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Starting in early infancy, our perception and predictions are rooted in strong expectations 24 

about the behavior of everyday objects. These intuitive physics expectations have been 25 

demonstrated in numerous behavioral experiments, showing that even pre-verbal infants 26 

are surprised when something impossible happens (e.g., when objects magically appear or 27 

disappear). Yet, the online mental processes that underlie physical expectations remain 28 

hidden. In two EEG experiments (N=32 total, male and female), people watched short 29 

videos like those used in behavioral studies with adults and infants, and more recently in AI 30 

benchmarks. Objects moved on a stage, and were briefly hidden behind an occluder, with 31 

the scene either unfolding as expected, or violating object permanence (adding or 32 

removing an object). We measured the contralateral delay activity, an electrophysiological 33 

marker of online processing, to examine participants' working memory (WM), as well as 34 

their ability to continuously track the objects in the scene. We found that both types of 35 

object permanence violation disrupted tracking, even though violations involved 36 

perceptually non-salient events (magical vanishing) or new objects that weren’t previously 37 

tracked (magical creation). The physical violation caused WM to reset, i.e., discard the 38 

original scene representation before it could recover and represent the updated number of 39 

items. Providing a physical explanation for the violations (a hole behind the occluder) 40 

restored object tracking, and we found evidence that WM went on representing the item 41 

that disappeared 'down the hole'. Our results show how intuitive physical expectations 42 

shape online representations and form the basis of dynamic object tracking.  43 
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Significance statement 44 

 45 

People expect ordinary things to behave in ordinary ways. For example, objects should not 46 

appear out of thin air, or suddenly disappear. Decades of research have shown even infants 47 

are surprised by physically impossible events. Despite many advances made using 48 

behavioral studies, the moment-by-moment neural dynamics of physical expectation 49 

violation remain uncharted. Making novel use of electrophysiological markers, we reveal 50 

the influence of intuitive physics on online scene processing. Violations of object 51 

permanence disrupted object tracking, due to expectations about physical outcomes. 52 

Working memory quickly recovered, forming modified scene representations based on 53 

physical explanations. This work uncovers a fundamental way in which intuitive physics 54 

governs everyday cognition, and provides a new neural method for studying central 55 

cognitive processes.  56 
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Introduction 57 

 58 

People have basic expectations about the physical behavior of everyday objects. Objects do 59 

not simply disappear and reappear, and solid bodies do not pass through one another or 60 

break apart for no reason. Such expectations, known as ‘intuitive physics’, help us to 61 

efficiently perceive, predict, and interact with the world around us (Spelke, 1990; Battaglia 62 

et al., 2013; Kubricht et al., 2017). Core physical expectations are present in very early 63 

infancy, and shared by many non-human animals (Baillargeon et al., 1985; Wynn, 1992; Xu 64 

and Carey, 1996; Cacchione and Krist, 2004). The existence of these expectations has been 65 

established over decades, mostly through measures of overt surprise in the face of 66 

physically impossible events. More recent studies have used computational and 67 

neuroscientific methods to provide insight into the cognitive mechanisms and brain 68 

regions involved in intuitive physics (Fischer et al., 2016; Bear et al., 2021; Piloto et al., 69 

2022). Yet despite the fundamental role of intuitive physics in our understanding of the 70 

world, its moment-by-moment neural processing remains largely unknown. In this paper, 71 

we use EEG methods and behavioral displays to study the unfolding neural dynamics of 72 

physical expectations, from representation, to the detection of anomalies, to resolution. 73 

 To uncover the ongoing processing of intuitive physics, we adopted a novel 74 

approach of targeting working memory (WM). This mental workspace holds information in 75 

an active state, ready to be accessed and manipulated (Baddeley, 1992; Luck and Vogel, 76 

1997). WM is involved in both classic memory paradigms, and whenever material has to be 77 

held online (Blaser et al., 2000; Carlisle et al., 2011; Tsubomi et al., 2013). We modified a 78 

standard WM paradigm, to include stimuli based on classic developmental studies (Wynn, 79 
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1992) and recent AI-benchmarks that probe physical expectations in machines (Piloto et 80 

al., 2022). 81 

 In two experiments, people watched short animations of one or two objects crossing 82 

a stage (Figure 1; example videos: https://youtu.be/w_jaIxFD0HU). The scenes either 83 

unfolded as expected, or contradicted object permanence by having an object appear or 84 

disappear. Using EEG, we recorded scalp electrical activity as people watched the 85 

animations, and tested, for the first time, how violations of physical expectations are 86 

processed online.   87 

https://youtu.be/w_jaIxFD0HU


 6 

 88 

Figure 1. Frames from the animations used as stimuli. (A) Experiment 1’s conditions. Top 89 

to bottom: 1-Object and 2-Objects Controls, Create, and Vanish. Note that Create starts like 90 

1-Object and ends like 2-Objects, while Vanish is the opposite. (B) Experiment 2’s Create 91 

and Vanish condition. 92 

  93 

To evaluate moment-by-moment active processing, we isolated contralateral delay 94 

activity (CDA; see Vogel and Machizawa, 2004; Vogel et al., 2005; Luria et al., 2016), an 95 

event-related potential (ERP) index of WM. The CDA’s amplitude reflects representational 96 

load (while being immune to related factors, for a review see Luria et al., 2016), rising 97 

when more items are held online (Figure 2A, top). The CDA also reflects the dynamics of 98 
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the pointer system, an indexing process connecting online representations with perception. 99 

