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Abstract

We study the problem of unsupervised physical object discovery. Unlike existing
frameworks that aim to learn to decompose scenes into 2D segments purely based
on each object’s appearance, we explore how physics, especially object interactions,
facilitates learning to disentangle and segment instances from raw videos, and to
infer the 3D geometry and position of each object, all without supervision. Draw-
ing inspiration from developmental psychology, our Physical Object Discovery
Network (POD-Net) uses both multi-scale pixel cues and physical motion cues
to accurately segment observable and partially occluded objects of varying sizes,
and infer properties of those objects. Our model reliably segments objects on both
synthetic and real scenes. The discovered object properties can also be used to
reason about physical events.

1 Introduction

From early in development, infants impose structure on their world. When they look at a scene,
infants do not perceive simply an array of colors. Instead, they scan the scene and organize the
world into objects that obey certain physical expectations, like traveling along smooth paths or not
winking in and out of existence [22, 23]. Here we take two ideas from human, and particularly infant,
perception for helping artificial agents learn about object properties: that coherent object motion
constrains expectations about future object states, and that foveation patterns allow people to scan
both small or far-away and large or close-up objects in the same scene.

Motion is particularly crucial in the early ability to segment a scene into individual objects. For
instance, infants perceive two patches moving together as a single object, even though they look
perceptually distinct to adults [11]. This segmentation from motion even leads young children to
expect that if a toy resting on a block is picked up, both the block and the toy will move up as if they
are a single object. This suggests that artificial systems that learn to segment the world could be
usefully constrained by the principle that there are objects that move in regular ways.

In addition, human vision exhibits foveation patterns, where only a local patch of a scene is often
visible at once. This allows people to focus on objects that are otherwise small on the retina, but also
stitch together different glimpses of larger objects into a coherent whole.

We propose the Physical Object Discovery Network (POD-Net), a self-supervised model that learns
to extract object-based scene representations from videos using motion cues. POD-Net links a visual
generative model with a dynamics model in which objects persist and move smoothly. The visual
generative model factors an object-based scene decompositions across local patches, then aggregates
those local patches into a global segmentation. The link between the visual model and the dynamics
model constrains the discovered representations to be usable to predict future world states. POD-Net
thus produces more stable image segmentations than other self-supervised segmentation models,
especially in challenging conditions such as when objects are close together or occlude each other
(Figure 1).
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Figure 1: Motion is an important cue for object segmentation from early in development. We combine motion
with an approximate understanding of physics to discover 3D objects that are physically consistent across time.
In the video above, motion cues (shown with colored arrows) enable our model to modify our predictions from a
single large incorrect segmentation mask to two smaller correct masks.

We test how well POD-Net performs image segmentation and object discovery on two datasets: one
made from ShapeNet objects [2], and one from real-world images. We find that POD-Net outper-
forms recent self-supervised image segmentation models that use regular foreground-background
relationships [7] or assume that images are composable into object-like parts [1]. Finally, we show
that the representations learned by POD-Net can be used to support reasoning in a task that requires
identifying scenes with physically implausible events [21]. Together, this demonstrates that using
motion as a grouping cue to constrain the learning of object segmentations and representations
achieves both goals: it produces better image segmentations and learns scene representations that are
useful for physical reasoning.

Related work. Developing a factorized scene representation has been a core research topic in
computer vision for decades. Most learning-based prior works are supervised, requiring annotated
specification such as segmentations [9], patches [5], or simulation engines [27, 10]. These supervised
approaches face two challenges. First, in practical scenarios, annotations are often prohibitively
challenging to obtain: we cannot annotate the 3D geometry, pose, and semantics of every object we
encounter, especially for deformable objects such as trees. Second, supervised methods may not
generalize well to out-of-distribution test data such as novel objects or scenes.

Recent research on unsupervised object discovery and segmentation has attempted to address these
issues: researchers have developed deep nets and inference algorithms that learn to ground visual
entities with factorized generative models of static [6, 1, 7, 3] and dynamic [25, 26, 14, 4] scenes.
Some approaches also learn to model the relations and interactions between objects [26, 24, 25]. The
progress in the field is impressive, though these approaches are still mostly restricted to low-resolution
images and perform less well on small or heavily occluded objects. Because of this, they often fail
to observe key concepts such as object permanence and solidity. Further, these models all segment
objects in 2D, while our POD-Net aims to capture the 3D geometry of objects in the scene.

