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Calculating probabilities from imagined possibilities: Limitations in 4-year-olds
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Lucy White,>? Roman Feiman,? Laura Schulz,' Joshua B Tenenbaum'
"Massachusets Institute of Technology, ZBrown University, *University of Bath
Tbrianlea@mit. edu, vvc@mit.edu

Abstract

Adults can calculate probabilities by running simulations and
calculating proportions of each outcome. How does this abil-
ity develop? We developed a method that lets us bring com-
putational modeling to bear on this question. A study of 40
adults and 31 4-year-olds indicates that unlike adults, many
4-year-olds use a single simulation to estimate probability dis-
tributions over simulated possibilities. We also implemented
the 3-cups task, an established test of children’s sensitivity to
possibilities, in a novel format. We replicate existing 3-cups
results. Moreover, children who our model categorized as run-
ning a single simulation on our novel task show a signature of
running a single simulation in the 3-cups task. This signature
is not observed in children who were categorized as running
multiple simulations. This validates our model and adds to the
evidence that about half of 4-year-olds don’t evaluate multiple
candidates for reality in parallel.

Keywords: Possibility; probability; modal concepts; compu-
tational modeling

Introduction

Adults can compute probabilities in many ways. One way in-
volves estimating proportions in observable populations: if
we see an urn that holds 80% red balls, we know that a
randomly-drawn ball will most likely be red. This capacity
is evolutionarily ancient (Gallistel, 1990) and develops early
(Saffran, Aslin, & Newport, 1996; Xu & Garcia, 2008). Sec-
ond, adults can use their intuitive physics or other mental
models to run several simulations; the proportion of simu-
lations with each outcome can be treated as the probability of
that outcome (Battaglia, Hamrick, & Tenenbaum, 2013). The
current paper addresses the ontogenesis of this capacity. We
evaluate concrete hypotheses about how children and adults
use simulation to generate probability distributions.
Preschoolers often make unwise decisions when faced with
multiple possibilities. In the 3-cups task (Mody & Carey,
2016) children see 3 cups: a pair and a singleton. A prize
is hidden in the singleton, and another prize is hidden in the
pair—the child can’t tell which cup. The child chooses one
cup and keeps its contents. Choosing the singleton guaran-
tees a prize. Older 2-year-olds (30-36 months) choose the
singleton half the time; analyses of how errors distribute over
participants show that all older 2-year-olds choose the single-
ton with probability .5 (Leahy, Huemer, Steele, Alderete, &
Carey, 2022). Random choice should yield 1/3 choice of the
singleton, which is not observed; why would individual chil-
dren choose the singleton with probability .57 Leahy & Carey
(2020) propose that these children lack modal concepts, and
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hence cannot model multiple versions of a single reality. In-
stead they deploy minimal representation of possibility. They
run just one simulation, in which each prize lands in a cup.
But since they only simulate once, they do not understand that
the prize in the pair might be in either cup. They take its loca-
tion to be determined. So they choose randomly between the
two locations that they believe hold a prize (the singleton and
one member of the pair). Over many trials, this yields 50%
choice of the singleton and 25% choice of each member of
the pair, as observed in older 2-year-olds. With age, a group
of children who more reliably choose the singleton emerges
and grows. At age 4, only about half of children seem to
understand that there are multiple possibilities that need to
be taken into account (Leahy, 2023). The remainder choose
the singleton cup with probability .5. A similar proportion of
children succeed on the Y-shaped tube task (Redshaw & Sud-
dendorf, 2016). A ball is dropped into a tube shaped like an
upside-down “Y”’; 36-month-olds who want to catch the ball
rarely cover both possible openings (Redshaw & Suddendorf,
2016), especially if there is a third, impossible opening that
they must avoid. About half of 48-month-olds identify the
two possible openings (Leahy, 2024).

There are many objections to the hypothesis that only about
half of 4-year-olds (and fewer younger children) have modal
concepts (Cesana-Arlotti, Kovécs, & Téglas, 2020; Cesana-
Arlotti & Halberda, 2024; Alderete & Xu, 2023; Turan-
Kiiciik & Kibbe, 2024, 2025; Andreuccioli et al., 2024;
Brody, Mazalik, & Feiman, 2024). Work on both sides of this
debate typically uses binary response measures (e.g., does the
child choose the singleton cup or not?), which make it easier
to extract interpretable data from preschoolers. However, bi-
nary measures do not support computational modeling that
distinguishes between fine-grained hypotheses. The current
paper introduces a richer dependent measure that allows us
to more precisely test quantitative, mechanistic accounts of
how children use simulation in their intuitive physics engine
to evaluate possibilities. Following Gerstenberg, Siegel, and
Tenenbaum (2018), we created virtual “Plinko” boxes (Fig
1) where small balls fell through a series of obstacles before
landing in a bin at the bottom of the screen. Children could
put virtual “cushions” into the bins. When a ball strikes a
cushion, it plays a jingle, grows, and turns golden; the cush-
ion disappears and the ball keeps falling. So the ball can hit
multiple cushions and gather multiple rewards.

