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ABSTRACT

Many animals, and an increasing number of artificial agents, display sophisticated capabilities to
perceive and manipulate objects. But human beings remain distinctive in their capacity for flexible,
creative tool use – using objects in new ways to act on the world, achieve a goal, or solve a problem.
Here we introduce the “Tools” game, a simple but challenging domain for studying this behavior in
human and artificial agents. Players place objects in a dynamic scene to accomplish a goal that can
only be achieved if those objects interact with other scene elements in appropriate ways: for instance,
launching, blocking, supporting or tipping them. Only a few attempts are permitted, requiring
rapid trial-and-error learning if a solution is not found at first. We propose a “Sample, Simulate,
Update” (SSUP) framework for modeling how people solve these challenges, based on exploiting
rich world knowledge to sample actions that would lead to successful outcomes, simulate candidate
actions before trying them out, and update beliefs about which tools and actions are best in a rapid
learning loop. SSUP captures human performance well across 20 levels of the Tools game, and fits
significantly better than alternate accounts based on deep reinforcement learning or learning the
simulator parameters online. We discuss how the Tools challenge might guide the development of
better physical reasoning agents in AI, as well as better accounts of human physical reasoning and
tool use.

1 Introduction

While trying to set up a tent on a camping trip, you realize that the ground is too hard for you to push the tent stakes
in with your bare hands. If you had a hammer, you could pound them in – but you don’t have one, so you search the
campsite for another object to help you achieve your goal. Would you choose a pinecone? A stick? A water bottle? Or
a rock? Probably you would first try to use the rock, to generate the force needed to get the stakes into the ground. And
after trying that, if you failed to drive in the stakes, you might search for a more suitable (perhaps heavier) rock, or try a
different grip or angle of impact.

Figuring out how to pound in tent stakes without a hammer might seem trivial at first, but it is an instance of the
rich human capacity for creative tool use, and more generally, flexible physical problem solving. It requires a causal
understanding of how the physics of the world works, and sophisticated abilities for inference and learning to construct
plans that solve a problem we might never have faced before, and might not initially know how to solve. Consider how,
when faced with the tent stake challenge, we do not choose an object at random; we choose a rock because we believe
we know how we could use it to generate sufficient force of the right nature on the stake. And when we find that the
first rock does not work, we again search around for a solution, but use the knowledge of our failures to guide our future

This manuscript is an extended version of a paper (“Rapid Trial-and-Error Learning in Physical Problem Solving”) accepted for
oral presentation at the 41st Annual Meeting of the Cognitive Science Society (2019). It represents ongoing work on the part of the
authors. Further results and a link to the Tools game can be found at https://k-r-allen.github.io/tool-games/
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search. This style of problem solving is a very structured sort of trial-and-error learning: our search has elements of
randomness, but within a plausible solution space, such that a solution can often be found very quickly.

These abilities are not just human, but quintessentially human. While many animals have evolved to use specific
rudimentary tools, only a few species of birds and primates show spontaneous, flexible, and creative tool use in the wild
(Shumaker, Walkup, & Beck, 2011), and no other species approaches the flexibility and creativity of humans. These
abilities also start early. By age four, children can figure out how to use an unusual object that is given to them as a
tool to solve a non-obvious task (e.g., using a hooked straw to retrieve an item in a narrow container; Beck, Apperly,
Chappell, Guthrie, & Cutting, 2011). More basic tool use and the ability to appreciate objects as tools emerges much
earlier, between 18 and 24 months (Lockman, 2000). Evolutionarily, distinctive tool use and construction (in the form
of handaxes) dates back to early hominids more than two million years ago, and has always been one of the defining
dimensions of any human culture (Henrich, 2017).

Our goal here is to understand these human abilities in computational terms, with sufficient precision to both quan-
titatively explain people’s flexible physical problem-solving behavior, as well as to ultimately implement analogous
abilities in artificial intelligence (AI) systems. We begin (Section 2) by describing a new task environment for studying
physical problem-solving that we call the “Tools” game, which presents a suite of challenges for both human and
machine agents. We then (Section 3) propose a computational framework, called “Sample, Simulate, Update” (SSUP,
pronounced “ess-sup”), for modeling how people might solve these challenges. The SSUP framework is based on two
core ideas. First, people come to any new physical problem solving task equipped with rich knowledge about the world,
in the form of a structured prior on candidate tools and actions likely to solve the problem and a mental simulator that
allows them to imagine (albeit noisily and imperfectly) the likely effects of their actions. Second, people learn how
to solve a new task by updating a belief distribution over high-value tool and action choices, after either simulating a
candidate action or trying out that action in the real world and observing its effect; they then generate new candidate
actions by sampling from this updated (posterior) belief distribution, or sampling more exploratory moves from their
prior, and iterate until the problem is solved.

Our main results (Section 4) consist of benchmark human behavioral data on 20 Tools tasks, and quantitative compar-
isons with a model instantiating the SSUP framework, as well as multiple alternative models including a standard deep
reinforcement learning baseline. We think of our SSUP models primarily as cognitive science contributions; they are
intended to capture how people learn and think in physical problem solving, and represent only an initial foray into
understanding that process. Yet the general framework they instantiate identifies key ingredients we believe will be
needed in developing more human-like AI systems for physical reasoning, planning, and learning as we discuss further
in Sections 5 and 6. In particular, our modeling suggests that the rapid trial-and-error learning people often display
when using novel tools fits neither of the traditional modes of reinforcement learning (RL) in AI or cognitive science: it
is not a purely model-free policy update, nor is it an instance of model learning (learning more about the dynamics of
the environment); rather, it is a kind of simulation-based policy update, using simulated and real experience to update
a distribution over actions to guide further sampling. Sections 5 and 6 discuss how the Tools game could motivate
innovations in both AI and cognitive science approaches to physical problem solving.

2 The Tools game

Figure 1: One illustrative human trial of the Basic level in
the Tools game. (A) The player must get the red object into
the green goal using one of the three tools on the right. (B)
The player chooses a tool and where to place it. (C) Physics
is then turned “on” and the tool interacts with other objects
under forces of gravity, friction and collision. This particular
action results in a near miss, as the red ball bounces off the
rim of the cup.

We propose the Tools game as a platform for investigating
the priors, representations, and planning and learning
algorithms used by humans and machines in physical
problem solving. Inspired by how people — and to a
lesser extent, other animal species such as birds and apes
— are able to use tools to solve complex physical problems
(Shumaker et al., 2011), as well as mobile physics games
such as Brain It On (Brain it On, 2015), we created a
suite of problems which require various kinds of physical
reasoning to solve.

The game asks players to place one of several objects
(“tools”) into a two-dimensional dynamic physical envi-
ronment in order to achieve a goal: getting a red object
into a green region, in a way that is stable for at least one
second. This goal is the same for every level, but what is
required to achieve it varies greatly (Fig. 1). As soon as a
single tool is placed, the physics of the world is enabled
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Figure 2: Twenty levels used in the Tools game. Players choose one of three tools (shown at right of each level) to place in the scene
in order to get a red object into the green goal area. Black objects are fixed, while blue objects also move; grey regions are prohibited
for tool placement. Levels denoted with A/B labels are matched pairs. See https://k-r-allen.github.io/tool-games/ for a
selection of example videos.

so that players see the effect of the action they took. If they fail, players can “reset” the world to its original state and try
again; they are limited to a single action on each attempt. Although human tool use in the real world is more complex
than the action space in this game – requiring sequences of actions, a choice of tools from among a much larger set, or
even tool creation – having this more limited action space enables easier comparisons across participants, and seems to
already be a challenging problem for AI approaches.

The Tools game presents particular challenges that we believe underlie the kinds of reasoning required for rapid physical
problem solving more generally. First, there is a diversity of levels that require different strategies and physical
concepts to solve, but employ shared physical dynamics that approximate the real world. Second, the Tools game
requires causal reasoning. Most of the levels can be solved by considering how to intervene on a scene in order to
achieve a goal, such as creating a “support” for an object that you realize is falling, or “preventing” an object from
blocking another. Third, the Tools game requires long horizon predictions. Since players are only able to interact with
the game on the very first time-step, they need to be able to predict the effects of their actions long into the future when
they can no longer intervene. Finally, the Tools game prompts few-shot trial-and-error learning in humans. Human
players do not generally solve the level on their first attempt, but also generally do not require more than 5-10 attempts
in order to succeed. Few-shot learning is a frontier for further progress in machine learning, and the Tools game is a
measure of this capacity in the domains of physical reasoning and action.

Two further difficulties in the Tools game must be addressed by both humans and machines. First, there is a challenging
search problem: in any situation there are a large number of actions one could take, but few of them will be relevant
to the problem at hand, and most of those that are relevant will not solve the task. Second, any (human or machine)
agent’s model of the physics for this novel environment is bound to be imperfect and uncertain, so planning must be
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robust to those sources of uncertainty, and revisable in adaptive ways when the agent sees that their initial plan was not
successful (Battaglia, Hamrick, & Tenenbaum, 2013; Smith & Vul, 2013; Sanborn, Mansinghka, & Griffiths, 2013).