The pointer system implements a one-to-one correspondence through which a specific 100 

representation in WM can be accessed and updated when the analogous real-world item 101 

changes (Kahneman et al., 1992; Scholl and Pylyshyn, 1999; Pylyshyn, 2000; Balaban and 102 

Luria, 2017). If the WM-perception correspondence is disrupted (e.g., if an object splits in 103 

two), WM resets (Balaban and Luria, 2017; Balaban et al., 2018a, 2018b, 2019a). Resetting 104 

is accompanied by a reliable transient drop in CDA amplitude (Figure 2A, bottom), 105 

indicating that an event interrupted the pointer system’s tracking ability. The CDA-drop 106 

specifically taps into pointer system disruption, and does not reflect related but distinct 107 

factors such as general surprise (Balaban and Luria, 2019; see also the Discussion). 108 

 109 

 110 

Figure 2. Schematic of past results and current predictions. (A) Previous CDA-based 111 

findings regarding online representations (top) and tracking (bottom). (B) Current 112 

predictions in Experiment 1 (top) and 2 (bottom). 113 
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The excellent temporal resolution of ERPs allowed us to examine different pre-114 

defined time-windows of the CDA amplitude, to uncover evolving mental processing in a 115 

fine-grained manner (Figure 2B). Specifically, we tested whether violations of object 116 

permanence (Experiment 1) interrupt object tracking, causing a CDA-drop in the 117 

previously-established resetting window, followed by the appropriate removal or addition 118 

of an object from WM. We also hypothesized that if violations are explained away 119 

(Experiment 2), the modified expectations about physical dynamics may prevent 120 

disruption, leading to no resetting, and no removal of the vanished object from WM. 121 

 122 

 123 

 124 

Materials and Methods 125 

 126 

Data, code, and video examples are available at the Open Science Framework: 127 

https://osf.io/csarg. 128 

 129 

Participants 130 

Participants were students with normal or corrected-to-normal visual acuity and normal 131 

color-vision, who gave informed consent following the procedures of a protocol approved 132 

by the Massachusetts Institute of Technology Committee on the Use of Humans as 133 

Experimental Subjects under protocol 1912000059. Due to the COVID-19 global pandemic, 134 

the experiments were run at Tel Aviv University, Israel. Participants were notified of their 135 

https://osf.io/csarg
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rights before the experiment, were free to terminate participation at any time, and were 136 

compensated monetarily for their time at a rate of $30 an hour. 137 

 Each experiment included 16 naïve participants (11 females, mean age 24 in 138 

Experiment 1, and 14 females, mean age 24 in Experiment 2). Sample size was determined 139 

based on the smallest effect size in the study with the most similar analysis method 140 

(Balaban and Luria, 2017), which was d = 0.8, entailing 16 participants for 80% power. 141 

Because the experiment required holding fixation and avoiding blinks for a relatively long 142 

time (roughly 6 seconds on each trial), participants who could not perform the task under 143 

these limitations were released after the first few blocks and replaced (3 in each 144 

experiment). Another participant in Experiment 1 was released and replaced for failing to 145 

understand the task, and another one was released due to electrode malfunction. 146 

 147 

Stimuli and Procedure 148 

In this study, we presented videos that may or may not contain a physical violation, and we 149 

measured EEG to examine how the scenes are represented. As is standard, this requires 150 

showing two videos – one for each hemisphere – and pre-cuing which side to pay attention 151 

to. Using this lateralized display allows defining the contralateral and ipsilateral 152 

hemispheres, and subtracting them to get rid of any common perceptual factors. To ensure 153 

participants pay attention to the videos and hold objects in WM, after the animations’ 154 

presentation they were given a task, to pick out one of the objects that they had seen from a 155 

set of objects. Figure 3 presents the trial sequence.  156 
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 157 

Figure 3. Example of a trial sequence in Experiments 1 and 2. Black arrows indicated to 158 

participants which side is relevant for the upcoming trial. The video animations included 159 

objects crossing the floor, as an occluder went up and down, briefly hiding them from view. 160 

Objects’ movement and the occluder were irrelevant to the task. After a retention interval, 161 

subjects selected the previously presented object from 4 options, which were either all the 162 

same color and varying in shape (a shape test; top), or all the same shape and varying in 163 

color (a color test; bottom). 164 

 165 

Each trial started with a 1,000 ms display of a fixation black cross 0.7  0.7 of 166 

visual angle from a viewing distance of approximately 60 cm) in the center of a grey screen 167 

(RGB values: 180, 180, 180). Then, two black arrows (3  1) appeared above and below 168 

fixation for 200 ms. The arrows pointed either left or right randomly (with an equal 169 

probability), and this indicated the side to which participants were asked to attend for the 170 

upcoming trial. After another 300-500 ms (randomly jittered) fixation display, a video 171 

animation was played on each side of the fixation. Each video spanned about 21 in width 172 

and 12 in height, and was placed at a distance of 4.2 from the fixation, and at the middle 173 
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of the screen’s height. The videos on both sides were always from the same condition (see 174 

below; from here on, when describing the number of items, we always refer to the relevant 175 

side), with all other details drawn randomly (without replacement) independently between 176 

the sides. On the main trials, the videos played for 3 second. On catch trials, the videos 177 

played for only 300 ms. The goal of these short trials was to ensure participants paid 178 

attention not only to the end of the animation. They made up 25% of the trials in the first 179 

block, and 10% in all other blocks. Catch trials were not analyzed. After the video 180 

animations, a 900 ms retention interval was presented, with only the fixation visible on 181 

screen. Then a memory probe appeared, including an image of 4 objects, from which 182 

participants chose the one that appeared in the video they saw on the relevant side of the 183 

screen. Responses were made via button press (using the “g”, “h”, “j”, and “k” keys on a 184 

standard keyboard, based on the objects’ location in the image, from left to right). 185 

