,, STAMP finds a distribution of op-
timal solutions to the inference problem p(6|O = 1) by running
SVGD inference until convergence and subsequently refining
the plans via stochastic gradient descent (SGD) updates. During
SVGD, each of the n plans (f) are executed and simulated in
Warp. After obtaining states zo.x7 = fsim(Z0, @1: 5, Uo:kT—-1)
for each particle, the posterior distribution and its surrogate are
computed using (5) and (7). Gradients of the log-posterior with
respect to {6, }_, are obtained via auto-differentiation in Warp,
and these gradients are used to update each candidate plan 6,
via update rule (3). Once SVGD converges, i.e., the absolute
change in ), log p; in two consecutive iterations is less than
some § > 0 (§ is a hyperparameter that we find empirically),
we switch to SGD for all particles. During SGD, the above
steps are repeated except for the update rule, which switches
to 0; < 0; + €V, log p;. Switching to SGD after SVGD allows
us to finetune our plans, as the repulsive term Vgk(6,6') in
SVGD can push the plans away from optima, but with SGD the
plans are optimized to reach them. All of the above computations
(physics simulations, log posterior evaluations, and gradient
computations for all particles) are run in parallel on the GPU,
making STAMP highly efficient. The pipeline and pseudocode
are in Fig. 2 and Algorithm 1.

V. EVALUATION

We run STAMP on three problems: billiards, block-pushing,
and pick-and-place. We benchmark STAMP against two base-
lines that build upon PDDLStream [4] and Diverse LGP [6],
with K fixed to the same number as STAMP. In block-pushing,
we integrate the original baselines’ task planner with a motion

planning pipeline similar to STAMP’s (we optimize interme-
diate goal poses of a DMP-generated trajectory via SGD).
In pick-and-place, we benchmark against PDDLStream, and
again use DMP-generated trajectories but without optimizing
the intermediate goal poses (we assume that the first sampled
motion plan is always correct), which provides a lower-bound
estimate of PDDLStream’s runtime. We run our experiments on
the NVIDIA GeForce RTX 2080 Ti GPU and Intel Core™i7-
9700K Processor.

A. Problem Environments and Their Algorithmic Setup

1) Billiards: The goal is to optimize the initial velocity ug
on the cue ball that sends the target ball into one of the pockets
in Fig. 4. This requires planning on the continuous domain
(uo € R?) and discrete domain (the set of walls we wish for the
cue ball to hit before colliding with the target ball). We define
our particles as 6 = [ug, 2] where z = [21, 29, 23, 24] € {0,1}4,
which indicates which of the four walls the cue ball bounces off
of*. The cost function C'is a weighted sum of the target loss
Liarger and aim loss Ly, which are both squared Lo distance
functions which are respectively 0 when the cue ball ends up in
either of the two pockets and if the cue ball comes in contact
with the target ball at any point in its trajectory:

C(@) = ﬂaimLaim + ﬁtargetLtarget

Hyperparameters Biarger, Baim > 0 are the loss’ respective coef-
ficients.

2) Block-Pushing: The goal is to push the block in Fig. 1
towards the goal region. The symbolic plan is the sequence of
sides (north, east, south, west) to push against. Assuming a priori
that up to K action sequences can be committed, we define

12)

. T
the particles as § = [al,...,aK,gl,...,gK] , where a;, € R*

are the relaxed symbolic variables and g, = (g7, g}, g,‘f] € R3
denote individual goal poses after executing each action. Given
the goals, we use a DMP trained on 47 pushing demonstrations to
obtain trajectories and control inputs, by integrating (11). The
discrete task variable for the kth action can be recovered via
(6). The cost is the weighted sum of the target 10ss Liager and
trajectory 10ss Liraj. Liarger 1S @ squared Lo norm between the

4zi = 1 if the cue ball hits wall %, and it is O otherwise.
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Fig. 7.

Solutions STAMP found simultaneously for the pick and place experiment, with K = 4. The goal is to place the blue cube into one of the two targets

on the left, which are occluded by red cubes. The solution on the left removes the bottom red cube to place the blue cube into the target. The solution on the right

removes the top red cube to place the blue cube into the target.

cube and the target at the final time-step. Li,; is the L, distance
traveled by the cube, which penalizes indirect paths to the target.