We developed a novel probability task and a version of the
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Figure 1: Probability task. A. Example stimuli. Red triangles indicate bins where the ball might land. In panels A1-A4 there is
1 ball. It either follows a determinate path (A1), so there was only 1 place for it to land, or an indeterminate path (A2-A4), with
2-4 bins for it to land in. In “2 ball, deterministic” trials (A5) there were 2 places for balls to land. In “3 ball, deterministic”
trials (A6) there were 3 places for balls to land. Deterministic trials are controls: When there is only one possible bin (A1),
do participants stack all their cushions there? When there are two places where balls where balls will definitely land (AS), do
participants spread their cushions out over both possible bins? B. The task, illustrated with a “3 possibilities” trial (cf. A3).
(B1) Participants were asked 3 times “Where would you like to put this cushion?”. (B2) After each question, the experimenter
placed a cushion in the indicated bin, yielding a distribution of cushions. (B3) The experimenter dropped the ball, which grew
and changed color with each cushion it struck. (B4) Result: If the ball has landed on 1 or more cushions, it is bigger and golden.

3-cups task. In the probability task (Fig 1), children saw 15
trials where they placed 3 cushions in bins. When there was
only one bin for the ball to land in (Fig 1A1; call these “de-
terministic” trials) stacking all cushions in that bin guarantees
the greatest reward. In what we will call “probabilistic” tri-
als, there were 2, 3, or 4 possible bins for the ball to land in
(Fig 1A2-A4). With multiple possible bins, stacking cushions
in one bin risks hitting no cushions at all. But children who
deploy minimal representations of possibility will be insensi-
tive to the difference between probabilistic and deterministic
trials, since they only see one place for the ball to go. Spread-
ing cushions into possible bins will be evidence that the child
runs more than one simulation. Stacking cushions up will—
with caveats, below—be evidence that the child deploys mini-
mal representation of possibility.

In our modified 3-cups task (Fig 2), children placed one
cushion. There were two balls. One ball followed a determi-
nate path while the other ball could fall into either of two bins.
Reliably placing the cushion under the ball that follows a de-
terminate path indicates differentiating the sure thing from
the mere possibilities. But children who deploy minimal rep-
resentations of possibility should place the cushion under the
ball that follows a determinate path with probability .5.

We test 3 hypotheses about how many simulations each
child runs in the probability task. For each participant, we
calculate the probability that they (1) run a single simulation
and use that single result to guide their cushion placement
(i.e., minimal representation of possibility); (2) run one sim-
ulation per cushion, using that simulation to place that cush-
ion, repeating for each cushion; or (3) run enough simulations
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to have a good sense of the probability of the ball landing in
each bin. Children who only run one simulation will tend to
stack their cushions up; the bin they choose to stack in will be
proportional to the bin’s probability. So if there are two possi-
ble bins and one bin is twice as likely as the other, over many
trials they will stack in the high probability bin twice as often
as in the low probability bin. Children who simulate once per
cushion will place cushions in bins in proportion to the bin’s
probability. For example, if there are two possible bins and
one bin is twice as likely as the other, they most likely put
two cushions in the higher-probability bin and one cushion in
the lower-probability bin. The behavior of children who run
many simulations will depend on how risk-seeking or risk-
averse they are. Risk-seeking children will tend to stack their
cushions up. However, they will stack their cushions in the
highest probability bin, revealing their sense of the probabili-
ties. This distinguishes gamblers who know the probabilities
from children who run a single simulation. Risk-averse chil-
dren will tend to spread their cushions out, prioritizing cover-
ing all the possibilities over getting more rewards.

The 3-cups task tests for convergence across tasks. Chil-
dren who run a single simulation on the probability task are
expected to choose wisely on the 3-cups task with probability
.5. Children who run more simulations should perform better
on the 3-cups task than those who run a single simulation.