2.1 Levels

We constructed 20 levels to investigate a range of physical principles such as “launching” or “catapulting” a ball,
“supporting” a table for an object to roll across, or “preventing” an object from blocking the goal (see Fig. 2). Of
these 20 levels, 12 were constructed in 6 pairs, with small variations in the goals or objects in the scene so that we
could test whether subtle differences in stimuli would lead to observable differences in behavior. Some levels have
dynamic objects (in blue), as well as grey regions in which objects cannot be placed. While the levels were constructed
to test particular physical concepts (and named appropriately), participants in our experiment were not aware of these
categories or names, and therefore were expected to discover these principles for themselves.

Direct launching We classify direct launching levels as those that require a participant to use a tool in order to
directly hit a red object to get it into the goal. This covers levels Basic, Launch A & B, Shafts A & B, and Towers A.
Indirect launching Indirect launching levels are those that require players to interact with some dynamic object in
the scene which will then launch a goal object. These include Towers B, Chaining, and Catapult.
Destroying structure Unbox, Unsupport, and Table B all require destroying the structure of the level in some way.
For Unbox and Unsupport, some dynamic object needs to be removed in order to accomplish the goal, while in Table B,
extra space needs to be made so the ball can touch the ground.
Maintaining initial structure Several levels (Bridge, Table A, SeeSaw, Prevention A & B, and Gap) require players
to find some way of maintaining the initial structure of the scene after gravity is turned on. This involves putting a tool
object in a supporting position for one (or two) of the dynamic objects in each level, to allow the key object to travel
over a surface (e.g., Bridge) or prevent an object from obstructing motion (e.g., Prevention).
Tipping/angular motion To examine how rotation affects the plans players consider, Falling A & B, Table B, Catapult,
and Launch B were designed such that their solutions required tipping an object over, or causing some object to acquire
angular momentum.

In each case of a matched pair, the scene is almost identical with only a minor modification in the ‘B’ version which
causes one strategy to no longer be viable. For example, in Shafts B, a small static platform is introduced over the easily
accessed ball, such that this option is no longer feasible. In Launch B, the ramp to the left is removed, such that the
easier strategy is eliminated, and so rotating an object to launch the ball is required. In Table B, the goal is changed
from being in the container to being on the floor, which necessitates “unhinging” the table object to make space for the
ball to reach the floor. These pairs ensure that any player learning to play the game will need to generalize and adapt to
the specific details of each level. A rote strategy, or nonparametric approach for an ‘A’ level, will fail on ‘B’ without
updating.

2.2 Rapid trial-and-error learning

The Tools game was designed to expose a particular facet of human problem solving: initial structured search, then
exploitation of promising solutions. At the start of each level, people are often unsure of what sorts of strategies or
actions will solve the level, and therefore begin by taking exploratory actions that may appear useful, but will not
achieve the goal. However, when they take an action that does not solve the level but is similar to an action that
will, they will often notice that this is a promising strategy and exploit this information, fine-tuning their actions to
produce a solution. Figure 3 demonstrates how this occurs in practice, showing five different examples of participants
learning rapidly or slowly, and discovering different ways to use the tools across a variety of levels. We are interested
in exploring how people perform this rapid trial-and-error learning, and what this implies for artificial agents that are
expected to interact with the world in a human-like fashion.

3 The Sample, Simulate, Update framework

In order to capture the richness of human trial-and-error learning on the Tools game, including both local, incremental
search, as well as “a-ha” insights for a new strategy, we introduce the “Sample, Simulate, Update” framework (SSUP;
Fig. 4A). This framework relies on three components: a method for quickly initializing search to a set of promising
action candidates (“Sample”), an internal simulator that lets the agent form very general (if imperfect) predictions about
the effects of their actions on the world (“Simulate;” e.g., Battaglia et al., 2013), and a learning mechanism that can
update the agent’s beliefs about what they think will work based on the outcomes of both imagined and experienced
actions (“Update”).
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Figure 3: Example of five people’s actions on three different levels. Objects start in the light outlines, and end in the position with
solid figures, following the path traced out by each line. Possible tool choices shown to the right. (A) A person who identified a
useful strategy initially and rapidly learned how to solve the level. (B) A person who began with a strategy that would not work, but
quickly converged on actions that were close to a solution. (C) A person who tried multiple, unsuccessful actions before discovering
that using the large block as a lever is useful. (D) A person who may have thought the ball would have some initial velocity, and then
immediately figured out they needed to hit the ball. They discovered how to use a tool in a surprising way (by having it rotate around
the static black platform) in order to accomplish this, and then fine-tuned this action to hit the ball in just the right way. (E) A person
who learned in a single trial that they needed to support the platform for the ball to roll across, but then had to try multiple different
ways of making this happen. Indeed, they tried all three different tools for this task, eventually finding that the smaller pillar was
successful. These people’s behavior is emblematic of “rapid trial-and-error” learning, initially searching around objects, and then
identifying and exploiting actions identified as promising.

While a simulator is required to assess whether candidate actions will accomplish our goals before we act, just having a
simulator is not enough if we consider agents with limited computational resources. In general, even having a perfect
simulator still presents a search problem, since there is a large action space to consider. To overcome this, SSUP
includes structured priors and a mechanism for updating our beliefs about which actions are likely to be successful (e.g.,
Forbus, Gentner, & Law, 1995). When combined with a noisy simulator, this allows SSUP to simulate fewer yet more
promising potential actions, and requires fewer (failed) interactions with the world.

This framework is inspired by the theory of “problem solving as search” (Newell & Simon, 1972), as well as Dyna
and other model-based policy optimization methods in planning and reinforcement learning (Sutton, 1991; Deisenroth,
Neumann, Peters, et al., 2013). Crucially, we posit that structured priors and physical simulators must already be in
place for the learner in order to solve problems as rapidly as people. Unlike most model-based policy optimization
methods, we do not perform online updates of the dynamics model. We do compare with an alternative model where
learning comes from tuning the dynamics model in the ablation studies below.

3.1 A model for the Tools game

In our Tools game, SSUP includes an object-oriented prior (“Sample”), a noisy physics engine (“Simulate”), and a
stochastic policy gradient update procedure (“Update”; Fig. 4B). Many other choices for each of these components are
possible, but we believe these key ingredients are necessary to capture the richness of human trial-and-error learning.
For further details on implementation, see Section S2.
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Figure 4: (A) The SSUP framework algorithm. (B) A diagram of the model instantiating the SSUP framework for the Tools game.
This SSUP model incorporates an object-based prior, a simulation engine for filtering proposals, and an update module that suggests
new proposals based on observations “in the mind” and from actions taken in the world. (C) Illustration of this model performing a
level. Initially, the model chooses an action that will not succeed. It then considers other possible actions, and finds that dropping a
heavy block on the right side might work, so it tries that as its next action. While this does not quite achieve the goal, the model
considers similar actions, and ends up dropping the block from higher to win the level.

3.1.1 Sample: object-based prior

In line with other work on physical problem solving showing that object-oriented and relational priors are important
(Hamrick et al., 2018), we incorporate an object-based prior for sampling actions. Since all tools in the game were
designed to be unfamiliar to participants, we place a uniform prior over the three tool choices. We do assume, however,
that participants will have inductive biases on where they place the tools: they should select actions that are likely
to interact with movable objects, thus having an effect on their trajectory. The model implements this prior by first
selecting one of the movable objects in the scene. It then chooses an x-coordinate in an area that extends slightly beyond
the width of the object, and a y-coordinate either above or below that object (Fig. 4B: Prior).

3.1.2 Simulate: a noisy physics engine

We assume people use an “Intuitive Physics Engine” (Battaglia et al., 2013) to filter proposed actions as being potentially
feasible or not. This engine is able to simulate the world forwards in time with approximately correct but stochastic
dynamics (Smith & Vul, 2013; Smith, Battaglia, & Vul, 2018). Determining the effect of a proposed action therefore
involves applying that action to one’s mental representation, and using the Intuitive Physics Engine to posit the range of
ways that action might cause the world to unfold (Craik, 1943; Dasgupta, Smith, Schulz, Tenenbaum, & Gershman,
2018).

We therefore implement simulation using a game physics engine with noisy dynamics. As found in prior work,
humans characteristically have noisy predictions of how collisions will resolve (Smith & Vul, 2013), and so we assume
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uncertainty over the effects of actions is driven by uncertainty only in those collisions (the direction and amount of
force that is applied between two colliding objects).1

In order to decide if a proposed action is worth attempting in the game, the model produces a small number of stochastic
simulations of this action (nsims, set here at 4) to form a set of hypotheses about the outcome of that action. For each
hypothesis, the minimum distance between the goal area and one of the objects that must get into that area is recorded;
these values are averaged across the simulations. We normalize each distance by the minimum distance that would
have been achieved if no action had been taken, to better account for how much of a difference an action made to the
outcome (Gerstenberg, Goodman, Lagnado, & Tenenbaum, 2015). Since low values are indicative of actions that almost
achieve the goal, if the average is below a threshold, the model takes that action “in the world.” If the model considers
more than T different action proposals without acting (set here at 5), it takes the best action it has imagined so far. We
evaluate the effect of these particular choices in a sensitivity analysis (see Figure S2).