0(0) = ﬂtargetLtarget (irKT) + ﬂtrathraj (gf;;l() (13)

3) Pick-and-Place: Using an end effector, the goal is to pick
and place blocks 1, 2, and 3 such that block 1 ends up in one
of two targets as shown in Fig. 7. Long horizon reasoning is
required in this problem, as blocks 2 and 3 (colored in red)
occlude the targets; hence, either block 2 or 3 have to be moved
out of the way before block 1 (blue) can be placed onto one of
the targets. We express our goal as

((cubel € A) V (cubel € B))
(14)

Symbolic actions are Z = {pick(c),place(c)} Yce C =
{cubel, cube2, cube3}. We use the relaxation introduced in (6)
to differentiably optimize the symbolic actions. Using this relax-

. . T
ation, particles are defined as 6 = [ay,...,ax,91,...,9K] .
where ai.x represent which K-length sequence of symbolic
actions are executed, and g;.x are the intermediate goal poses
of the end effector after executing each action. We use a DMP
trained on 10k autogenerated demonstrations to recover the end
effector’s full trajectory from g;.x.

Unlike in previous examples, the symbolic actions have
preconditions and postconditions that constitute constraints in
our problem, as they must be satisfied before and after executing
them. pick(c), for instance, requires as preconditions that the
end effector is not holding onto anything and that cube c is
graspable; further, it requires as a postcondition that the end
effector is holding onto c. For each pre/postcondition, we con-
struct differentiable loss functions Lpre(.), Lpost() = 0 that are
minimal when the condition is met®. The constraint associated
with action z € Z is then expressed as the +;- and ~y;-weighted
sum of its precondition losses and postcondition losses, where
Yi,7; > 0 are scalar hyperparameters:

Lo(@igur) = > viLi(ze,9)+ >, vLi(we,)

icpre(z) jEpost(z)

A—onTop(cubel, cube2) A —onTop(cubel, cube3).

15)
We optimize towards the logical goal stated in (14) by defining
the total target loss as the sum of each cube’s individual target
loss weighted by a soft indicator function w,. that gets softly
activated whenever the cube is held by the end effector, and
deactivated when it is not. The target loss of cube ¢, Lirget,c, and
its gradient will dominate the optimization if c is held by the
gripper, which is a necessary condition for placing c in its target.

Llarget(mtm xtT> = Z Wc(xto) : Ltargel,c(xtT)~

ceC

(16)

SA comprehensive description of pre/postcondition loss definitions can be
found in Appendix XII of the letters posted on our project website: https:/rvl.
cs.toronto.edu/stamp.

TABLE I
STAMP’S RUNTIME VS. BASELINES

| Method Time / Solution (s) Runtime (s)
= | Diverse LGP 7.5 + 0.9 7.5 +£0.9
& | PDDLStream 57 +0.8 5.7 +0.8
Z | STAMP 0.068 =+ 0.007 6.94 &+ 0.06
5 Diverse LGP 22.6 + 7.6 22.6 +7.6
% | PDDLStream  22.2  £0.1 22.2 4+0.1
& | STAMP 0.0157 % 0.0004 12.92 4 0.04
N PDDLStream’  25.00 =+ 0.01 325.3 £0.2
& | stampt 29 +9 382 41

STAMP 160 +50 2111 +8

Averaged across 10 seeds; P-P denotes “pick-and-place”; K = 2 for pusher; K
= 4 for P-P; PDDLStream implements PDDLStream but assumes that the first
sampled motion plan is correct, thus is a lower-bound estimate of PDDLStream’s
runtime; STAMP' measures runtime excluding the simulation or gradient
computation time.

TABLE 11
RUNTIME VS. # PARTICLES

#Particles Billiards (s) Pusher, K = 2 (s)
700 6.30 £ 0.07 12.53 £ 0.05
900 6.55 £+ 0.04 12.74 £0.03

1100 6.94 £+ 0.06 12.92 £ 0.04
1300 7.71+£0.12 13.22 £ 0.06

Averaged across 10 seeds.

TABLE III
RUNTIME VS. PARTICLE DIM. (PUSHER)

Max. #Pushes (K) Dim. Runtime (s)

2 16 12.92 +0.04
3 24 12.93 £ 0.04
4 32 13.26 + 0.03
5 40 13.57 £0.03

Averaged across 10 seeds; 1100 particles.

The target loss for cube 1 is minimal when cube 1 is placed in
one of the two targets, while for cube 2 and 3, it is minimal when
the cubes are not in the two targets.

Finally, the total cost function is constructed as a sum over
all constraints L, (w4,.¢,.) = [L2(74,.4,)V2 € Z]" weighted by
Zr =T'(ax)Vk =1,..., K and the target loss, which is com-
puted after executing each action®.