Methods
Participants

Participants were 40 adults, recruited on Prolific, and 31 4-
year-olds (range = 4.15-4.98, mean = 4.58, sd = 0.25), re-
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Figure 2: 3-cups trials: A conceptual replication of Mody &
Carey’s (2016) 3-cups task. Participants have one cushion to
place. There are two balls. One ball follows a determinate
path; the other is equally likely to fall into either of two bins.

cruited through childrenhelpingscience.com. Adults partici-
pated online in an unmoderated session. Children were tested
in a moderated zoom session. Adults only completed the
probability task, because in piloting adults had no variance
on the 3-cups task (100% performance). Fourteen children
were tested and excluded: 6 for withdrawing consent, 4 for
equipment failure, and 4 for failing the training criteria.

Design

The 3-cups task and the Probability task were blocked and
counterbalanced. The test-phase of the probability task was
presented in one of two pseudorandom orders, counterbal-
anced. All probability trial types were interleaved but biased
so that trials with more possible bins tended to come later in
the study. This gave children time to warm up to the game’s
mechanics before getting to the most difficult problems.

Stimuli and Procedure

Probability Task After learning the basic mechanics, chil-
dren were asked to “make sure every ball gets big and
golden”. Then a training phase began, using only determin-
istic trial types (Fig 1A1, A6). Children placed 3 cushions
into bins. First came a 1-ball deterministic trial (Fig 1A1).
The experimenter indicated the top cushion in the sidebar and
asked, “Where should I put this cushion?”. This was repeated
for each cushion. If the child did not place all 3 cushions
in the correct bin, the experimenter used scripted prompts to
help the child to understand why they should put all the cush-
ions in the bin where the ball would land. Next came a 3-
ball deterministic trial (Fig 1A6), following the same proce-
dure. If the child did not place a cushion under each ball, the
experimenter used scripted prompts to help the child under-
stand why they should put a cushion under each ball. Finally,
children who needed prompting were given a second trial of
each trial type they needed prompting on. If they still needed
prompting they were excluded.

In the test phase children saw 3 trials each of 5 trial types
(Fig 1A1-AS). As in the practice phase, the experimenter
indicated the top cushion in the sidebar and asked, “Where
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should I put this cushion?”, placed the cushion, and repeated
for all 3 cushions. Once all cushions were placed the ball was
dropped.

3-cups task The 3-cups task conceptually replicated tasks
that check whether children differentiate sure things from
mere possibilities (Mody & Carey, 2016; Leahy, 2023). Chil-
dren placed one cushion. In the training phase, they first saw
a trial where a single ball would follow a determinate path.
They were asked what bin the ball would fall in; once they
identified the correct bin, the cushion was placed there and
the ball was dropped. Next was a trial where a single ball
had an indeterminate path. The experimenter said, “This ball
might land here or here (indicating each possible bin). Let’s
watch and see which bin the ball lands in!”” Once the ball had
landed, participants were asked which bin the ball was in. The
next trial was identical except the ball went into the other bin,
showing participants that the ball could go both ways. If chil-
dren made a mistake indicating which bin the ball was in, the
process was repeated. Children who never made two correct
responses in a row were excluded. No cushions were placed
on these trials, as we did not want to encourage guessing. In
the test phase there were two balls. One had a deterministic
path; the other could land in two places (Fig 2). The exper-
imenter asked, “Where do you want to put this cushion?”,
placed the cushion, and dropped the ball. There were 5 trials.

Results
Probability Task

We coded responses into three categories. “Stacking” means
placing all three cushions in one possible bin. “Spreading”
means placing cushions in more than one possible bin, and
none in an impossible bin. “Other” means any other response,
and is equivalent to placing at least one cushion in an impos-
sible bin. Figure 3 shows the descriptive results. In One ball,
deterministic trials, children stacked their cushions on 76%
of trials. In two ball, deterministic trials, children spread out
their cushions on 66% of trials. These results show that chil-
dren see the value of stacking when there is one place for a
ball to land, and of spreading when there are two places for
a ball to land. On probabilistic trials, children stacked their
cushions up 52% of the time and spread 32% of the time.

Aggregate comparison At the group level, children and
adults distributed their cushions similarly. A model where
adult and child aggregate cushion placements were drawn
from the same distribution fit better than one where they come
from separate distributions, for each of the probabilistic stim-
uli (1-ball, 2-, 3-, and 4-possibility trial types: mean ABIC =
6.9, 14.0, and 18.1 respectively).