Some recent papers have integrated deep learning with differentiable rendering to reconstruct 3D
shapes from visual data without supervision, though they mostly focused on images of a single
object [18, 20], or require multi-view data as input [28]. In contrast, we use object motion and physics
to discover objects in 3D with physical occupancy. This allows our model to do better in both object
discovery and future prediction, captures notions such as object permanence, and better aligns with
people’s perception, belief, and surprise signals of dynamic scenes.

2 Method

The Physical Object Discovery Network (POD-Net) (Figure 2) decomposes a dynamic scene into a
set of component 3D physical primitives. POD-Net contains an inference model, which recursively
infers a set of component primitive descriptions, masks, and latent vectors (Section 2.1). It also
contains a three-module generative model (Section 2.2). The generative model uses a back-projection
module to infer 3D properties of each component. It also includes a dynamics model to predict
primitives motions and a VAE [12, 17] to back-project these primitives onto 2D images. These
components ensure that the learned primitive representations can reconstruct the original image, as
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Figure 2: POD-Net contains four modules for discovering physical objects from video. (I) An inference model
auto-regressively infers a set of candidate object masks and latents to describe each patch of an image; (II) A
projection model maps each mask to a 3D primitive; (III) A dynamics model captures the motion of 3D physical
objects; and (IV) An image generative model decodes proposed latents and masks to reconstruct the image.

well as a sequence of images consistent with physical dynamics. Together, these constraints produce
a strong signal for self-supervised learning of object-centric scene representations.

2.1 Inference Model

We sequentially infer the underlying masks and latents that represent a scene (Figure 2-I). Inspired by
MONet [1], we employ an attention network to iteratively decompose a scene into a set of separate
masks M = {m1,m2, ...,mn}. For each mask mi, a corresponding latent vector zi is extracted.

In particular, we initialize context c0 = 1, which we define to represent the context in the image x
yet to be explained. At each step, we decode the attention mask mi = ci−1αψ(x; ci−1), using a
parameterized attention network Attention(·). We iteratively update the corresponding context in the
image by ci = ci−1 (1− αψ(x; ci−1)) to ensure that sum of all masks explain the entire image.

We further train a VAE encoder Encode(z|m,x), which infers latents zi from each component mask
mi. We set m0, z0 – the first decoded mask and latent – to be the background mask mb and latent
zb, and define each subsequent mask or latent to be object masks and latents.
Sub-patch decomposition. Direct inference of component objects and background from a single
image can be difficult, especially when images are complex and when objects are of vastly different
sizes. An inference network must learn to pay attention to coarse features in order to segment large
objects, and to fine details in the same image order to segment the smaller objects. Inspired by how
people solve this problem by stitching together multiple foveations into a coherent whole, we train
our models and apply inference on overlapping sub-patches of an image (Figure 3).

Input Image Current Patch Segments from this patch

Segments from
earlier patches

Merged Segments 
Figure 3: Illustration of sub-patch decomposition for image inference. An
image is divided in a 8 by 8 grid, with inference is applied to each 2 by 2 sub-
grid. To generate a global segmentation mask, object masks are sequentially
inferred for each subpatch. Each object mask is either matched to an existing
object or used to create a new object.

In particular, given an im-
age of size H × W , we
divide into the image into
a 8 × 8 grid (pictured in
the left of Figure 3), with
each grid element having
size H/8 ×W/8. We con-
struct a sub-patch for ev-
ery 2 × 2 component sub-
grid, leading to a total of 64
different overlapping sub-
patches. We apply infer-
ence on each sub-patch. Un-
der this decomposition, smaller objects still appear large in each sub-patch, while larger objects are
shared across sub-patch.
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To obtain a global segmentation map, we merge each sub-patch sequentially using a sliding window
(Figure 3). At each step, we iterate through each segment given by the inference model from a
sub-patch, and merge it with segments obtained from previous sub-patches, if there is an overlap in
masks above 20 pixels. Every segment that does not get merged is initialized as a new object.

2.2 Generative Model

Our generative model represents a dynamic scene as a set of K different physical objects and the
surrounding background at each time step t. Each physical object k is represented by its back-
projection on 2D, a segmentation mask mt

k ∈ RHxW of height H and width W , and a latent code
ztk ∈ RD of dimensionD for its appearance. In addition, the background is captured as a surrounding
segmentation mask mt

b ∈ RHxW and code ztb ∈ RD. Segmentation masks are defined such that the
sum of all masks correspond to the entire image

∑
km

t
k +mt

b = 1.