K
C() =

k=1

(2 - La(@e-1yr10m) + Luarger(Trr))  (17)

SRecall that K is the number of action sequences, aj, the component of the
particle representing the task plan, and I'(+) a composition of softmax operations.
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The global optima of C(#) are thus action sequences z1.x =
I'(a1.x) and intermediate goal poses that solve the goal while
ensuring all pre/postconditions are met. Further, C' is amenable
to gradient-based methods like STAMP since it is differentiable
w.r.t. both a;.x and g1.x. Note, C(6) is the sum of individual
loss terms which only depend on trajectories within each of the
K action sequences; i.e., it is of the form:

K

C(0) = > Crlan, g, T(k-1)T+1:57)-
k=1

(18)

As the loss functions within the sums only depend on short
trajectories (€.g., T(x—1)T+1:x7 as opposed to z1.x7) and the
task variable ayp, we can split the optimization into smaller
chunks by defining the posterior using the ‘inner’ cost C',, which
prevents the need for taking gradients over the entire trajectory
x1. 7 and mitigates the danger of gradient explosion during
optimization.

B. Experimental Results (Simulation)

We investigate the following questions:
(Q1) Can STAMP return a variety of plans to problems for
which multiple solutions are possible?

(Q2) How does STAMP’s runtime compare to search-based

TAMP baselines?

(Q3) How does STAMP’s runtime scale w.r.t. problem di-

mensionality and number of particles?

(Q4) Is SGD necessary in STAMP to find optimal plans?

1) Solution Diversity: STAMP finds a variety of solutions
to all three problems; Figs. 1, 4, and 7 show sample solutions.
While STAMP finds a distribution of solutions in a single run,
baseline methods can only find one solution per run. Fig. 6(a)
and (b) show a histogram of solutions found in one run compared
to solutions found using baseline methods by invoking them
multiple times.

2) Runtime Efficiency: STAMP produces large plan sets in
similar or substantially less time than baselines (Table I). For
pick-and-place, most of STAMP’s runtime is spent on simulation
and backward pass, so we exclude simulation and backward pass
time from the runtime when comparing it to PDDLStream’s
lower-bound runtime estimate. One way to reduce STAMP’s
runtime may be to use a neural network to learn the physics and
differentiate through the network, but we limit the scope of our
work to using a differentiable physics simulator.

3) Scalability to Higher Dimensions and Greater Number
of Particles: Tables II and IIT show the total runtime of our
algorithm while varying the number of particles and particle
dimensions. Increasing the number of particles and the dimen-
sions of the particles has little effect on the total optimization
time, which is consistent with expectations as our method is
parallelized over the GPU’.

4) SGD Plan Refinement: Pure SVGD inference results in
slow or poor convergence, while running SGD post-SVGD
inference results in better convergence (Fig. 5).

C. Experimental Results (Real Robot)
We demonstrate STAMP on a real robot system using a front-
view camera, AprilTags [56] for pose estimation of cube(s) and

7GPU parallelization is made possible through the use of SVGD, a paralleliz-
able inference algorithm, and the Warp simulator
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target(s), and a Franka Emika Panda robotic arm. We input the
detected poses into STAMP and track the resulting trajectory
directly. We vary the cube and target positions across 2 distinct
configurations for block-pushing, and 1 configuration for pick-
and-place, which can be seen on our project website® and in
our video submission, along with their top solutions. Fig. 1
shows the top solutions’ found for one configuration of block-
pushing. The lowest-cost solutions found by STAMP, shown in
our videos, were physically realistic and thus successful in our
real robot experiments. Some of the other solutions found by
STAMP were not executable in the real world due to sim2real
gaps such as frictional differences. In our problem formulation,
our cost function did not take into account the sim2real gap
(e.g., rotational infeasibility in block-pushing, which depends
on friction forces), which is typical in TAMP methods. However,
because our method finds multiple solutions in parallel, the end
user has the flexibility of choosing the best solution using costs
that weren’t originally considered in the initial formulation, such
as the sim2real gap.

VI. CONCLUSION

We presented STAMP, which formulates TAMP as a vari-
ational inference problem over discrete symbolic action and
continuous motion parameters, and solves the inference problem
using SVGD and gradients from differentiable simulation. We
validated our approach on billiards, block-pushing, and pick-
and-place problems, where STAMP discovered a diverse set of
plans covering multiple different task sequences and motion
plans. Through exploiting parallel gradient computation from
a differentiable simulator, STAMP finds a variety of solutions in
a single optimization run, and its runtime scales well to higher
dimensions and more particles.
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