3.1.3 Update: learning from thoughts and actions

We parameteterize beliefs over likely successful actions π′(s) as a mixture of three Gaussians: one distribution each for
all three tools, with a weighting across distributions that captures the relative probability of selecting each tool.2 π′(s)
is updated using a simple policy gradient algorithm (Williams, 1992) that calculates reward based on the minimum
distance to goal metric calculated from both internal simulations and observations of action outcomes (similar to the
intrinsic rewards sugested by Juechems & Summerfield, 2019). This algorithm will shape the posterior beliefs around
areas to place each tool which are expected to move target objects close to the goal, and therefore is likely to contain a
solution. In order to allow for structured exploration, the algorithm samples actions according to an ε-greedy strategy,
where the exploratory actions are drawn from the prior.

Because the Gaussians for each tool are modeled independently, the model additionally generalizes across tools by
considering whether alternate tools might succeed when an action has failed. This is instantiated by simulating the
expected reward if the other tools had been placed in the same location as the performed action. In this way, if the
model takes an action in a good location with the wrong tool, it can transfer knowledge about its placement across the
object types, without generically assuming that all tools will be equally good for all positions.

3.2 Alternate models: ablations and machine baselines

We propose that “trial-and-error” problem solving requires (1) an object-based prior, (2) a simulation engine, and (3)
policy updates. We therefore considered ablations of the model that lack these various pieces to determine their relative
contributions, and find that removing any of these three modules negatively affects the model’s performance, and its
ability to explain human behavior.

We additionally compare the model to two alternate learning approaches. One alternate model, based on deep
reinforcement learning, allows us to test whether good action policies can be learned from repeated encounters with
similar trials, but without structured priors or simulators. This is analogous to attempting to learn the “Sample” step of
the SSUP framework from substantial experience. The other alternate model supposes that people are learning more
about the properties of objects in the scene after each observation (e.g., tuning the parameters of their intuitive physics
engine), but are not learning about good or bad action choices in a particular scenario.

Sampling + Simulator (no updating) To test whether updating policies impacts participants’ performance on this
task, we consider a model that samples proposals from the prior and evaluates them with the simulation module, but
does not update its policy to guide search. Instead, it simply samples options from the prior until either (a) the thinking
time is exceeded, and it takes a random action, or (b) the model takes the proposed action using the same decision
criterion as in the full model.

Sampling + Updating (no simulation engine) We next consider the contribution of having predictive world models
by using an ablation that does not use simulation to evaluate proposals, relying only on the object-based prior for
initialization of the policy. This model therefore can only take external actions, except for a set of points used for
initializing the policy, to allow a fair comparison to the full model. This can be thought of as model-free reinforcement
learning, but with an inductive bias towards object-oriented actions (since the exploration policy and initialization are
object-oriented).

1We also considered models with additional sources of physics model uncertainty added, but found that the additional parameters
did not improve model fit, so we do not analyze those models here.

2It is possible that human posterior beliefs are multi-modal or non-parametric, but we found that using a simple unimodal
distribution worked well for these levels.
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Simulator + Updating (no object-based prior) Our final reduced model does not use the object-based prior to form
initial proposals, but instead samples uniformly from all legal actions; all other aspects of this model are identical to the
full model. This ablation can be thought of as similar to the Dyna architecture proposed by Sutton (1990), in which
an agent uses its internal model of the world to determine good value estimates for a model-free policy when taking
external actions. The main difference is that Dyna assumes that the internal model should be learned while performing
the task, whereas we assume people have already learned a model of physical dynamics before engaging with our
experiment (or within the three practice levels they encounter).

Deep reinforcement learning + Updating As an alternate learning scheme, we compare to a model from deep
reinforcement learning, Deep Q Networks (DQN; Mnih et al., 2015), that attempts to learn and generalize a good policy
for taking actions based on training on a large number of variants of five of the levels. We imagine this as analogous
to attempting to learn a good prior in the SSUP framework. Thus this model could be comparable to the “Prior +
Updating” ablation, but using a learned prior instead of an object-based one. Although this policy is learned offline
before attempting each of the main trials, it has the capability of learning online in the process of solving each trial via a
policy gradient. See Sections 5.2 and S3 for further details.

Physical parameter tuning Another alternate scheme is to eschew learning a link between actions and outcomes, and
instead use learning to improve one’s internal world models, and use that updated model to re-plan on future attempts.
This approach is often used when applying model predictive control (Feldbaum, 1960; C. Xie, Patil, Moldovan, Levine,
& Abbeel, 2016; Fu, Levine, & Abbeel, 2016; Janner et al., 2018; Deisenroth & Rasmussen, 2011), also often called
system identification (Chiuso & Pillonetto, 2019). Physical parameter tuning learns better estimates of object and world
properties (such as gravity or density) from action observations, using Bayesian inference to match simulated outcomes
to observations (similar to Hamrick, Battaglia, Griffiths, & Tenenbaum, 2016; Yildirim, Smith, Belledonne, Wu, &
Tenenbaum, 2018). It is therefore very similar to the “Sampling + Simulator” ablation, but with a tuned simulator
instead of a fixed one. See Section S4 for further details. While this could in principle be combined with policy learning,
we wanted to test whether physical parameter learning alone could capture the learning curves we see in participants.

Guessing We finally consider a model that randomly selects valid actions. In this case, the probability of success on a
given level is the fraction of placements that are successful relative to the total number of valid positions. While we
do not believe that people are randomly responding, this serves as a baseline against which to compare other models’
improvement.

4 Results

In this section, we analyze human performance on the Tools game and compare humans to our SSUP model and its
ablations, as well as to the two alternate learning baselines. We show that humans display rapid trial-and-error learning
across all levels, and that only the full SSUP model captures human performance.

4.1 Human results

We recruited 94 participants through Amazon Mechanical Turk and asked each participant to solve 14 levels: all 8 of the
unmatched levels, and one variation of each of the 6 matched pairs (randomly selected). The level order was randomized
across participants. Participants were given two minutes to solve each problem, and could move on immediately if they
solved it. We recorded all attempted actions by participants, including which tool was used, where it was placed, and
the time between placements. See Section S1 for further details.

The variation in difficulty between levels of the game was substantial. Participants showed an average solution rate of
81% (sd = 19%), with the range covering 31% for the hardest level to 100% for the easiest. Similarly, participants took
an average of 4.5 actions (sd = 2.5) for each level, with a range from 1.5 to 9.4 average attempts. Even within trials,
there was a large amount of heterogeneity in the number of actions participants used to solve the level. This would be
expected with “rapid trial-and-error” learning: participants who initially tried a promising action would solve the puzzle
quickly, while others will explore around trying different actions before happening on promising ones (e.g., Fig. 3).

Behavior differed across all six matched level pairs, with participants requiring a different number of actions to solve
them (all ts > 2.7, ps < 0.01), and often producing different patterns of actions, even from the first trial (see Fig. S3).
This suggests that people are paying attention to subtle differences in the scene or goal to choose their actions, not using
gross associative strategies.
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Figure 5: Comparison of average number of human participants’ attempts for each level with average number of attempts for the
full model (left) and six alternate models (see Section 3.2 for descriptions). Numbers correspond to the trials in Fig. 2. Bars indicate
95% confidence intervals on estimates of the means. The number of placements was capped at 10 for all models. If a model took
more than 10 attempts on a particular level, it is considered unsolved. Model results are combined over 250 runs.

Figure 6: Comparison of human participants’ accuracy on each trial versus the accuracy of all models. Numbers correspond to the
trials in Fig. 2. DQN+Updating and Guessing perform badly across most levels.

While participants improved in solution rate over the course of the experiment (76% solution rate on the first three trials
to 86% on the last three; χ2(1) = 9.7, p = 0.002), they did not solve the levels more efficiently (χ2(1) = 2.0, p = 0.15),
taking an equal number of attempts to arrive at a solution across the experiment.

4.2 Model results

We investigate several metrics for comparing the models to human data. First, we look at how quickly and how often
each model solves each level, and whether that matches participants. This is measured as the root mean squared error
(RMSE) between the average number of participant attempts for each level and the average number of model attempts
for each level (see Fig. 5, Table 1). We also compare a model’s solution rate to the human solution rate across all trials
in the same way (see Figs. 6 and Table 1).

We further define a metric to quantify the difference between empirical and model cumulative solution curves (as shown
in Fig. 8) called Area Between Cumulative Solutions (ABCS). This metric captures the evolution of behavior over time:
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Figure 7: Distribution of predicted model actions (background) versus human actions (points) on the first attempts of the level
(top) and the attempt used to solve the level (bottom) for a selection of four levels. Colors indicate the tool used, with the tools and
associated colors shown to the right of each level. Across many levels that include using concepts such as launching, catapulting, and
blocking, the model captures the diversity of where people initialize their search, as well as the types of solutions they eventually
find. However, there are certain levels where people appear to have different prior beliefs than the model (Falling (A); right), which
lead to different solution patterns.

over all participants and model runs, what proportion solved each level within X placements. If these curves are similar
between participants and a model, it suggests that the model’s beliefs about good action proposals are evolving at a
similar rate to people. We can then calculate the total area between empirical and model cumulative solution curves,
normalized between 0 (perfect match) to 1 (participants or the model always solve the level instantaneously, while the
other never solves the level).