Responses were unspeeded and no feedback was provided. Participants were asked to hold 186 

fixation throughout the trial, and to blink only when they press the response key. 187 

Participants completed 15 practice trials, followed by 16 experimental blocks of 50 trials 188 

each, for a total of 800 trials (including catch trials), and about 180 trials per condition. The 189 

experimental session took 2.5-3 hours (including EEG preparation). 190 

 Animations were created in Blender, and rendered in the Eavee engine at 24 frames 191 

per second. Videos displayed a light-grey and white checkerboard pattern floor, a white 192 

back wall, and a rectangular light-orange screen, referred to as the occluder, in the middle 193 

of the scene. The occluder started off on the floor, went up until it stood vertically midway 194 

through the video, and lowered back down. Additionally, each video included one or two 195 

objects crossing the floor from one side to the other, with the occluder hiding them from 196 
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view for 625 ms. When the animation included two objects, they moved in opposite 197 

directions, and one of them was slightly closer to the occluder than the other, so that they 198 

would not collide. 199 

There were 4 possible un-namable shapes, and 4 possible colors that were all 200 

shades of blue (the exact rendered color changed across the object’s surface because of the 201 

irregular shapes’ shading; RGB values are reported based on one representative area: 45, 202 

45, 142; 60, 60, 230; 105, 60, 220; 45, 130, 210), for a total of 16 possible objects. Each 203 

object’s movement direction (from right to left or from left to right), color, and shape were 204 

determined randomly without replacement in each trial. 205 

There were 4 conditions, varying in the number of objects at the beginning and end 206 

of the animation (see Figure 1A). In the two physically possible Control conditions, either 207 

one or two objects simply passed behind the occluder (the 1-Object and 2-Objects Controls, 208 

respectively). There were two physically impossible conditions: Create, where one object 209 

went behind the occluder but two exited, and Vanish, where two objects went behind the 210 

occluder but only one exited. Thus, in the Create condition the video’s first half was 211 

identical to the 1-Object Control and its second half was identical to the 2-Objects Control, 212 

and vice versa for the Vanish condition. The Create and Vanish conditions constitute 213 

violations of object permanence, which translates to a change in the number of objects, 214 

allowing us to leverage the CDA’s set-size sensitivity (see below). In the Vanish condition, 215 

the item that disappeared was never probed, though participants were not explicitly told of 216 

that. 217 

There were only two differences between Experiments 1 and 2. First, in the Create 218 

and Vanish conditions of Experiment 2, a small black rectangle was placed right behind the 219 
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occluder throughout the trial (see Figure 1B). Importantly, this black area was only visible 220 

when the occluder was down (i.e., at the beginning and end of the trial). The second 221 

difference compared to Experiment 1 was the explanation provided to participants before 222 

the experiment started. Participants in Experiment 2 were told that the black area is a hole 223 

in the floor, meaning that if the trial starts with two objects, one is going to fall down (the 224 

front object), and if the trial starts with one object, one is going to “climb up” from the hole, 225 

using a hidden leverage. Participants were also shown example video of the different 226 

conditions, and a demonstration of what the Vanish condition would look like if the 227 

occluder wasn’t there (showing an object falling down the “hole”). 228 

 229 

EEG Recording and Analysis 230 

EEG was recorded inside a shielded Faraday cage, using a BioSemi ActiveTwo system, from 231 

32 scalp electrodes placed at a subset of the extended 10-20 system’s locations, and from 232 

two electrodes placed on the mastoids, which served as reference. EOG was recorded from 233 

two electrodes placed 1 cm from the external canthi, and from an electrode placed 2 cm 234 

beneath the left eye. Data was digitized at 256 Hz. 235 

Offline signal processing was performed using the EEGLAB (Delorme and Makeig, 236 

2004) and ERPLAB (Lopez-Calderon and Luck, 2014) toolboxes, and custom Matlab (The 237 

Mathworks, Inc.) scripts. All electrodes were referenced to the average of the left and right 238 

mastoid electrodes. Continuous data was segmented into epochs from -200 to +3900 ms 239 

from animations’ onset (corresponding to the end of the retention interval). Artifact 240 

detection was performed on the EOG electrodes using a sliding window peak-to-peak 241 

analysis, with a threshold of 80 V. This procedure resulted in a mean rejection rate of 242 
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9.2% in Experiment 1, and 9.5% in Experiment 2 (for evidence that eye movements are not 243 

responsible for the CDA or the resetting-drop, see Kang and Woodman, 2014; Balaban and 244 