We use a projection model to map segmentation masks mt
k to 3D primitive cuboids (Figure 2-II).

Cuboids are a coarse geometric representation that enable physical simulation. We next construct
a dynamics model over the physical movement of predicted primitives (Figure 2-III). We further
construct a generative model over images xt by decoding latents zt component-wise (Figure 2-IV).

Projection model. Our projection model maps a mask mk to an underlying 3D primitive cuboid,
represented as a translation tk ∈ R3, size sk ∈ R3, and rotation qk ∈ R3 (as a Euler angle) transform
on a unit cuboid in a fully differentiable manner. This task can be done by assuming the camera
parameters and the height of the plane is given. In our case, we pre-train a neural network to
approximate the 2D-to-3D projection and use it as our differentiable projection model.

Dynamics model. We construct a dynamics model over the next state of different physical objects
(ttk, s

t
k, q

t
k,m

t
k) by using first order approximation of velocity/angular velocity of the states of the

object. Specifically, our model predicts

t̂tk = tt−1
k +

1

t− 1

t−1∑
i=1

(tik − ti−1
k ), ŝtk =

1

t

t−1∑
i=0

sik (1)

q̂tk = qt−1
k +

1

t− 1

t−1∑
i=1

(qik − qi−1
k ), m̂t

k = Render(t̂tk, ŝ
t
k, q̂

t
k). (2)

The Render function is defined as Render(t̂tk, ŝ
t
k, q̂

t
k) = 1foregroundUnProject(t̂tk, ŝ

t
k, q̂

t
k), where

UnProject(·) is a pre-trained model that projects each primitive in 3D to a 2D segmentation mask
(inverse of the Projection model described above). 1foreground is an indicator function of whether the
object is at the foreground and visible, and equals to 1 when a t̂tk is closer than all other objects at the
specified pixel location.

Given modeled future states, the overall likelihood of a physical object (ttk, s
t
k, q

t
k,m

t
k) is given by

p(ttk, s
t
k, q

t
k,m

t
k) = N (ttk; t̂

t
k, σ

2)N (stk; ŝ
t
k, σ

2)N (qtk; q̂
t
k, σ

2)p(m̂t
k,m

t
k), (3)

where we assume a Gaussian distributions over translation, sizes, and rotations with σ = 1. p(·) is
the probability of a predicted mask, defined as

p(m̂t
k,m

t
k) =

[
1mt

k>0.5m̂
t
k

] [
1m̂t

k>0.5m
t
k

]
, (4)

where 1(·) is the indicator function. Note that p(·) is a differentiable expression that encourages both
(m̂t

k,m
t
k) to be similar to each other.

Image generative model. We represent images xt at each time step as spatial Gaussian mixture
models. Each latent zk is decoded to a pixel-wise mean µk and a predicted mask ck using a VAE
decoder Decode(µk, ck|zk) [13]. We assume each pixel i is independent conditioned on z, so that
the likelihood becomes

p(x|z) =
K∑
k=1

(miN (xi;µi, σ
2) + p(ci|mi)) +mbN (xi;µb, σ

2
b ) + p(cb|mb) (5)

for background component mb, µb, cb and object components mi, µi, ci. We use σ = 0.11 and σb =
0.07 to break symmetry between object and background components, encouraging the background to
model the more uniform image components [1]. Our overall loss encourages the decomposition of an
image into a set of reusable sub-components, as well as a large, uniform background.
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Figure 4: Comparisons of unsupervised object segmentation of POD-Net with and without motion and with
MONet on scenes with synthetic objects. MONet is unable to seperate individual instances of objects, but is
capable of getting a foreground mask of objects in a scene. POD-Net (no physics) is able to reliably detect
almost all objects, though some instances of objects are merged together into a single object. POD-Net is able to
reliably detect separate objects even when they are mostly occluded (zoomed-in images on right).