ABCS has the benefit of capturing information about differences in both the accuracy and and number of placements
used, as well changes in the rate of solutions due to rapid trial-and-error learning. We can therefore compare models by
summing ABCS across all 20 trials (Total ABCS), such that models that capture human performance better will have
lower values (see Fig. 8 and Table S1 for ABCS values by trial).

4.2.1 Model comparisons on the Tools game

The full model explains the patterns of human behavior across the different levels well. It uses a similar number
of attempts on each level as people do (r = 0.71; 95% CI = [0.62,0.76]; mean empirical attempts across all levels:
4.48, mean model attempts: 4.24; see Fig. 5, left). It also achieves similar accuracy to participants (r = 0.86;
95% CI = [0.76,0.89]; see Fig. 6).

Across many levels, the SSUP model not only achieves the same overall solution rate as people, but approaches it at the
same rate (Fig. 8, top). We can look qualitatively in more detail how the full model accomplishes this by comparing
both the first actions that people and the model takes (Fig. 7, top), and the actions that both take to solve a level (Fig. 7,

Model Avg. Attempts Attempt RMSE Accuracy Accuracy RMSE Total ABCS
Human 4.48 [4.25, 4.66] - 0.81 - -

Full Model 4.24 [4.17, 4.32] 1.86 [1.66, 2.17] 0.77 [0.76, 0.78] 0.135 [0.121, 0.169] 2.21
Prior + Simulator 5.38 [5.32, 5.46] 2.31 [2.16, 2.59] 0.69 [0.68, 0.7] 0.271 [0.248, 0.299] 3.78
Prior + Updating 5.23 [5.14, 5.31] 2.29 [2.12, 2.58] 0.59 [0.58, 0.6] 0.328 [0.307, 0.353] 4.37

Simulator + Updating 5.55 [5.48, 5.62] 2.45 [2.29, 2.71] 0.61 [0.6, 0.62] 0.305 [0.288, 0.33] 4.05
DQN + Updating 7.52 [7.44, 7.61] 3.89 [3.76, 4.1] 0.34 [0.33, 0.35] 0.544 [0.527, 0.566] 7.95
Parameter Tuning 5.7 [5.64, 5.78] 2.39 [2.25, 2.65] 0.65 [0.64, 0.66] 0.293 [0.275, 0.323] 3.88

Guessing 8.88 4.91 [4.75, 5.1] 0.32 0.552 [0.531, 0.573] 8.04
Table 1: Comparisons with alternate models. Brackets indicate bootstrapped 95% confidence intervals on the estimate.
‘Total ABCS’ refers to the sum of the Area Between Cumulative Solution curves of participants and the model (see
Fig. 8). ‘Guessing’ model placements and accuracy can be calculated exactly and therefore have no confidence intervals.
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Figure 8: Cumulative solution rate over number of placements for participants vs. the full model top and participants vs. all
alternative models bottom. In most levels, the full model captures the evolution of participants’ solutions well; in the few cases that
it differs, there is no alternative model that systematically explains these differences. In general, the deep reinforcement learning
baseline (DQN+Updating) is insufficient for solving tasks in this number of attempts, even with online updating.
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bottom). For example, both people and the full model will often begin with a variety of plausible actions (e.g., Catapult).
In some cases, both will attempt initial actions that have very little impact on the scene (e.g., SeeSaw and Prevention
(B)); this could be because people cannot think of any useful actions and so decide to try something, similar to how the
model can exceed its simulation threshold. However, in other cases, the model’s initial predictions diverge from people,
and this leads to a different pattern of search and solutions. For instance, in Falling (A), the model quickly finds that
placing an object under the container will reliably tip the ball onto the ground, but people are biased to drop an object
from above. Because of this, the model often rapidly solves the level with an object below, whereas a proportion of
participants find a way to flip the container from above; this discrepancy can also be seen in the comparison of number
of attempts before the solution, where the model finds a solution quickly, while people take a good deal longer (Fig. 5,
left). For comparisons of the first and last actions across all levels, see Fig. S3.

Eliminating any of the three SSUP components causes a significant decrease in performance (see Table 1 and Fig. 5),
with the ablated models typically requiring more attempts to solve levels because they are either searching in the wrong
area of the action space (no prior), attempting actions that have no chance of being successful (no simulator), or do not
guide search towards more promising areas (no updating).

DQN + Updating performs worst of all plausible alternate models, using the most actions and solving levels at a rate
barely over chance. Because this is equivalent to the Prior + Updating model with a different prior, its poor performance
suggests that generalized action policies cannot easily be learned from repeatedly playing similar levels (see Sec. 5.2
for further discussion of this model’s learning).

Because the Parameter Tuning model is equivalent to the Prior + Simulator except that the properties of the dynamics
model can be learned in Parameter Tuning, comparing those two models allows us to test whether we need to assume
that people are learning the dynamics of the world in this Tools game. The fact that both models perform roughly
equivalently (see Table 1) suggests that we do not need to make this assumption. If we consider that human performance
throughout the experiment showed only marginal improvements (see Section 4.1), this suggests that most learning in
this task is not building better models of the game, but rather how actions lead to success within specific levels.

5 The Tools game as an AI challenge

In this section, we propose the Tools game as a challenge domain for building and measuring human-level learning
and planning capacities in AI. The game presents several conceptual challenges that we believe are at the root of more
general rapid problem solving, and that should push the boundaries on sample efficiency and generalization of current
methods. These challenges (discussed in depth in Section 2) are not tested in existing benchmarks such as the Atari
environments (Bellemare, Naddaf, Veness, & Bowling, 2013) or the standard Mujoco benchmarks (Todorov, Erez, &
Tassa, 2012; Brockman et al., 2016). For instance, this game has a diverse set of levels that share a transition function
with each other and (roughly) with the real world, so that strong generalization should be possible if an agent has a
good model of dynamics in the world. In addition, to achieve human-level performance requires finding a solution
within just a handful of attempts with feedback, suggesting a need for few-shot learning.

We envision the Tools game as providing two distinct challenge settings for the AI learning and planning communities.
The first setting would use the game strictly as a set of test tasks: Agents should build general physics models and
problem-solving strategies before they come to these tasks, from real-world experience or perhaps from playing other
physics games, like our human players do. Our game tasks then present novel problems to be solved, probing the
flexibility and creativity of what agents have learned, along with their ability to adapt quickly to these new tasks with the
rapid forms of trial-and-error learning we observe in humans. The second setting would allow agents to learn within our
tools domain, but require them to generalize to new tasks (new levels) within it. While we believe that the former setting
is ultimately the more important and more interesting one for developing human-level AI capabilities, we recognize that
the latter is more achievable in the short term, especially for current learning-driven approaches. For instance, the latter
setting could be seen as a new domain for few-shot meta-learning with rich object-centric physical dynamics.

To support research in these directions, we will release the python environment for our game at https://k-r-allen
.github.io/tool-games/, as well as the level descriptions for the 20 levels that we have tested humans on so far.
For training agents within the tools domain (i.e., the latter, meta-learning setting proposed above), we will provide a set
of parameterized background levels as a set of level generators, like the ones presented in Section S3.2. Performing
well on all 20 test levels, even with substantial training on background levels, will require strong generalization since
the strategies needed on a smaller set of background levels will not fully encompass those needed for the test games.
We also intend to release more complex versions of the game (see future extensions) that can be easily developed in the
same python environment.
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Below we discuss related work from AI, robotics and deep reinforcement learning, then present our implementation of
one baseline deep reinforcement learning agent for the tools game, and suggest how the game might be extended to
provide further challenges for AI. Based on our preliminary analyses outlined in section 5.2, we expect that solving the
Tools game (and its extensions) is beyond the capabilities of current deep reinforcement learning baselines, and will
push future model-based and model-free methods towards learning more flexible, generalizable physical reasoning.3

5.1 Related work in AI

Deep model-free reinforcement learning has traditionally focused on model-free learning, where the input to the
model is an observation (often an image), and the output is an action. Such models are optimized “end-to-end” and
learn non-linear representations of policies parameterized as deep neural networks. Representing policies in this way
implicitly combines perception, planning, modelling and acting into a single deep network, which lacks the modularity
that we expect is necessary for strong generalization across different tasks. Nevertheless, this community has found
that model-free approaches can achieve very good performance on a wide range of physical and non physical tasks
(Mnih et al., 2015; Levine, Finn, Darrell, & Abbeel, 2016; Lillicrap et al., 2015), at least when the training and test
tasks are drawn from very similar distributions. We imagine that the Tools game, in which there is substantial variation
between tasks and where humans demonstrate rapid learning in just a handful of attempts, will test the limits of these
approaches. In our experiments, we find that current methods fail to solve our tasks, and hope that our challenge could
help further progress on more flexible, sample efficient deep reinforcement learning techniques.