Luria, 2017, 2019; Balaban et al., 2018a). For plotting purposes, the epoched data were 245 

low-pass filtered using a noncausal Butterworth filter (12 dB/oct) with a half-amplitude 246 

cutoff point at 30 Hz. Statistical analysis was performed on the unfiltered data, to avoid 247 

potential effects of filtering on the results. 248 

Epoched data were averaged separately for each condition, and difference waves 249 

were calculated by subtracting ipsilateral from contralateral activity, relative to the 250 

memorized side on each trial. As was done in previous research (e.g., Balaban and Luria, 251 

2017; Balaban et al., 2018a, 2019a), we focus on the results from the average of 3 parietal-252 

occipital electrode pairs – P7/8, Po3/4, and Po7/8 – but similar patterns of activity were 253 

found in each pair separately. 254 

 255 

Experimental Design and Statistical Analyses 256 

In order to examine the maintenance and tracking of online representations in WM during 257 

a physics-violation task, we isolated the CDA (Vogel and Machizawa, 2004; Vogel et al., 258 

2005; Luria et al., 2016). The CDA is an ERP component reflecting online processing in 259 

visual WM. It was first reported in memory tasks, but can be measured equally well when 260 

items are held in WM while being completely visible (Tsubomi et al., 2013), like in search 261 

or tracking tasks (Drew and Vogel, 2008; Luria and Vogel, 2011b). Numerous studies have 262 

shown that CDA amplitude is not sensitive to processes that are related to, but distinct 263 

from, WM, such as spatial attention or task difficulty (Vogel and Machizawa, 2004; 264 

McCollough et al., 2007; Ikkai et al., 2010; Feldmann-Wüstefeld et al., 2018, and, for a 265 
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review, see Luria et al., 2016). Similarly, the resetting-drop in CDA amplitude is extremely 266 

specific: When the mapping between WM representations and perceptual input is 267 

disrupted there is a characteristic drop, whereas extremely similar situations (even within 268 

experiment and participants) that allow this mapping to hold lead to a smooth change in 269 

amplitude (Balaban and Luria, 2017; Balaban et al., 2018a, 2019a, and, for a review, see 270 

Balaban and Luria, 2019). Last though crucial, the CDA-drop does not reflect general 271 

surprise. Rather, it is the result of a specific disruption to object tracking. The effect persists 272 

after many dozens of exposures to the disrupting events, and can also be observed for 273 

events that are completely predictable (Balaban et al., 2019b). 274 

Based on prior work, we analyzed the CDA in several pre-defined time-windows (for 275 

a similar approach in different contexts, see Luria and Vogel, 2011a; Drew et al., 2012, 276 

2013; Balaban and Luria, 2015; Peterson et al., 2015; Balaban and Luria, 2016a, 2016b). 277 

First, to examine tracking, for each condition we compared mean amplitude across two 278 

previously-defined time-windows (Balaban and Luria, 2017): the resetting window, 200-279 

300 ms after the critical event, and the pre-resetting baseline window, immediately 280 

preceding it, i.e., 100-200 ms after the critical event. Here, the critical event was the 281 

moment when items started to emerge from behind the occluder, or, in the Vanish 282 

condition, the time in which an item should have emerge but didn’t. This happened 1896 283 

ms after the onset of the video. 284 

We additionally examined the window immediately following the resetting window 285 

(300-400 ms after the critical event). In previous studies involving object separation, this 286 

delay was enough time for the resetting process to finish (e.g., Balaban and Luria, 2017). 287 
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We compared this time-window to the pre-resetting baseline time-window, to test whether 288 

in our study WM recovers as quickly as in other contexts. 289 

To establish scene reinterpretation, we compared mean amplitude during the 290 

retention interval (3200-3900 ms after trial onset; note that the CDA takes about 200 ms to 291 

respond, e.g., to initially rise, see Vogel et al., 2005) across the different conditions. 292 

Specifically, we examined whether, after the video ended, participants represented the 293 

Create and Vanish conditions similarly to 1 object or to 2 objects (i.e., whether the 294 

amplitude in each impossible condition is lower than that of the 2-Objects Control, or 295 

higher than that of 1-Object Control). 296 

A resetting-drop was established via a within-subjects Analysis of Variance 297 

(ANOVA), with Time (pre-resetting baseline vs. resetting, and pre-resetting vs. prolonged 298 

resetting) and Condition as independent factors on mean amplitude as the dependent 299 

measure. The final representation was examined with a within-subjects ANOVA, with 300 

Condition as an independent factor, on mean amplitude during the retention time-window 301 

as the dependent measure. Finally, we analyzed behavioral performance in the task with a 302 

one-way within-subjects ANOVA with condition as an independent factor on accuracy as a 303 

dependent measure. We followed these ANOVAs with planned comparisons (contrasts), the 304 

results of which we focus on, for simplicity. We additionally report effect sizes for all 305 

statistical comparisons, and 95% confidence intervals (CIs) for the difference between 306 

conditions.  307 
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Results 308 

 309 

Experiment 1: Active representations rely on intuitive physics 310 

In Experiment 1, we tested how object permanence violations affect online maintenance 311 

and tracking. Within a WM task, participants (n = 16) watched animations of objects 312 

moving across a stage, behind a rising screen, and back out as the screen lowers (Figure 313 

1A). In the Control conditions, the animations proceeded as expected. In the impossible 314 

conditions, while the screen was up an object was added (Create) or removed (Vanish), 315 

seeming to appear or disappear magically. It is in principle possible that object tracking is 316 

sensitive only to low-level visual properties, rather than physical expectations. In this case, 317 

the CDA should rise or fall smoothly. However, if events that contradict intuitive physics 318 

disrupt the ongoing function of the pointer system, both Create and Vanish should trigger a 319 