2.3 Training Loss

Our overall system is trained to maximize the likelihood of both physical object and image generative
models. Our loss consists of L(θattn, θenc, θdec,x

t) = LPhysics + LImage + LKL, maximizing the
likelihood of physical dynamics, images, and variational bound. Our image loss is defined to be

LImage = −
K∑
k=1

(mt
k log(Decode(xt|ztk)) + log(Decode(mt

k|ztk))), (6)

enforcing that latents decode to corresponding object and background component masks and values.
Our physics loss is defined to be

LPhysics = −
K∑
k=1

log p(ttk, s
t
k, q

t
k,m

t
k), (7)

which enforces that decoded primitives are physically consistent. And the KL loss is defined as

LKL = β(

K∑
k=1

DKL(Encode(ztk|xt,mt
k) || p(z)) +DKL(Encode(ztb|xt,mt

b) || p(z))) (8)

to enforce the variational lower bound on likelihood [13] for latents inferred on both background and
foreground components.

Our training paradigm consists of two different steps. We first maximize the likelihood of the model
under the image generation objective. After qualitatively observing object like masks, we switch to
maximize the likelihood of the model under both the generation and physical plausibility objective.
We find that enforcing physical consistency during early stages of training detrimental, as the model
has not discovered object like primitives yet. We use the RMSprop optimizer with a learning rate of
10−4 within the PyTorch framework [16] to train our models.

3 Evaluation

We evaluate POD-Net on unsupervised object discovery in two different scenarios: a synthetic data
set consisting of various moving ShapeNet objects, and a real dataset of block towers falling. We also
test how inferred 3D primitives can support more advanced physical reasoning.

3.1 Moving ShapeNet

We use ShapeNet objects to explore the ability of POD-Net to learn to segment objects from
appearance and motion cues. We also test its ability to generalize to new shapes and textures.
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Figure 5: Plot of predicted translation
of 3D primitive vs ground truth trans-
lation of 3D primitives (top) and plot
of predicted scale of 3D primitive vs
ground scale of 3D primitive.
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Figure 6: Visualization of discovered 3D primitive in two different
scenes (top and bottom) through time. Our model is able to discover a
3D shape, that is consistent with observed inputs under a perspective
map. Furthermore, discovered primitive move coherently through time.

Data. To train models on moving ShapeNet objects, we use the generation code provided in the
ADEPT dataset in Smith et al. [21]. We generate a training set of 1,000 videos, each 100 frames
long, of objects (80% of the objects from 44 ShapeNet categories) as well as rectangular occluders.
Objects move in either a straight line, back and forth, or rotate, but do not collide with each other.
Setup. The videos have a resolution of 1024× 1024 pixels. We apply our model with a patch size
of 256× 256. We use a residual architecture [8] for the attention and VAE components. We pre-train
our projection model on scenes of a single ShapeNet object, varied across different locations on a
plane, with different rotations, translations, and scales. The projection model learns to map from
a segmentation mask of an object to corresponding rotation, translation, and scale parameters. We
note that these ShapeNet scenes are rendered using different camera extrinsics/intrinsics then those
used to generate the ADEPT dataset. Furthermore, segmentation masks are never partially occluded,
unlike the ADEPT dataset. Thus, the projection model just serves a rough relative map from 2D mask
to corresponding 3D position/size. More details can be found in the Supplementary Material.

To the compute the physical plausibility Lphysics (Equation 7) of primitives, we utilize the obser-
vations from the last three time steps. For efficiency, we evaluate physical plausibility on each
component sub-patch of image. We train a recurrent model with a total of 5 slots for each image.
Metrics. To quantify our results, we use intersection of union (IoU) between predicted segmentation
masks for each object and the corresponding ground truth masks. We compute the IoU for each
ground truth mask, by finding the IoU of the predicted segmentation mask with IoU with the ground
truth mask. We report the average IoU across all objects in an image, as well as the percentage of
objects detected in an image (with IoU > 0.5).
Baselines. We compare with two recent models of self-supervised object discovery: OP3 [26]
and MONet [1]. The OP3 model uses an iterative inference procedure to obtain object masks and
representations through time. We use 7 slots to train the OP3 model with 4 steps of optimization
per mask on the first image, and an additional step of optimization per future time step. Due to
memory constraints, we were only able to train the OP3 model on inputs of size 128 by 128, using
the provided codebase. The MONet model uses recurrent inference procedure to obtain object mask
and representations per time step, similar to our model. In contrast to the MONet, we use a residual
backbone with a different encoding of spatial coordinates, which we detail in the Supplemental
Material. We train MONet on inputs of size 256 by 256. We also compare with ablations of POD-Net:
applying POD-Net directly on an image (single-scale) as opposed to across patches (multi-scale), and
POD-Net without physical consistency.
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Generalization to New Objects Generalization to New Colors