Model The child and adult distributions do not differ in ag-
gregate, but results could distribute over participants in dif-
ferent ways. We formulated a Bayesian hierarchical model to
jointly infer both the strategies that participants used to gener-
ate their responses and the frequency of those strategies in the
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Figure 3: Test-phase descriptive results (children). Top row: results from the 3 1-ball deterministic trials. Middle row: results
from the 3 2-ball deterministic trials. Bottom row: results from the 9 probabilistic trials. Participants were sorted by the number
of times they stacked cushions in the Probabilistic trials; bars were labeled with the model categorizations of each participant.

population. We tested 3 hypotheses about how participants
draw on the intuitive physics engine to calculate the probabil-
ity of the ball landing in each bin: (1) run a single simulation
and take the result to be the fact of the matter; (2) run a single
simulation for each cushion; (3) run enough simulations to
have a good sense of how probability is distributed.

We assumed that the aggregated adult distribution of cush-
ions in each trial matched the ground truth of how probability
was actually distributed over the bins in that trial. We then
modeled running one simulation in the intuitive physics en-
gine as drawing a single sample from the ground truth (adult)
distribution. We will call the collection of samples drawn
from the ground truth distribution the participant’s “men-
tal distribution”. The mental distribution was then passed
through a softmax function with temperature <, allowing us
to model each participant’s risk-aversion or risk-seekingness.
Finally, we assumed that participants place cushions by sam-
pling 3 times from the softmaxed mental distribution, placing
a cushion in each sampled location, with a noise parameter o
determining the probability of placing a cushion randomly.

To help intuitively understand this model, we illustrate how
it teases apart our 3 hypotheses and show how this depends
on the model parameters. A child who runs many simulations
will have a mental distribution that matches the ground-truth
probability distribution. But this does not tell the child where
to put their cushions. Moreover, some people are risk-seeking
(they try to get more cushions) while others are risk-averse
(they make sure they get at least one cushion). We model
this with the parameter T of the softmax function. In most
cases (see the next paragraph for an exception), applying a
softmax with low T emphasizes the differences between the
various possibilities, increasing the probability of high-value
possibilities and decreasing the value of low-value possibili-
ties. A high T smooths out the differences between possibili-
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ties, increasing the probability of low-value possibilities and
decreasing the probability of high-value possibilities. We as-
sume that children sample from the soft-maxed mental distri-
bution in deciding where to put their cushions. Children who
are estimated to have a low T-value will tend to get 3 samples
from the highest-probability bin, and so will place all 3 cush-
ions in the highest probability bin, modulo the probability o
of placing a cushion in a random bin. Children with a high t-
value will tend to get samples from multiple bins, and so will
spread their cushions out; there will also be some probability
« that they place their cushion in a random bin.

Children who run a single simulation have a mental dis-
tribution where all simulations (all 1 of them) result in the
ball landing in the same bin: a distribution with no variance.
Applying a softmax to this distribution does not change the
distribution, no matter the value of T. Children then sample
from their mental distribution to decide where to place their
cushions; since there is only 1 bin with any probability, all
samples yield that bin. So children are expected to stack their
cushions in that bin, modulo o, the probability of placing a
cushion at random. Importantly, the single simulation that
children run will land in each possible bin in proportion to
that bin’s probability. So over many trials, these children will
tend to stack in bins in proportion to their probability, mod-
ulo a. So if there are two possible bins and one bin is twice
as likely as the other, they will stack in the higher-probability
bin twice as often as they stack in the lower-probability bin.

Children who simulate once per cushion also generate a
mental distribution with no variance, which is not impacted
by the softmax function. They place a cushion in the simu-
lated bin, modulo a, and repeat for each cushion. This pro-
cess predicts that cushion placements will approximate the
probabilities within each trial. So if there are two possible
bins and one is twice as likely as the other, these children will
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Figure 4: Model categorizations for children and adults.
Points on a vertex most likely belong to the category on that
vertex. Points on the perimeter (but not a vertex) are confus-
able between the categories on the adjacent vertices but not
the category on the opposite vertex. Points on the perimeter
at the midpoint between two vertices are maximally confus-
able between those two categories. Points in the interior of
the triangle are confusable between all three categories, with
points at the center of the triangle being maximally confus-
able between all three categories.

most likely put two cushions in the higher-probability bin and
one cushion in the lower-probability bin (modulo ).