Deep model-based reinforcement learning has made major progress on sample-efficient learning for complex tasks
(Kaiser et al., 2019; Hafner et al., 2018; A. Xie, Ebert, Levine, & Finn, 2019; Holland, Talvitie, & Bowling, 2018;
Hamrick, 2019) but the learned models are generally unstructured, and do not necessarily work well for long horizon
predictions. In the Tools game, long horizon predictions are critical for finding good policies, which will strain many of
these approaches. We expect that progress in object-oriented, event based model learning will be necessary to learn with
such long horizons successfully (Jayaraman, Ebert, Efros, & Levine, 2018; Pertsch et al., 2019; Becker-Ehmck, Peters,
& Van Der Smagt, 2019; Battaglia, Pascanu, Lai, Rezende, et al., 2016; Chang, Ullman, Torralba, & Tenenbaum, 2016).

Meta-learning for multi-task reinforcement learning has emerged recently as an exciting direction for tackling
multi-task reinforcement learning in model-based and model-free settings (Finn, Abbeel, & Levine, 2017; Rakelly, Zhou,
Finn, Levine, & Quillen, 2019; Gupta, Mendonca, Liu, Abbeel, & Levine, 2018; Schmidhuber, Zhao, & Schraudolph,
1998; Wang et al., 2018) . While such approaches seem promising for the Tools game, they have mostly been analyzed
in settings with narrow generalization between train and testing tasks, and it is therefore difficult to predict how well
they will do when much broader generalization is required.

Model-based policy search has closely examined the role of learned models in forming plans, and has generally
tried to come up with solutions for how to handle imperfect models effectively (see Deisenroth et al. (2013) for a
survey). We expect that in more complicated, sequential versions of the game (such as drawing tools), planning and
search methods from this community may need to be further improved in order to handle large action and state spaces
that involve complex geometry and dynamics.

Tool use research has focused on the role of curiosity and social cues to develop the motor primitives necessary for
manipulating simple objects to accomplish a goal (Forestier & Oudeyer, 2016), as well as how to use existing abilities to
form more complex plans (Toussaint, Allen, Smith, & Tenenbaum, 2018). Recent work has also investigated combining
imitation learning with model learning and policy updates to learn how to use objects as tools from pixel inputs alone
(A. Xie et al., 2019), as well as how to use specific tools to accomplish new tasks with self-supervised objectives (Fang
et al., 2018). These approaches require large amounts of self-supervised interactions with objects to learn good models
and policies for manipulating the world.

5.2 A Deep Reinforcement Learning baseline: Preliminary studies

We looked at whether a popular approach from deep reinforcement learning, Deep Q Networks (DQN, a Q-learning
method; Mnih et al., 2015), could solve the Tools game from pixel inputs alone.4 While we expected that such

3Unlike traditional reinforcement learning tasks, the tools game as presented here is not obviously a sequential decision making
task; instead, it could be viewed as a contextual bandit. However, because there are observable long-term effects of actions on reward
outcomes, we believe that viewing the task as a sequential decision making task where the state information includes rich histories
(similar to Hamrick et al., 2017) will be a fruitful future direction for this work.

4We also considered Proximal Policy Optimization (Schulman, Wolski, Dhariwal, Radford, & Klimov, 2017), but were unable to
train the network to perform above chance levels, even within a single level template; see Allen, Smith, and Tenenbaum (2019).
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Figure 9: (A) Training curves for DQN training on individual level templates, or all templates combined (All, red curve). Reward is
averaged over each epoch of 1,000 training instances. Models trained on individual scene templates are able to consistently choose
successful or promising actions; however, the model trained to generalize across templates underperforms, not even consistently
achieving a reward that is better than having no impact on the scene. Note that this is because the model has over-specified to some
levels and not others. In some levels it has positive impact, and in other levels it has negative impact. (B) Accuracy of DQN on the
validation template levels. Models are grouped by training regime: within template, all templates simultaneously, or averaged across
all models trained on alternate templates.

approaches would require significant amounts of experience to learn useful representations, we hoped it might discover
generally useful priors (like being object-oriented, or even understanding whether something should be placed above or
below another object) that may transfer across different level types.

Our DQN is provided separate pixel-level representations of the game screen and each tool (e.g., see Fig. 1A), which
it parses into a single representation for that level. This representation was used to separately learn a policy for tool
choice, and a policy for where to place tools.5 Since the game consists of a hybrid action space (consisting of one
discrete tool choice, and one continuous tool position), we discretized the continuous space into a 20x20 grid, which is
sufficient to solve most of the levels. See Section S3 for further architecture details.

Because we do not have a large enough number of different levels from our full game for learning useful state
representations from visual input, we created a set of parametric level generators for a subset of the levels shown in
Figure 2. Each parametric level generator takes a level “template" and varies parameters of that template (such as the
location and size of various objects) to create different levels, and assigns a random set of three tools to that level. We
designed level templates based off of the Basic, Catapult, Shafts, Table (A), and Towers (A) levels (see Fig. 2). From
these templates we generated 1,000 levels, split into 900 training levels and 100 levels held out for validation. See
Section S3.2 for further detail on random level generation.

We considered two training schemes for DQN: training on only a single level template, or training on levels from
all templates at once. Training continued until the models observed 150,000 instances, at which point performance
appeared to stabilize for all models (see Fig. 9A). The reward function for DQN is identical to the one used for SSUP: a
normalized reward with respect to what would have happened if no action was taken. We only consider the version of
DQN trained on all templates in our model comparisons in Section 4.2.1, since it performs better overall than models
trained on individual level templates.

Learning curves for each model are shown in Figure 9A. In all cases, models trained specifically for one level solve the
validation levels from that template more often than the model trained across all levels (Fig. 9B). Indeed, the model
trained on all levels seems to have learned a “launching” strategy which is sometimes successful for those levels which
involve launching an object (Basic, Catapult, Shafts and Towers). However, it is not able to simultaneously learn a
“supporting” strategy for the Table template, where solutions require supporting an object from below.

These training results suggest why the DQN + Updating model fared so poorly in comparison to the SSUP model:
while it is possible to learn policies from action-reward feedback in a single scenario, it is difficult to do so for multiple
scenarios simultaneously.

5We also considered a model that learned a position for each tool, but this did not perform as well as a factorized model.
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5.3 Future extensions

There is exciting work currently being developed to set up multi-task reinforcement learning benchmarks, such as
OpenAI’s Sonic and Coin Run challenges (Nichol, Pfau, Hesse, Klimov, & Schulman, 2018; Cobbe, Klimov, Hesse,
Kim, & Schulman, 2018). The Tools game expands on this growing set by providing a strong test of transfer learning
for physical planning and acting, but additionally requires few-shot learning within the test domains.

While we see the Tools game as presented to be a challenge for current AI approaches, we also consider ways of
extending it to keep pace as a challenge problem for future AI. We could make the action and state space more complex
by requiring sequential tool placements. Or, inspired by the way that crows and children can shape objects to make tools
(Shumaker et al., 2011; Beck et al., 2011), we could require agents to design their own tools instead of selecting from a
set of provided objects. We could also make the dynamics more complex by introducing objects with various densities,
frictions, and elasticities, which would need to be learned through interaction. Each of these changes would be a simple
extension to the game, yet we would expect them to push the boundaries of artificial agents for years to come.

6 Discussion

We introduced the Tools game for investigating flexible physical problem solving in humans and machines, and showed
that human behavior on this challenge is rich and captures a wide variety of different trial-and-error problem solving
strategies. We also introduced a candidate framework for understanding human physical problem solving: “Sample,
Simulate, Update.” This framework presumes that to solve these physics problems, people rely on existing knowledge
of how the world works that they can apply to these games. Learning in this game, therefore, does not involve learning
better models of physics for the game, but instead involves rapidly learning how to act in each specific instance, using a
structured trial-and-error search.

Our specific instantiation of this framework captures how participants’ attempted strategies evolve from start to finish
(see Fig. 7), and the overall difficulty of the different levels. In contrast, alternate learning approaches – Deep Q learning
and learning better parameterizations of a physical model – do not explain human physical problem solving on these
tasks as well. We find that all three components of this model independently help to explain human performance on the
Tools game. The prior helps the model focus on areas of the action space that are likely to make a difference in the
problem, just like people do. The noisy simulation engine is necessary to filter out poor action proposals that people
do not choose. The policy generalization from internal and external actions allows the model to efficiently search the
hypothesis space in a more human-like way.

6.1 Related work in cognitive science

6.1.1 Problem solving

While “problem solving” has a long history in cognitive science, the trial-and-error based problem solving we discuss
here differs in flavor from traditional problem solving. Unlike Complex Problem Solving where the goal is to learn
the dynamics of an evolving situation on the fly (Frensch & Funke, 1995), people come equipped with knowledge
of physics but must determine how to apply it to a specific situation. Insight Problem Solving, in which the solution
requires an ‘a-ha’ moment of restructuring the problem space (Chu & MacGregor, 2011; Gick & Holyoak, 1980), is not
enough to capture the iterative, incremental progress people show in finding solutions to these problems.