Model Phys IoU Detection (%)

POD-Net No 0.768 0.823
Yes 0.857 0.922

Model Phys IoU Detection (%)

POD-Net No 0.658 0.716
Yes 0.756 0.843

Figure 7: Generalization to novel objects and colors. Top: POD-Net successfully segments individual objects,
except when colors bisect an object (row 2, column 7). Bottom: Evaluation of POD-Net’s generalization with or
without physical constancy, measured in average IoUs on segmentations and in the percentage of objects that are
detected. Including physics integrates the motion signal and generalizes better in both cases.

Table 1: Average IoU on segmentations on the ADEPT dataset and
the percentage of objects detected, where at least one segmentation
mask has greater than 0.5 IoU. Standard error in parentheses.

Model Multi-Scale Phys IoU Detection (%)

MONET - - 0.289 (0.007) 0.306 (0.005)
OP3 - - 0.145 (0.004) 0.121 (0.007)

POD-Net No No 0.314 (0.010) 0.361 (0.007)
POD-Net No Yes 0.462 (0.007) 0.512 (0.009)
POD-Net Yes No 0.649 (0.011) 0.709 (0.016)
POD-Net Yes Yes 0.739 (0.011) 0.821 (0.015)

Results. We quantitatively compare
object masks discovered by our model
and other baselines in Table 1. We
find that OP3 performs poorly, as it
only discovers a limited subset of ob-
jects. MONet performs better and is
able to discover a single foreground
mask of all objects. However, the
masks are not decomposed into sep-
arate component objects in a scene
(Figure 4, 2nd row). Our scenes con-
sist of a variable set of objects of vastly different scales, making it hard for MONet to learn to assign
individual slots for each object.

We find that applying POD-Net (single scale, no physics) improves on MONet slightly, discovering
several different masks containing multiple objects, albeit sometime missing objects such as the
occluder. POD-Net (single scale, physics) is able to more reliably able to segment separate objects,
but still encounters issues of missing objects. POD-Net (multi scale, no physics) is able to reliably
segment all objects in scene, but often merges multiple objects into one object, especially when
objects are overlapping (e.g., Figure 4, 3rd row). Finally, POD-Net obtains the best performance and
is able to segment all objects in the scene and individual objects where multiple objects overlap with
each other (Fig. 4, 4th row). The full model still sometimes exhibits over-segmentation or segments
sharp shadows as a separate object.

We analyze the 3D objects discovered by POD-Net. Figure 5 shows a plot of predicted displacements
of discovered 3D objects with ground-truth object displacements. It also shows a plot of the predicted
scale of discovered 3D objects with ground truth. The 3D objects found by POD-Net have good
correlation with ground truth 3D object annotations. Visualizations of discovered objects in Figure 6
show that POD-Net is able to segment a scene into a set of 3D cuboid primitives that correspond to
the objects in a video, and that these objects move consistently through time.

Generalization. Just as young children can detect and reason about new objects with arbitrary
shapes and colors, we test how well POD-Net can generalize to scenes with both novel objects and
colors. We evaluate the generalization of our model on two datasets.

• Novel objects: We use the test set in Smith et al. [21], consisting of the 20% novel objects from 44
ShapeNet categories, objects from another 11 ShapeNet categories not in the training dataset, and
common developmental psychology objects such as toy ducks.

• Novel colors: We generated a dataset with object distribution the same as the original video dataset,
but each object is split into two separate colors.

Figure 7 shows quantitative analysis of POD-Net applied to datasets with both novel objects and
colors. We find that in both settings, POD-Net with physical consistency gets better segmentation
than without. Numbers here are higher than those on the training set, because both novel datasets
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contain fewer objects in a single scene. Qualitatively, POD-Net performs well when asked to discover
novel objects, though it can mistake a multi-colored novel shape to be two objects.

3.2 Real Block Towers

Next we evaluate how POD-Net segments and detects objects in real videos.

Data. We use the dataset in Lerer et al. [15] with 492 videos of real block towers, which may or
may not be falling. Each frame contains 2 to 4 blocks of red, yellow, or green color. Each block has
the same 3D shape, though the 2D projections on the camera differ.