For each participant the model finds the probability that
they (a) run 1 simulation (adults: mean probability = .09, 95%
CI =[.02, .12]; 4-year-olds: mean probability = .47, 95% CI
= [.30, .64]); (b) run 1 simulation per cushion (adults: mean
probability = .23, 95% CI = [.09, .38]; 4-year-olds: mean
probability = .19, 95% CI = [.04, .36]); or (c) run many sim-
ulations (adults: mean probability = .68, 95% CI = [.53, .83];
4-year-olds: mean probability = .34, 95% CI = [.16, .50]).

Adult results validate the model: adults most likely run
many simulations, and are unlikely to run a single simulation.
The probability of an adult simulating once per cushion is not
trivial (.23), but note that in this model simulating once per
cushion is confusable with running many simulations with t
close to 1. Child results suggest that about half of 4-year-olds
deploy minimal representations of possibility and that about
half bring modal concepts to bear.

For each participant, the model gives a probability distri-
bution over which of the three groups that participant be-
longs to. Fig 4 visualizes these distributions. Here we report
how many participants most likely to belong to each group
(1 simulation, 1 simulation per cushion, many simulations).
Adult results validate the model: 30 adults (75%) were cat-
egorized as running many simulations; 7 (18%) as simulat-
ing once per cushion (note that simulating once per cushion
is confusable with running many simulations with T close to
1). Only 3 adults (8%) were categorized as running 1 sim-
ulation. Twelve children (39%) were categorized as running
many simulations, 3 (10%) as simulating once per cushion,
and 16 (52%) as running 1 simulation. Four-year-olds largely
fall into two similar-sized groups: a group that runs a single
simulation and a group who runs many simulations.
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Figure 5: Performance on the 3-cups task. Large diamonds
are model estimates with 95% ClIs. Black dots are individual
proportions of wise decisions. (A) All data. (B) Data broken
down by model classifications.

3-cups task

We define a “wise decision” on the 3-cups task as placing
the single cushion in the path of the ball that follows a de-
terminate path, as this is the only way to guarantee a reward.
Children placed their single cushion wisely 63% of the time;
they put it in a merely possible bin 32% of the time. Per-
formance is not significantly different from the 4-year-olds in
Mody and Carey (2016) or Leahy (2023) study 2 (GLMM
predicting probabililty of a wise decision from study with
random intercept for participant: Leahy 2023-Current data:
logOR -0.01, 95% CI [-0.68, 0.66], p = .98, Mody & Carey-
Current data: logOR 0.41, 95% CI [-0.34, 1.16], p = .28).
As in previous studies with different apparatuses, 4-year-olds
make unwise decisions between 30% and 40% of the time.
In addition to replicating previous results, we see here that
4-year-olds constrain their responses to bins that might pay
off. This shows us that their errors draw on simulation, not
noise. However, many children do not seem to differentiate
bins that merely might pay off from bins that will pay off.
Fig 5A shows the probability of a wise decisions, along with
each participant’s descriptive proportion of wise decisions.
Note that the distribution of descriptive proportion correct is
bimodal, with one mode at 100% correct and another mode
centered on 50% correct. Distributions like this are typical on
3-cups tasks with children aged 3 or older; these distributions
support the hypothesis that some children bring modal con-
cepts to bear while others run a single simulation (Leahy et
al., 2022; Leahy, 2023). The current data allows us to break
the 3-cups data down my model categorization from the prob-
ability task (Fig 5B) to evaluate this claim.

Relationship between probability- and 3-cups tasks

We held out the 3-cups data in constructing our model of the
probability task. Thus we can validate our model against the
3-cups data. We used the model categorizations to evaluate
performance on the 3-cups task, checking whether children