Instead, we consider the Tools game to be more similar to “problem solving as search” (Newell & Simon, 1972): finding
a solution requires sifting through a large set of possible actions to select the useful ones. The challenge for people,
then, is searching efficiently through this space by learning which actions lead to good outcomes.

6.1.2 Learning from observations and from thinking

A crucial dimension of the Tools game is that it relies on a body of knowledge that develops in infancy: physical
interactions between objects (Spelke & Kinzler, 2007). Because people come equipped with a predictive model that
they can quickly apply to the game, they have a reasonable sense of whether an action would help them solve the
level. Yet despite this knowledge, people do not solve most levels immediately – in some cases people might be unsure
whether a specific action will lead to a solution, and in other cases people might easily identify that an action will solve
a level but never consider that action to begin with.

The first case arises because our physical predictions are probabilistic (Battaglia et al., 2013; Smith & Vul, 2013). These
predictions give us a range of possible outcomes for any action, and so in many cases we will have some uncertainty
about whether that action will be successful. Taking an action in the world, therefore, does not just allow us to exploit
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our knowledge and potentially solve the level, but also provides us with more information about this action-outcome
link (Dasgupta et al., 2018).

The second case arises because the space of possible actions is so large, and using mental simulation to hypothesize
the result of an action is not cost-free (Hamrick, Smith, Griffiths, & Vul, 2015). While we could in theory know an
(approximate) link between any action and an outcome, in practice there are many actions that we have not yet thought
about. This is therefore an instance of “learning by thinking” (Lombrozo, in prep): translating knowledge from one
source (internal models of physics) to another, more specific instantiation (a mapping between actions and outcomes on
this particular level).

This “learning by thinking” can be thought of in the reinforcement learning sense as training a model-free policy from a
model-based system. This technique has been proposed as a way to leverage limited experience through a system that
builds a model, yet is able to act with limited computation like a model-free system (Sutton, 1990). Recently, evidence
for this sort of knowledge transfer has been found to exist in people (Gershman, Markman, & Otto, 2014; Gershman,
Zhou, & Kommers, 2017). However, this work, inspired by classical reinforcement learning, studies processes wherein
a model of the world is being learned and used to train a model-free system at the same time; in the Tools game, on the
other hand, peoples’ models of physics do not need to be learned, but instead can be used to derive these action-outcome
mappings in particular cases (see also Dasgupta et al., 2018). This forms the basis of our proposed “Sample, Simulate,
Update” framework, where the model is assumed to exist prior to the task, and then used to fine-tune a model-free
policy.

6.1.3 Motor learning and tool use

The Tools game and the SSUP framework draws on inspiration from human motor learning and tool use, with some
important differences. While dynamics models have been shown to play a central role in human motor planning and
control (Heald, Ingram, Flanagan, & Wolpert, 2018; Wolpert, Ghahramani, & Jordan, 1995), as well as in the early
stages of task learning (Daw, Niv, & Dayan, 2005), we are not aware of work showing that they are used for direct
policy optimization.

Our results additionally show the importance of internal models beyond motor planning and control. Osiurak and Badets
(2016) argue that an important component of general tool use is “mechanical knowledge,” which can be instantiated
by mentally simulating how one would use the tool. However, this mechanical knowledge can be difficult to measure
in everyday tool use, because real-world tool use can also rely on stereotyped motor actions. We have developed a
framework which explicitly decouples manipulation knowledge from tool use (Osiurak & Heinke, 2018), showing that
people can still quickly solve these physical problems involving tools even when manipulation is not involved. We
hope that this task will be used to further investigate to what extent manipulation and motor programs interact with
physics-based problem solving for general tool use.

6.2 Towards even more human-like SSUP models

Here we have proposed that people solve the physics problems of the Tools game using a set of cognitive systems that
map onto the “Sample, Simulate, Update” framework. While we show that a model that instantiates this framework can
often explain human behavior on the Tools game, we believe that this particular model is only an approximation of the
cognitive processes that people bring to this task. Here we discuss ways we believe our model does not quite capture
the SSUP framework in the mind.

6.2.1 Sampling from rich priors

We argue that people are biased to consider only actions that will have an effect on the scene in order to avoid wasting
cognitive effort on considering useless actions. For the purposes of our model, we instantiated this prior as placing tools
above or below movable objects in the scene, but did not consider how this might be affected by the scene or specific
tools used. However, people likely have a much more fine-grained prior for proposing candidate actions.

Consider the model’s failure case of Falling (A) (Fig. 7). Here, participants must tip over a container with a ball inside
it in order to accomplish the goal. This is most easily achieved by placing an object underneath the container. However,
a much greater number of participants used the L shaped object, presumably as a “hook” to tip the container over from
above, than the SSUP model predicted. This strategy does not lead to success, and people quickly change their plan
after observing the first failure. Likewise, consider the hypothetical trial shown in Fig. 10A. Because there is only one
tool which fits into the hole, it is immediately obvious that this is the right action to perform. This is a much richer prior
than we have accounted for, which takes into account “suspicious coincidences” between the scene’s geometry and the
geometry of each of the tools.
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Figure 10: Two problems for future challenges. (A)
A trial involving a “suspicious coincidence” in that
there is a perfectly shaped hole for one of the tools to
fit into. (B) An observation requiring causal interven-
tion in order to know where to intervene on the path
of the object to get it in the goal.

These examples suggest that peoples’ notions of what are good ac-
tions to consider are specific to the tool and context that it is used in.
We believe this is connected to the notion of affordances (Norman,
1988): we see how we might use a particular tool in a particular
context. In future work, it will be important to consider how specific
tools and contexts might bias the types of actions that come to mind.
This could be instantiated in the SSUP framework as different priors
for each object (or each object-scene interaction), but it remains an
open question how people might form these object-specific priors,
or how they might be shaped over time via experience with different
tools.

6.2.2 Simulating over abstract states

Our simulator can be thought of as providing the imagination-based
reasoning to determine how tools could be used to accomplish tasks
(Osiurak & Badets, 2017). We assumed a noisy physics engine as
the simulator in this model, which requires planning over the full
continuous action space. However, work in robotics has developed
approaches to planning in more abstract event spaces (Toussaint
et al., 2018; Kaelbling, Pasula, & Zettlemoyer, 2007) that can be
grounded to continuous physical states. We believe such mechanisms
could provide a way of bridging more qualitative physical simulation
(Forbus, 1988) with the physics engines that simulate over continuous
spaces used here. Further, we imagine that improvements from the
machine learning community on predictive model learning may be
able to learn these simulators (Chang et al., 2016; Battaglia et al.,
2016), and hope that the Tools game will spur further progress in this
direction.

6.2.3 Updating and planning over complex actions

The current update framework is relatively straightforward, due to
the simple nature of our action space. Even this simple action space
proved challenging for model-free deep reinforcement learning meth-
ods, but we expect that more recent approaches may fare better, and
that there will be rapid progress in this direction over the next few years. The next challenge will be to move towards
richer action spaces involving creating tools from scratch, modifying tools, and using multiple tools in order to reach a
solution (Shumaker et al., 2011). Our model, as a sampling-based approach, will certainly break down in these more
complex action spaces, which will demand more sophisticated planners than we investigated here.

The current update strategies are also too simplistic in that they assume that only a reward signal is received, which is
somehow indicative of what one might do next. However, observing a full trajectory such as that shown in Figure 10B,
provides a substantial clue about what we might need to do. In this case, we need to intervene on the path of the ball
by putting something in the way of the ball at the right point along its trajectory. This kind of reasoning is not about
updating a model, or updating a policy based on reward, but rather understanding the causal structure of the world and
acting to change the outcome.

6.2.4 Learning over multiple time scales

We found that in the current instantiation of the Tools game, learning happened rapidly and only at the level of
action-outcome mappings. However, this is not to suggest that there is not learning within the prior or simulator
components. As discussed in Section 6.2.1, people likely have more complex priors than the simple object-oriented
ones we used in our models here. These priors are likely shaped by experience: if one discovers a novel way to use a
tool, or sees another person using a tool in a novel way, that capability might spring to mind much more easily in the
future. Because we tested participants using a set of levels that presented a variety of different physical principles with
a variety of different tools, there was little opportunity for re-use of tool knowledge of this sort. However, studying how
people learn and update their beliefs over repeated exposures to the same object is an exciting area for future study.

Similarly, while we found that participants did not learn better parameterizations of their internal physics model on this
task, this might have been because there was little need to do so: the game was designed to roughly mimic realistic
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physics, and there was virtually no variability in object properties that would require learning individualized attributes.
But we know that people can make inferences about physical object properties (such as mass or elasticity) from
observing those objects interact dynamically (Warren, Kim, & Husney, 1987; Sanborn et al., 2013; Hamrick et al.,
2016; Yildirim et al., 2018; Bramley, Gerstenberg, Tenenbaum, & Gureckis, 2018; Ullman, Stuhlmüller, Goodman, &
Tenenbaum, 2018). Thus we believe that when it is relevant, people can learn on the two levels: refining their simulation
model, and learning the action-outcome mapping.