CDA-drop (resetting). 320 

To test the possible disruption of the pointer system, we compared the CDA 321 

amplitude in the resetting time-window (200-300 ms after the critical event, when an item 322 

appeared or failed to appear) to the baseline time-window which immediately precedes 323 

any potential CDA-drop (Balaban and Luria, 2017). We also compared the baseline to the 324 

immediately subsequent time-window (300-400 ms after the critical event). After 325 

establishing a significant interaction of Time and Condition (F(3,45) = 3.31, p = 0.028), we 326 

focused our analysis on the violation conditions. We found a CDA-drop for both types of 327 

object permanence violation (Create and Vanish), with lower amplitude in the resetting 328 

time-window (Figure 4). This effect was marginally significant in the Create condition 329 

(F(1,15) = 4.47, p = 0.05, d = 0.5, 95% CI = [0.0, 0.63] V), and significant in the Vanish 330 
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condition (F(1,15) = 5.61, p = 0.03, d = 0.6, 95% CI = [0.02, 0.4]). As detailed above, this 331 

CDA-drop does not reflect a general surprise from some event, but specifically marks a 332 

disruption to the ongoing function of the pointer system. So, the results demonstrate that 333 

the pointer system depends on intuitive physics for object tracking.  334 

 335 

 336 

 337 

Figure 4. EEG results for Experiment 1. Top: CDA waveforms by condition. Dashed line 338 

indicates when objects emerge behind the lowering screen. Analyzed time-windows are in 339 

grey. Bottom: Mean amplitude by condition and time-window; error bars show standard 340 

error. From left to right: Resetting minus baseline (indicating object tracking disruption), 341 

immediately following window minus baseline (indicating prolonged object tracking 342 

disruption), and retention interval amplitude (indicating scene reinterpretation, i.e., the 343 

number of represented objects at the end of the trial). Asterisks show significant (black) 344 
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and marginally significant (grey) contrasts, following the ANOVAs (see Materials and 345 

Methods). 346 

 347 

Resetting even persisted in the following time-window, with significantly lower 348 

amplitudes (as compared with the pre-resetting window) for both the Create (F(1,15) = 349 

7.67, p = 0.01, d = 0.7, 95% CI = [0.1, 0.79]) and Vanish (F(1,15) = 9.08, p = 0.01, d = 0.8, 350 

95% CI = [0.13, 0.78]) conditions. Though we cannot directly compare the current results 351 

with experiments that use different stimuli, the prolonged resetting effect suggests that the 352 

pointer system took longer to recover from violations of object permanence than what was 353 

previously reported for 2D events like separation, in which the same delay was enough for 354 

the system to recover (e.g., Balaban et al., 2019a).  355 

In addition to the predicted resetting effects in the violation conditions, we found 356 

possible marginal evidence for shorter-lived resetting effects in the Control conditions. In 357 

the resetting time-window, there was borderline evidence for a drop in the 2-Objects 358 

Control (F(1, 15) = 3.66, p = 0.08, d = 0.5, 95% CI = [-0.04, 0.69]), and no evidence for this 359 

effect in the 1-Object Control (F(1, 15) = 1.97, p = 0.18, d = 0.4, 95% CI = [-0.08, 0.39]). In 360 

the later time-window, there was no evidence for resetting in the 2-Objects Control (F(1, 361 

15) = 1.38, p = 0.26, d = 0.3, 95% CI = [-0.17, 0.57]), and there was an effect for the 1-Object 362 

Control (F(1, 15) = 4.88, p = 0.04, d = 0.6, 95% CI = [-0.01, 0.64]). We believe these effects, if 363 

they can be considered that, are artifacts. Beyond the fact that the evidence for them was 364 

not strong in this experiment, the results of Experiment 2 (see below) show that a direct 365 

replication of the Control conditions result in no effect at all. Still, if one were to try to 366 

account for these possible effects, we would suggest that the violations of intuitive physics 367 
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in the impossible conditions may have led participants to undergo a resetting process in all 368 

conditions, though more weakly in the Control conditions. In support for this possibility, it 369 

has recently been shown that when pointer-disruption events become prevalent, a 370 

resetting process will occur in situations that do allow the mapping to hold (Friedman and 371 

Luria, 2022).  372 

In addition to tracking disruption, we compared the final CDA amplitude (during the 373 

retention interval) of the different conditions, to test how WM representations changed as 374 

the scene evolved. We found a significant effect of Condition (F(3,45) = 4.46, p = 0.008). We 375 

expected that by the end of the trial, the CDA amplitude would reflect the updated number 376 

of items in the scene. In line with this, a comparison of the different conditions indicated 377 

that the CDA amplitude was consistent with an item being added in the Create condition, 378 

and removed in the Vanish condition. The CDA amplitude in Create was higher than the 1-379 

Object Control (F(1,15) = 9.77, p = 0.01, d = 0.8. 95% CI = [0.17, 0.9]), and similar to the 2-380 

Objects Control (F < 1, p = 0.76, d = 0.1, 95% CI = [-0.41, 0.55]). The CDA amplitude in the 381 

Vanish condition was significantly lower than Create (F(1,15) = 6.36, p = 0.02, d = 0.6, 95% 382 