who run a single simulation on the probability task choose the
singleton in the 3-cups task with probability .5, and whether
children who run many simulations in the probability task are
more likely to make wise decisions on the 3-cups task. Each
participant’s descriptive proportion wise decisions, grouped
by their model categorizations, are plotted in Fig 5B. The
observed distribution of proportion correct for children who
ran a single simulation on the probability task did not dif-
fer from the distribution expected if all children choose the
singleton with ground-truth probability .5 (multinomial test,
p=-31). This is a signature of minimal representations of pos-
sibility. Moreover, the probability of choosing wisely in the
3-cups task for these 16 children was not significantly differ-
ent from existing studies with children aged 30-36 months,
all of whom deploy minimal representations of possibility
(GLMM predicting probability of a correct response on the
3-cups task from study (Mody & Carey 2.5-year-olds; Grig-
oroglou et al. 2.5-year-olds; Leahy 2023 2.5-year-olds, cur-
rent 4-year-olds categorized as running a single simulation:
all logOR between -0.25 and -0.08; all p-values between .44
and .78). The 4-year-olds who were categorized as running
a single simulation on the probability task perform like 2.5-
year-olds on the 3-cups task; all choose the singleton with
ground-truth probability .5. By contrast, children who were
categorized as running many simulations formed a distribu-
tion that was significantly different from the distribution ex-
pected if all children choose the singleton with ground-truth
probability .5 (multinomial test, p< .001). To evaluate the
differences between these groups a GLMM was fit, predict-
ing the probability of a wise decision on the 3-cups task from
model categorization (1 simulation, 1 simulation per cushion,
or many simulations), with a random intercept for participant.
Children who run many simulations on the probability task
were significantly more likely to make a wise decision on the
3-cups task than children who run a single simulation (logOR
1.06, 95% CI [0.14, 1.99], p=.02). About half of 4-year-olds
run a single simulation on both of these tasks, while the re-
mainder run multiple simulations on the probability task and
are more likely to differentiate the sure thing from the mere
possibilities on the 3-cups task.

Discussion

The current study developed a dependent measure that is suit-
able for computational modeling. We found that on the prob-
ability task, 52% of 4-year-olds most likely run a single simu-
lation; 39% most likely run many simulations; and 10% most
likely simulate once per cushion (which is confusable with
running many simulations with T close to 1). This converges
with existing estimates of the frequency of deploying minimal
representations of possibility and deploying modal concepts
among 4-year-olds (Leahy, 2023, 2024).

We replicated previous 3-cups findings. When 3-cups per-
formance was broken down by model classifications from the
probability task, we found that (1) children who were cate-
gorized as running a single simulation on the probability task
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performed indistinguishably from 2.5-year-olds on the 3-cups
task and (2) children who were categorized as having a good
sense of the probability distribution on the probability task
were significantly better at the 3-cups task. This indicates
that there is a common competence that both tasks measure,
perhaps the ability to evaluate the results of multiple simula-
tions of a single event.

The results shed light on the tension between infant success
on probability tasks (Xu & Garcia, 2008) and preschooler
struggles with the 3-cups task and Y-shaped tube task. Per-
haps infants can evaluate probabilities as proportions in an
observable population; correct evaluation of probabilities by
repeated simulation emerges later.

Why would so many 4-year-olds run a single simulation?
Two answers appear in existing literature. First, Leahy and
Carey (2020) argue that children deploy minimal representa-
tions of possibility because they lack modal concepts: men-
tal symbols that attach to a complete thought to mark that
thought as merely possible, as one member of a range of
competing simulated alternatives for a single reality. Lack-
ing these symbols, children cannot incorporate multiple sim-
ulated possibilities into a single, coherent model; including
two simulated outcomes (“The ball will land in the leftmost
bin and the ball will land in the second bin from the left”)
results in an inconsistent, unuseable model. At most they can
incorporate one simulated possibility into their model.

Second, running many simulations might take time or im-
pose other costs. The greatest amount of information about a
probability distribution is provided by the first sample from
that distribution. So when sampling is costly enough, the
most efficient policy is to sample once and take the result to
be the fact of the matter (Vul, Goodman, Griffiths, & Tenen-
baum, 2014). Our apparatus offers a way to test these hy-
potheses. We can force children to run multiple simulations
by asking, “What will happen if the ball goes this way [indi-
cating that the ball moves leftward]?” and “What will happen
if the ball goes this way [indicating rightward]?” A child who
correctly answers both of these questions has run multiple
simulations. If some children are still categorized as running
a single simulation with these prompts, we can conclude that
they do not do so to save on simulation costs.

Conclusion

The current experiment had two key findings. First, our
model lets us estimate that approximately 50% of 4-year-olds
are best explained as running a single simulation per trial,
while approximately 40% are best explained as running many
simulations per trial. This converges with earlier findings that
about half of 4-year-olds operate with a single simulation,
and about half are responsive to multiple incompatible pos-
sibilities. Second, children who were categorized as running
a single simulation on the probability task show a signature
of minimal representation of possibility on the 3-cups task;
this signature is not observed among children who run multi-
ple simulations. There is something that both tasks measure.
Perhaps both measure the ability to run multiple simulations.
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