Finally, understanding how to use tools is often a social phenomenon: young children learn how to use objects not
just from individual exploration, but from observations of their parents or peers (Hopper, Flynn, Wood, & Whiten,
2010). Indeed, the transmission of tool creation and use across generations is considered to be a crucial component of
human civilization (e.g., the ‘cultural ratchet,’ Tomasello, 1999). While it is often difficult to study the generation and
transmission of tools in a laboratory setting, we believe that the Tools game could be used to study how people pass
along created objects or knowledge demonstrations in an online setting.

7 Conclusion

The Tools game taps into a quintessentially human capability to flexibly use objects in our environment to achieve our
goals. We have proposed the SSUP framework, and shown that a model within this framework can solve these problems
faster and more accurately, and in more human-like ways, than many alternatives. We hope that this work will inspire
both the Cognitive Science and Artificial Intelligence communities to perform further research into the computations
underlying flexible physical reasoning, serving as a toolbox for studying human capabilities for complex, object-based
planning and manipulation, and as a challenge domain for AI agents to demonstrate generalizable knowledge about
physical dynamics and planning.
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Supplementary Information

S1 Experiment

S1.1 Procedure

We recruited 94 participants from Amazon Mechanical Turk using the psiTurk framework (Gureckis et al., 2016). The
experiment lasted 15-20 minutes, for which participants were compensated $2.50.

On each trial, participants were initially presented with a freeze-frame of the scene and a goal description (physics
switched off) (Fig. 1A). They were instructed that all of the black objects were immovable, but when physics was
turned on, the blue and red objects may move. They were provided with three ‘tools’ that they could place anywhere
in the scene (that did not overlap with other objects, goals, or out-of-bounds areas), by clicking on a tool and then
clicking where they would like to place it (Fig. 1B). As soon as this tool was placed, physics would be switched on
using a Javascript version of the Chipmunk 2D physics engine (Gentle, 2017; Lembcke, 2013), and all movable objects
would start to fall under the force of gravity (Fig. 1C); after this participants could no longer intervene on the scene.
However, participants could click a ‘reset’ button at any time to return the scene to its initial state and try another
action. Participants were given two minutes to solve the problem – if they solved it they could move onto the next level
immediately. Otherwise, they could choose to move on any time after two minutes had passed. Within each trial, we
recorded all attempted actions: which tool was used, where it was placed, and the clock time when it was placed since
the start of the trial. See https://k-r-allen.github.io/tool-games/ for videos demonstrating this procedure.

To familiarize participants with the experiment, we initially instructed them on the way the game worked, then gave
them a ‘playground’ level with no goal to introduce them to the dynamics of the world. Participants had to remain in
the playground for at least 30s and try at least two tool placements before moving on. Finally, participants were given
two simple practice levels that they were required to solve before the main part of the experiment began; these were not
analyzed.

Participants were asked to solve 14 of the 20 levels: all eight unpaired levels and one each of the six paired levels (so
that learning in one instance of a pair would not affect performance in the other). The choice of which instance of a pair
was determined randomly at the start of the experiment. The order in which levels were presented was additionally
randomized.

S1.2 Data cleaning

To standardize results across participants, we eliminated any actions taken after 120s had passed. This affected 7.1% of
all trials (93); of those, 33 were eventually solved but are counted as unsolved for our analyses. To further standardize
results between participants and the model, we treated any actions that would have accomplished the goal within 20s as
successes, regardless of whether participants reset the scene before the success could be counted or waited longer than
20s for a solution; this caused 4.5% (59) of all trials to be analyzed differently than participants experienced them.

S2 SSUP model implementation

Algorithm S1 demonstrates how the model of SSUP is implemented to perform the Tools game. Further details are
below.

S2.1 Implementing sampling: an object-oriented prior

The object-oriented prior can be described as a categorical sample on which object to interact with, and a Gaussian
distribution specifying the position of the tool relative to that object. Formally, the generative procedure for the prior
follows:

• Sample a dynamic object in the scene ob ject ∼Multinomial({ 1
nob j
‖i ∈ [0, ...,nob j]})

• Sample a position y relative to that object, using a Gaussian distribution parameterized with mean ob jecty and
standard deviation σy, truncated on each side by the legal lowest and highest positions respectively

• Sample a position x relative to that object:

– Compute the left and right edges of the bounding box for that object, BBle f t and BBright

– Sample a value v uniformly between BBle f t −σx and BBright −σx.
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Algorithm S1 SSUP model for the Tools game
Sample ninit points from prior π(s) for each tool
Simulate actions to get noisy rewards r̂ using internal model
Initialize policy parameters θ using policy gradient on initial points
while not successful do

Set acting = False
With probability ε, sample action a from prior
With probability 1− ε, sample action a from policy
Estimate noisy reward r̂ from internal model on action a
if r > T then

Set acting = True
Try action a in environment

else if i≥ niters then
Set acting = True
Try best action a∗ simulated so far which has not yet been tried

end if
if acting then

Observe r from environment on action a.
If successful, exit.
Simulate r̂ assuming other two tool choices.
Update policy based on all three estimates and actions.

else
Update policy using policy gradient

end if
end while

– If v < BBle f t or v > BBright , sample x from a normal centered on the edge of the bounding box with
standard deviation σx.

– Otherwise, x = v.

This has the effect of sampling mostly uniformly around object extents in the x direction, but otherwise dropping off
around the edges of objects proportionally to σx.

σx and σy are then free parameters which were chosen to reflect a relatively uniform prior in y and a tighter distribution
in x. These decisions were examined using a sensitivity analysis shown in Figure S2.

We experimented with an alternative geometric prior, which could sample “above”, “below”, “left”, “right”, and “middle”
of objects before then committing to Gaussian positions respecting that geometric decision, but found that this did not
perform better than the more uninformed prior. We therefore use the more uninformed prior to reduce the number of
free parameters in the model.

To initialize search, we then sample a number of initial points, ninitial , for each tool from this prior, and run each action
through the noisy simulator. The policy is initialized with these noisy reward estimates.

S2.2 Implementing simulation

The noisy simulation engine within the SSUP model is meant to capture the essence of the human Intuitive Physics
Engine (Battaglia et al., 2013). It is based on the Chipmunk physics engine just as the experiment is, but introduces
stochasticity in the dynamics when objects collide, similar to how the uncertainty in human physical predictions
increases when they must simulate through collisions (Smith & Vul, 2013; Hamrick et al., 2015). Collisions are made
stochastic by inserting noise into the direction that objects bounce off of each other, and how much energy is transferred.
This is accomplished by adjusting the direction that collision forces are applied (φ) and the elasticity (bounciness) of
the collision (e), by adding noise according to two parameters (σφ, σe):

φ
′ ∼ wrappedNormal(φ,σφ)

e′ ∼N (e,σe) s.t. e′ > 0
(1)

The SSUP model runs nsims simulations (set here at 4) per imagined action to determine an average reward (r; see
Section S2.3.2). This reward is then used to update the action-outcome policy parameters θ, and to decide on whether
to take an action.
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S2.3 Implementing updating

The main body of the SSUP model is the simulation-action loop, which updates the policy π with reward estimates from
sampled actions. The policy π consists of first choosing which tool to use, and then conditioned on each tool, where to
put it in the scene. We model this as a mixture of Gaussians, one Gaussian for the position of each tool. This gives
2 parameters for the tool weights because their probabilities have to sum up to 1, and 2 parameters for the Gaussian
position on each tool (for a total of 2+6 parameters). In principle, the SSUP framework is agnostic to the particular
form of the update. In practice, we found that a simple policy gradient worked well, outlined below, but other methods
such as Bayesian optimization resulted in similar trends amongst the tested ablations and full model.

We use a simple policy gradient algorithm (Williams, 1992) to update our policy parameters:

θ← θ+αr∇θ logπθ(a) (2)

where a is the action taken, α is the learning rate, r is the reward, and θ are the policy parameters to be estimated.

We include exploration in our action selection, using an epsilon greedy strategy. ε is considered to be a free parameter
of the model. When exploring, we sample actions from our object-oriented prior, outlined in section S2.1.

SSUP continues to sample actions until it either finds an action with a reward greater than a given threshold, T, or until
it reaches a maximum number of simulations, niters. If it finds an action with high reward, it executes that action in the
environment. Otherwise, if it reaches the maximum number of internal simulations, niters, it takes the best action it has
simulated so far which has not been tried in the real world. If it succeeds, the model is finished. Otherwise it resumes
simulation.

S2.3.1 Counterfactual updates

Whenever our model takes an action in the environment, it additionally queries its noisy simulator for what would
have happened if it had used the other two tools. We found that this stabilized the policy gradient, such that it could
determine whether the reward was due to the tool used, or the position chosen. We imagine that such an update might
be generally useful in increasingly structured action spaces when a strong model is available.