CI = [0.05, 0.58]), marginally lower than the 2-Objects Control (F(1,15) = 3.94, p = 0.07, d = 383 

0.5, 95% CI = [-0.03, 0.8]), and similar to the 1-Object Control (F(1,15) = 1.81, p = 0.2, d = 384 

0.3, 95% CI = [-0.13, 0.57]). These findings indicate that participants successfully and 385 

rapidly adjusted their representations after object permanence violations, adequately 386 

adding or removing objects from WM. 387 

For completeness, we also examined behavioral performance, and found a 388 

significant effect of Condition on accuracy (F(3,45) = 41.69, p < 0.001). We stress that 389 

accuracy in our task does not tap into the ongoing dynamics of representations in WM, 390 
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given the long presentation time after items exit from behind the occluder. The mean 391 

accuracy in the Create condition was lower than in the 1-Object Control (M = 0.78 vs. 0.93; 392 

F(1, 15) = 100.8, p < 0.001, d = 2.5, 95% CI = [0.12, 0.19]), and similar to the mean accuracy 393 

in the 2-Objects Control (M = 0.79; F < 1, p = 0.4, d = 0.2, 95% CI = [-0.02, 0.04]). These 394 

results match the item load at the end of the trial. The mean accuracy in the Vanish 395 

condition was lower than in the 1-Object Control (M = 0.88; F(1, 15) = 31.1, p < 0.001, d = 396 

1.4, 95% CI = [0.03, 0.08]), and higher than the 2-Objects Control (F(1, 15) = 20.8, p < 0.001, 397 

d = 1.1, 95% CI = [0.05, 0.13]) and Create (F(1, 15) = 68.4, p < 0.001, d = 2.1, 95% CI = [0.08, 398 

0.13]) conditions. So, even though the CDA amplitude indicated a successful removal of the 399 

item that disappeared, its presence in the first part of the trial still produced a cost relative 400 

to one object.  401 

 402 

Experiment 2: Online representations depend on expectations 403 

In Experiment 2, we tested whether changing the interpretation of scenes can affect the 404 

moment-by-moment dynamics of object maintenance and tracking. New participants (n = 405 

16) watched short animations that were identical to Experiment 1, except that the Create  406 

and Vanish conditions included a small black rectangle behind the rising screen (Figure 407 

1B), which was described to participants as a hole that objects could climb up from or fall 408 

into. The hole was hidden behind the screen when objects emerged, making the scenes 409 

perceptually-identical to Experiment 1 during the critical moments. The two experiments 410 

diverged only in terms of participant expectations, as the appearance or disappearance of 411 

items could now be explained away (Perez and Feigenson, 2022). 412 
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 As in the previous experiment, we examined potential disruptions to the pointer 413 

system by comparing the resetting time-window, and the subsequent time-window, to the 414 

baseline time-window immediately before any CDA-drop, and found a significant 415 

interaction of Time and Condition (F(3,45) = 4.18, p = 0.01). If physical expectations govern 416 

online object tracking over and above low-level factors, then making the Create and Vanish 417 

scenes physically possible should eliminate the resetting effect. Accordingly, as can be seen 418 

in Figure 5, we found that there was no resetting effect for Create nor Vanish (both F’s < 1, 419 

both p’s > 0.4, both d’s < 0.2; Create 95% CI = [-0.22, 0.23]; Vanish 95% CI = [-0.11, 0.23]). 420 

In the following time-window, there was no resetting effect for Vanish (F < 1, p = 0.9, d = 0, 421 

95% CI = [-0.26, 0.28]), but there was one for Create (F(1,15) = 4.59, p = 0.049, d = 0.5, 95% 422 

CI = [0.0, 0.63]). Possibly it was more difficult to explain an appearance, and to predict 423 

which exact object will emerge.   424 
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 425 

Figure 5. EEG results for Experiment 2. Top: CDA waveforms by condition. Dashed line 426 

indicates when objects emerge behind the lowering screen. Analyzed time-windows are in 427 

grey. Bottom: Mean amplitude by condition and time-window; error bars show standard 428 

error. From left to right: Resetting minus baseline (indicating object tracking disruption), 429 

immediately following window minus baseline (indicating prolonged object tracking 430 

disruption), and retention interval amplitude (indicating scene reinterpretation, i.e., the 431 

number of represented objects at the end of the trial). Asterisks show significant (black) 432 

and marginally significant (grey) contrasts.  433 

 434 

We next examined whether there was a resetting effect in the Control conditions, 435 

which were identical to the Control conditions of Experiment 1. As a reminder, we found 436 

some weak evidence for this effect in the Control conditions of Experiment 1, and posited it 437 

is likely an artifact. In Experiment 2, we found no drop effect in the Control conditions, in 438 
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either the resetting time-window (1-Object Control: F(1, 15) = 1.76, p = 0.2, d = 0.3, 95% CI 439 

= [-0.11, 0.45]; 2-Objects Control: F < 1, p = 0.8, d = 0.1, 95% CI = [-0.16, 0.2]) or the 440 

prolonged resetting window (both F’s < 1, both p’s > 0.3, both d’s < 0.3; 1-Object Control 441 

95% CI = [-0.17, 0.41]; 2-Objects Control 95% CI = [-0.26, 0.35]). Because the Control 442 

conditions were identical in Experiment 1 and 2, the non-effect in Experiment 2 suggests 443 

that indeed the marginal evidence for resetting in Experiment 1’s Control conditions had 444 

something to do with the context produced by the impossible conditions, in line with recent 445 

work (Friedman and Luria, 2022). This further shows that the resetting results of 446 