Setup. For our projection model, we use a pretrained neural network on scenes of a single block
at different heights, sizes, and varying distances (to account for differences in relative distance of
a falling block). Similar to Section 3.1, the projection model is trained with different camera and
perspective parameters than those in the data set. Furthermore, the trained dataset does not contain
occlusion like the block dataset does. All other settings are the same as that used in Section 3.1.

Model Multi-Scale Phys IoU Detection (%)

MONET - - 0.521 (0.005) 0.537 (0.003)
OP3 - - 0.311 (0.004) 0.250 (0.007)

POD-Net No No 0.546 (0.004) 0.523 (0.006)
POD-Net Yes No 0.734 (0.012) 0.761 (0.008)
POD-Net Yes Yes 0.837 (0.004) 0.908 (0.008)

Input 
Image

MONet

POD-Net
(No Physics)

POD-Net

Figure 8: Top: IoU of segmentation results on the real blocks
dataset and the percentage of objects detected. Bottom: Qualita-
tive comparisons of unsupervised object segmentation of POD-
Net with and without physics and with MONet on realistic block
towers. MONet often groups two blocks of similar color (dark
blue/green) together and sometimes misses particular blocks.
POD-Net without physics reliably detects all blocks, but still
groups similar blocks (dark blue/green) into one. POD-Net with
physics detects all objects and assigns different masks to each.
Standard error in parentheses.

Results. We compare masks discov-
ered by POD-Net and baselines in Fig-
ure 8. We found that OP3 often groups
multiple blocks together and misses
some blocks. MONet performs better,
but often misses blocks and also groups
two blocks as a single object, leading
to floating blocks in the air (Figure 8,
2nd row). POD-Net (single scale, no
physics) is able to segment all blocks,
but treats the entire stack as a single ob-
ject. POD-Net (multi scale, no physics)
does better and is able to reliably seg-
ment all blocks, though it still groups
blocks of similar colors together (Fig-
ure 8, 3rd row). Finally, POD-Net with
multiple scales and physical consistency
performs the best, reliably separating in-
dividual blocks in a tower (Figure 8, 4th
row).

3.3 Judging Physical Plausibility

We test whether POD-Net can discover
objects reliably enough to perform the
physical violation detection task of
Smith et al. [21], in which videos that
have non-physical events (objects disap-
pearing or teleporting) must be differen-
tiated from plausible videos.

Data. Smith et al. [21] introduced a test set of videos representing common psychologically
surprising scenes to humans. Such scenes evaluate core object properties such as permanence (objects
do not appear or disappear for no reason), continuity (objects move along connected trajectories), and
solidity (objects can not move through each other). To test a combination of all these concepts, we
evaluate how well a model with POD-Net in the loop performs prediction on the ‘Overturn (Long)’
and ‘Block’ tasks in the ADEPT benchmark.

The Overturn (Long) task consists a plane overlaying an object, requiring reasoning of object
permanence. The Block task consists, one of the hardest tasks in ADEPT benchmarks, consists of
physical scenes with a solid wall and a object moving towards the wall. Once the object is occluded,
it may either appear to hit the wall and stop, or appear on the other side. To accomplish these tasks, a
system must remember object states across a large number of time steps and understand both spatial
continuity and object permanence.
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Surprisal

Images

Figure 9: Model surprisal over
time in a ‘Block’ scene. POD-
Net has relatively low surprisal
throughout most of the video.
But when the occluder falls and
the object appears to ‘teleport’
across the wall, POD-Net recog-
nizes this abnormal shift in posi-
tion and becomes surprised.

Setup. We use POD-Net trained in Section 3.1 to obtain a set of physical objects (represented as
cuboids) describing an underlying scene. Since our approach is unsupervised, we further fine-tune
POD-Net on plausible videos in block task for one thousand training iterations. The extracted objects
are provided as a scene description to the stochastic physics engine described in Smith et al. [21]. We
use a particle filter to maintain a set of beliefs states over the physical objects, and measure surprisal
between current observations from POD-Net with those in the belief state following Smith et al. [21].

To evaluate the performance of our model, we use a relative accuracy metric [19]: given n pairs of
videos with surprising scenes x+ and control scenes x−, we report the proportion of correctly ordered
scene pairs such that the violation scene is judged more surprising than a matched control scene
without a violation

∑
i,j [c(x

+
i ) > c(x−j )]/n. We evaluate our model on 189 scene pairs.