S2.3.2 Reward function definition

Our reward is defined as the normalized minimum distance to the goal along the observed or simulated trajectory. This
reward function was provided for every model that we considered. Normalization is performed with respect to what the
outcome of this metric would be if the agent had taken no action, such that the reward can be calculated as:

r = 1−
mint=0,T ;ob j∈ob jectsd(ob j,goal,action)

mint=0,T ;ob j∈ob jectsd(ob j,goal)
(3)

where d is the distance between a goal object (red ball) and the goal under a particular action, and T is the total number
of time-steps in the trajectory. The subtraction is to flip signs such that getting into the goal (at a distance of 0) results in
the highest possible reward.

This is therefore a measure of intervention rather than generic distance to the goal. Across all experiments, we found
this reward function to perform substantially better than one which was based only on the unnormalized minimum
distance metric.

S3 DQN model details

S3.1 Architecture details

Our DQN architecture takes in an image of the screen and images of each tool in order to compute Q values for a
discretized version of the space. The images are down-sampled such that the screen is 90x90 pixels and each tool is
30×30 pixels. We choose a discretization of 20×20 which is sufficient to solve most of the levels, and found this
reliably converged to a reasonable policy after 150,000 iterations.

The architecture consists of four networks: a tool image network, a screen image network, a tool policy network, and a
position policy network. We run each tool image through the network, fusing this with the screen image run through the
network before passing the fused representation to both the tool policy and position policy networks. This gives us a
400-dimensional action vector for the position, and a 3 dimensional action vector for the tool choice.

24



(a) Randomly generated level screens (b) Randomly generated tools that are
paired with level screens

Figure S1: Randomly generated levels for deep learning baselines

• The tool image network consists of 4 convolutional layers, with 12, 24, 12, and 3 channels respectively at each
layer. The kernel sizes are 3, 4, 3, and 2 respectively.

• The screen image network also consists of 4 convolutional layers, with 32, 64, 32 and 16 channels respectively,
and kernel sizes 8, 4, 3, and 2, following the original DQN Atari network (Mnih et al., 2015).

• The tool policy network is a simple 2-layer multi-layer perceptron (MLP) with 100 hidden units.
• The position policy network is similarly a simple 2-layer MLP with 100 hidden units.

We use epsilon greedy exploration during training, with a linearly decreasing epsilon schedule. We use a batch size of
32 and a constant learning rate of 2.5×10−4. For optimization, we use RMSProp (Hinton, Srivastava, & Swersky, n.d.).

S3.2 Random level generation

For the purposes of comparing human and model performance, we used 20 hand-designed levels. However, Deep Q
Learning requires large amounts of data for training, and though we could allow training by taking extensive actions on
the given levels, this would risk over-learning particulars of those 20.

Instead, we randomly generated levels from a set of five templates based on five of the hand-designed levels. These
templates were designed such that they contained the same set of objects, and could be solved in similar ways, but the
sizes and configurations of objects could vary, which enforced some variability in the solution actions. The specific
algorithm for generating levels varied by template, but involved resizing or shifting many of the object, subject to some
geometric constraints (e.g., the ‘tabletop’ in each Table level was always between the slope and goal, and the ball in
each Catapult level always rested on the catapult object). See Fig. S1A for example scenes from each template.

Each generated level included three tools randomly drawn from a pool of possible shapes that were used to construct
tools for the 20 hand-designed levels. These tools could further be randomly resized or rotated at angles of 90◦, subject
to the constraint that they continued to fit in the 90×90 pixel area that each of the original tools fit into. See Fig. S1B
for examples of randomly generated tools.

To guarantee that each level has a reasonable but non-trivial solution, we proposed a “solution region” for each template
that comprised a similar area to the primary solution for the base level. For instance, the solution region for the Basic
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template was a rectangle above the key ball, while the solution region for the Shafts template contained both areas
directly above the shafts. We then randomly generated 100 tool placements from this region and selected only trials for
which between 3% and 80% of actions would solve the level.

We used these templates to generate 1,000 levels each. These levels were then split to provide 900 training levels for
each template, and 100 validation levels.

S4 Physical parameter tuning model details

As an alternate learning scheme, we suppose that people use observations from failed actions to refine their internal
dynamics models for the game, and then use those updated models to choose the next action.

We instantiate this learning scheme using a model that tunes parameters within its physics engines that are related to
object dynamics: object densities d, frictions f and elasticities e, which we collectively call ψ. This model relies on the
same physics engine as the full SSUP framework, including uncertainty introduced during collisions (see Section S2.2).

After each failed action is performed, the parameter tuning model attempts to update its internal parameters to match
the observed outcome of that action using Bayesian inference; this is an instance of “analysis-by-synthesis” (Kersten,
Mamassian, & Yuille, 2004). The model observes 20s of a failed trajectory, and samples the location of all movable
objects at 50 points evenly spaced in time. To approximate the likelihood of each observation given a parameterization
ψ, the model produces 20 simulations of the same action, and records the positions of all movable objects in that
simulation at the same time points. From these records, the model takes the positions of each object at each time point,
and parameterizes a Gaussian over its likelihood of where that object should be at that point in time (µt

ob j,σ
t
ob j). The

likelihood of observing the full trajectory is therefore the product of each of the individual observed object positions at
each time point:

P(O|ψ) = ∏
ob j

∏
t

P(ot
ob j|µt

ob j,σ
t
ob j) (4)

We parameterize the prior for each property as a Gaussian centered at the true value for that property (1 for density, 0.5
for elasticities and frictions), with variance 0.025. Our proposal function is defined as a set of truncated Gaussians with
variances of 0.02 (and mean equal to the current estimate).

We implement this inference using the Metropolis-Hastings (MH) algorithm for 20 iterations using the likelihood
function and proposal above, using 5 chains and 5 burn-in samples. We found that this was enough to give reliable
estimates for each of the parameters. This procedure was implemented in the probabilistic programming language Gen
(Cusumano-Towner, Saad, Lew, & Mansinghka, 2018).

Every time a new action is observed, we initialize the MH procedure using the parameters determined from the previous
observation. In this way, learning (in the form of more refined priors) can occur throughout a set of actions within a
level.

S5 Parameter sensitivity analysis

To ensure that the choice of parameters did not unduly affect model performance, we tested how well the SSUP model
performed under different settings of each of its parameters. For a measure of model performance, we used the Total
Area Between Cumulative Solutions (ABCS; see Section 4.2.1), as this captures the by-trial accuracy, number of actions
used, and evolution of solution rate into a single metric.

Because the SSUP model includes 10 parameters, we could not reasonably test model performance across a full grid
of parameter choices; instead, we test model performance along a single dimension at a time, varying one parameter
but keeping all others constant. As can be seen in Fig. S2, model performance did not differ significantly across a
wide range of parameter settings around the values used in the SSUP model. This suggests that more precise but
computationally intractable parameter fitting would lead to at best marginal improvements in model fit.
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Figure S2: Total Area Between Cumulative Solutions (ABCS) values for different parameter values, keeping all other parameters at
the default values. The default values are denoted by the dashed lines. Grey areas indicate 95% bootstrapped confidence intervals.

SSUP Pri + Sim Pri + Upd Sim + Upd DQN + Upd Param Tune
Basic 0.063 0.053 0.052 0.157 0.420 0.048
Bridge 0.045 0.134 0.179 0.546 0.668 0.101
Catapult 0.057 0.493 0.225 0.081 0.217 0.576
Chaining 0.340 0.504 0.561 0.441 0.750 0.528
Gap 0.261 0.162 0.253 0.213 0.155 0.153
SeeSaw 0.097 0.304 0.258 0.137 0.365 0.349
Unbox 0.099 0.053 0.079 0.080 0.143 0.038
Unsupport 0.137 0.335 0.265 0.077 0.403 0.329
Falling (A) 0.121 0.180 0.102 0.182 0.255 0.124
Falling (B) 0.250 0.332 0.503 0.660 0.756 0.358
Launch (A) 0.114 0.155 0.226 0.195 0.400 0.169
Launch (B) 0.052 0.090 0.267 0.341 0.393 0.143
Prevention (A) 0.029 0.024 0.030 0.027 0.713 0.018
Prevention (B) 0.034 0.035 0.022 0.017 0.712 0.064
Shafts (A) 0.016 0.123 0.261 0.340 0.524 0.062
Shafts (B) 0.147 0.173 0.173 0.176 0.198 0.165
Table (A) 0.154 0.147 0.148 0.100 0.041 0.134
Table (B) 0.135 0.335 0.402 0.107 0.237 0.358
Towers (A) 0.033 0.025 0.020 0.039 0.019 0.048
Towers (B) 0.030 0.117 0.340 0.130 0.576 0.111
Total 2.211 3.776 4.367 4.046 7.946 3.875

Table S1: Area Between Cumulative Solutions metrics for each level (row) by model (column).
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Figure S3: Distribution of predicted model actions (background) versus human actions (points) on the first attempts of the level
(top) and the attempt used to solve the level (bottom) across all levels tested.
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