Experiment 1 do not reflect a condition-general effect (e.g., as the need to track items 447 

through occlusion, or an overall reduction in CDA amplitude over time). 448 

As with Experiment 1, we established how the scenes are interpreted after all the 449 

events took place by comparing the final CDA amplitude across the different conditions, 450 

which resulted in a significant effect of Condition (F(3,45) = 4.46, p = 0.008). We found that 451 

in the Create condition, the final CDA amplitude followed the updated number of objects in 452 

the scene, in that it was higher than the 1-Object Control (F(1,15) = 11.4, p = 0.004, d = 0.8, 453 

95% CI = [0.23, 1.02]), and similar to the 2-Objects Control (F < 1, p = 0.9, d = 0.0, 95% CI = 454 

[-0.41, 0.47]). Interestingly, in the Vanish condition the amplitude was also significantly 455 

above the 1-Object Control (F(1,15) = 11.57, p = 0.004, d = 0.9, 95% CI = [0.26, 1.13]), and 456 

similar to the 2-Objects Control (F < 1, p = 0.7, d = 0.1, 95% CI = [-0.4, 0.6]), as well as the 457 

Create condition (F < 1, p = 0.7, d = 0.1, 95% CI = [-0.4, 0.6]). This result suggests that 458 

participants continued to hold the vanished object in WM, even though, as in Experiment 1, 459 

the object disappeared from view, and was never probed during the memory test. The item 460 

that ‘fell down the hole’ is out of view, but still part of the scene. This suggests that online 461 
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representations are not determined simply by predictability (which would lead 462 

participants to never represent the to-be-vanished item), but also by physical explanations. 463 

Again for completeness, we examined people’s behavioral performance on the 464 

memory task, finding a significant effect of Condition on accuracy (F(3,45) = 33.89, p < 465 

0.001). We found the same pattern as in Experiment 1. The mean accuracy in the Create 466 

condition was lower than in the 1-Object Control (M = 0.79 vs. 0.93; F(1, 15) = 61.47, p < 467 

0.001, d = 2.0, 95% CI = [0.09, 0.16]), and similar to the 2-Objects Control (M = 0.8; F(1, 15) 468 

= 1.71, p = 0.2, d = 0.3, 95% CI = [-0.01, 0.04]). The mean accuracy in the Vanish condition 469 

was lower than in the 1-Object Control (M = 0.88; F(1, 15) = 11.58, p = 0.004, d = 0.9, 95% 470 

CI = [0.02, 0.09]), and higher than the 2-Objects Control (F(1, 15) = 16.52, p = 0.001, d = 1.0, 471 

95% CI = [0.03, 0.1]) and Create (F(1, 15) = 21.92, p < 0.001, d = 1.2, 95% CI = [0.05, 0.12]) 472 

conditions. So, while people’s behavioral memory performance was the same across 473 

Experiment 1 and 2, their online dynamics diverged. This again shows the importance of 474 

tools like the CDA in uncovering hidden representational dynamics. 475 

 476 

 477 

 478 

Discussion 479 

 480 

Our findings show for the first time how violations of intuitive physics are processed 481 

moment-by-moment to support object tracking and WM updating. We presented scenes 482 

inspired by developmental studies and AI benchmarks in a WM task, and monitored the 483 

neural dynamics of processing physically surprising events. Specifically, we examined the 484 
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CDA (Vogel and Machizawa, 2004; McCollough et al., 2007; Luria et al., 2016), an ERP index 485 

of online processing, in two different ways. First, the presence or absence of a CDA-drop 486 

after a given event indicated whether this event prevented objects in the scene to continue 487 

being tracked (Balaban and Luria, 2017, 2019; Balaban et al., 2018a, 2019). Second, 488 

comparing the CDA amplitude between different conditions showed how the scenes were 489 

represented in WM after each event took place. The novel use of a well-established 490 

electrophysiological marker revealed that violations of object permanence disrupt the 491 

pointer system’s ability to track objects (Experiment 1), due to expectations about physical 492 

outcomes (Experiment 2). 493 

The disruption of tracking during violations of physical expectations sheds light on 494 

the principles governing the normal function of the pointer system. First, the presence of a 495 

resetting effect in the Vanish condition shows that an event does not have to be 496 

perceptually salient to disrupt object tracking. Second, the resetting effect in the Create 497 

condition suggests that the pointer system is sensitive to the physical aspects of the scene 498 

in tracking objects: The new object’s appearance is only “impossible” in the sense that it 499 

should not have appeared in a place that was previously empty (note that the mere 500 

appearance of a new object in a scene does not in itself trigger resetting; (Balaban and 501 

Luria, 2017). Taken together, these two effects suggest that in maintaining a continuous 502 

correspondence between the perceptual input and the active representations in WM, the 503 

pointer system is not solely driven by low-level factors, as is usually assumed in 504 

discussions of object tracking (for a review of this subject, see Holcombe, 2023). While the 505 

pointer system obviously relies on visual input, the present results show that it also 506 

incorporates the physical interpretation of visual events (Lau and Brady, 2020). 507 
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Our findings suggest that the brain’s tracking system predicts an object’s future 508 

location based on intuitive physics, perhaps via noisy quantitative physical simulation 509 