Results. On the Block task, we find that our model achieves a relative accuracy of 0.622. Its
performance on a single video can be seen in Figure 9, where it has learned to localize the block well
enough that the model is surprised when it appears on the other side of the wall. The model in Smith
et al. [21] scores a relative accuracy of 0.680. It acts as an upper bound for the performance of our
model, since they use supervised training for discovering the object masks and recovering object
properties. In contrast, POD-Net discovers 3D objects in an unsupervised manner, outperforming
the baseline generative models studied by Smith et al. [21] that do not encode biases for objecthood
(GAN: 0.44, Encoder-Decoder: 0.52, LSTM: 0.44).

On the Overturn (Long) task, our model obtains a performance of 0.77 compared to the 0.73 in Smith
et al. [21], and models that do not encode biases for objects (GAN: 0.81, Encoder-Decoder: 0.61,
LSTM: 0.63).

A current limitation of our approach towards discovering 3D object primitives is that across a long
video (over 100 timesteps), there may be several spurious extraneous objects discovered. The model
in Smith et al. [21] does not deal well with such spurious detections, requiring us to tune separate
hyper-parameters for each task. Future work can circumvent this issue by adding a perceptual
uncertainty model into Smith et al. [21].

4 Conclusion

We have proposed POD-Net, a model that discovers 3D physical objects from video using self-
supervision. We show that by retaining principles of core knowledge in our architecture – that
objects exist and move smoothly – and by factorizing object segmentation across sub-patches, we
can learn to segment and discover objects in a generalizable fashion. We further show how these
discovered objects can be utilized in downstream tasks to judge physical plausibility. We believe
further exploration in this direction is a promising approach towards more robust object discovery
and a richer physical understanding of the world around us.

Broader Impact

Our work is a step towards the broad goal of building a system with physical understanding of the
scenes around it. A system with a broad physical understanding of its surrounding environment has
many potential impacts in industrial domains such as enabling household robots that can help the
elderly age in place by helping with household chores and monitoring medical treatment. On the other
hand, errors in our scene understanding system, such as classifying an unstable multi-object structure
as a single object, could be costly if the model were actually deployed. We do not foresee our model,
as a preliminary research effort, to have any significant societal impact toward any particular group.
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A.1 Appendix

A.1.1 Model Architecture

We detail our attention model in Table A1a and our component VAE model in Table A1b. In contrast
to Burgess et al. [1], we use a residual architecture for both attention and component VAE networks,
with up-sampling of the spatial broadcast layer.

7x7 Conv2D, 32

BatchNorm

3x3 Max Pool (Stride 2)

ResBlock Down 32

ResBlock Down 64

ResBlock Down 128

ResBlock Up 256

ResBlock Up 128

ResBlock Up 64

ResBlock Up 32

ResBlock Up 32

3x3 Conv2D, Output Channels

(a) Attention Model (αψ)

7x7 Conv2D, 32

BatchNorm

3x3 Max Pool (Stride 2)

ResBlock Down 16

ResBlock Down 32

ResBlock Down 64

Global Average Pool

Dense→ 256

256→ 32 (µ, σ)

z←N (µ, σ)

Spatial Broadcast z (8x)

3x3 Conv2d, 256

ResBlock up 128

ResBlock up 64

ResBlock up 32

ResBlock up 16

ResBlock up 16

3x3 Conv2D, Output Channels

(b) VAE Component Model. (qφ, pθ)

Figure A1: Overall Model Architectures used in POD-Net

A.1.2 Source Code

We attach anonymous source code used to train models in the CMT submission portal.

A.1.3 Comparison on Partially Occluded Objects

We further explicitly compare the performance of POD-Net on segmenting objects that occlude
each other. We evaluate on the ADEPT dataset, but only consider objects such that the bounding
boxes intersect. We find that in this dataset of objects, POD-Net (multi-scale, physics) obtains has a
detection rate of 0.734, with the an average IoU of 0.701 while POD-Net (multi-scale, no physics)
obtains a detection rate of 0.601 (IoU threshold 0.5) with an average IoU of 0.576. This indicates our
approach in incorporating physics is able to learn to effectively separate objects that partially occlude
each other.
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