(Battaglia et al., 2013; Ullman et al., 2017; Smith et al., 2019). Our results help explain 510 

numerous separate past findings, which showed pointer system resetting following 511 

violations of object separation (Balaban and Luria, 2017; Balaban et al., 2018a, 2018b, 512 

2019a), object replacement (Balaban and Luria, 2017; Friedman and Luria, 2022), and 513 

feature switching (Park et al., 2020). While these situations were not originally explained in 514 

such a way, they violate cohesion, object permanence, and kind-identity, respectively. 515 

 The CDA further allowed us to decipher people’s flexible interpretation of events, 516 

and how it changes to fit the inferred meaning of the unfolding scene. We found that WM 517 

recovers after resetting within the time frame examined, and that scene representations 518 

are correctly adjusted to add or remove objects (Experiment 1), based not only on what is 519 

available in perception, but also on the physical explanations of events (Experiment 2). 520 

This highlights another way in which common sense physical understanding shapes WM’s 521 

online representations, over and above low-level visual properties. 522 

 The results of our experiments do not reflect surprise itself, but rather a disruption 523 

of the pointer system. We found this system to be sensitive to physical violations, which 524 

could feed downstream to a surprise signal. The experiments also show that the disruption 525 

of the pointer system can be mitigated by expectations, but that this mitigation depends on 526 

the format of the expectations. In Experiment 1, participants saw the stimuli dozens of 527 

times, which forms the overall statistical expectation that in principle objects can 528 

sometimes disappear or appear in the videos. This statistical expectation did not prevent a 529 

robust and repeated disruption of tracking. By contrast, the expectations in Experiment 2 530 
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were successful in eliminating the disruption. But, these expectations had a perceptual and 531 

causal format tied to a specific stimulus: the hole in the ground explained causally why on 532 

this trial an object might disappear or appear, and did so in the same visual format as the 533 

rest of the stimuli. Past studies of resetting in the pointer system support the distinction 534 

between expectation formats: Numerous exposures to a disruptive event did not eliminate 535 

the disruption, and even making a disruptive event perfectly predictable failed to do so 536 

(Balaban et al., 2019b ), but subtle visual cues that altered the way the scene was carved 537 

into distinct objects, thereby changing the targets for tracking, were successful right away 538 

(e.g., Balaban et al., 2019a). Future work can adopt the present approach to further 539 

examine how the pointer system communicates with other processes, by looking at what 540 

other physical situations and expectations disrupt or preserve object tracking, including 541 

perceptually weak but causally specific expectations such as telling participants the rising 542 

screen acts as a magic box on specific trials. While more work is needed, our conclusion is 543 

not just that the pointer system’s ability to track objects is based on physical reasoning, but 544 

that the format of this physical reasoning matters. 545 

 Our findings introduce a novel way of tackling both new and outstanding open 546 

questions. Identifying different cognitive processes from task performance measures alone 547 

(e.g., accuracy or reaction time) can be challenging, as they may reflect the sum of all 548 

processing stages. While behavioral performance is useful and important, apparent task 549 

effects in online processing tasks might not reflect WM or object tracking, but sub-stages 550 

that precede or follow them, such as perception or decision making (Awh et al., 2007). This 551 

may be why measures of performance on WM or tracking tasks can show mixed results 552 

with regards to intuitive physics (e.g., vanMarle and Scholl, 2003; Mitroff et al., 2004; 553 
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Franconeri et al., 2012). In contrast, the CDA factors out contributions of perceptual facets 554 

(Ikkai et al., 2010; Luria et al., 2010; Ye et al., 2014), by using a bilateral paradigm. It also 555 

factors out response-related facets, by focusing the analysis on the period preceding the 556 

test phase, meaning before participants can initiate any response. The step-by-step neural 557 

analysis of online processing, tracking, and representations allows researchers to address 558 

the different sub-stages of intuitive physics that underlie overt surprise, and can tease 559 

apart generic surprise from the violation of intuitive physics more specifically. A 560 

developmentally appropriate version of measuring a CDA-like pattern in infants can also 561 

potentially establish that infant overt surprise in the face of physically impossible events 562 

reflects disrupted physics-based object tracking. This can be expanded to other cases that 563 

robustly show behavioral surprise based on violations of expectations. In the physical 564 

domain, some events are surprising without interfering with tracking, such as a mug falling 565 

off a table and bouncing, which could reveal that it is made out of rubber, which is 566 

physically surprising but does not interfere with tracking. In the psychological domain, 567 

both adults and young children are surprised when agents act in an inefficient way (e.g., 568 

Baillargeon et al., 2016). Nevertheless, we would predict such surprise would not lead to 569 

resetting, as this violation does not interfere with object tracking. 570 

 More generally, our method can shed light on how people perceive, track, 571 

understand, and remember physical events, by bridging traditional cognitive science, 572 

developmental psychology, and neuroscience perspectives. We see great promise in hybrid 573 

approaches that, as we do here, use simplified but ecologically foundational stimuli based 574 

on infant studies, while measuring well-characterized neural markers resting on years of 575 

rigorous quantitative validation from carefully controlled psychological experiments with 576 
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adults. Examining the CDA in this novel manner allowed us to reveal previously-hidden 577 

influences of intuitive physics on everyday representation, understanding, and reasoning.  578 
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