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Abstract
What do people learn when they repeatedly try to solve a set of
related problems? In a set of three different exploratory phys-
ical problem solving experiments, participants consistently
learn strategies rather than generically better world models.
Participants selectively transferred these strategies when the
crucial context and preconditions of the strategy were met,
such as needing to “catapult”, “support”, “launch” or “desta-
bilize” an object in the scene to accomplish their goals. We
show that these strategies are parameterized: people can ad-
just their strategies to account for new object weights despite
no direct interaction experience with these objects. Taken to-
gether, these results suggest that people can make use of lim-
ited experience to learn abstract strategies that go beyond sim-
ple model-free policies and are instead object-oriented, adapt-
able, and can be parameterized by model-based variables such
as weight.
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Introduction
Imagine that you are attending a conference dinner buffet
with a container of delicious-looking fried rice. As you go
to scoop the rice onto your plate, you realize there is no serv-
ing spoon. The container is too hot to pick up, and being too
polite to scoop the rice with your hands, what do you do?
You might notice a stack of paper plates near the container
that you can fold into a large scoop to pick up the rice. Hav-
ing solved your rice problem, you could apply the same so-
lution to other dishes without serving utensils. At future buf-
fets with missing utensils, you would know to apply the same
strategy, even if the plates were a different shape or made of
a somewhat more rigid material, though you might have to
adapt how you fold and scoop. And you might even transfer
this strategy to scenarios that are nothing like buffets superfi-
cially, like using a soft Frisbee to dig a hole at the beach.

How are people able to learn and generalize these object
oriented strategies so efficiently? Learning a simple, stereo-
typed scene-action response would not let you generalize this
strategy beyond buffets with specific paper plates. Having
general knowledge that paper plates are malleable does not
tell you how you might use them to solve your problem. In-
stead it requires some insight about what the right kind of
thing to do is, and how to adapt that idea to the new objects,
scenes, and tasks you encounter. This applies not just to mak-
ing novel paper utensils, but also to learning other kinds of ab-
stract physical strategies such as levering heavy objects that
could not otherwise be lifted, or placing an object under a
wobbly table to stabilize it.

Figure 1: Diagram of a trial. (A) Participants attempt to get a red
object into the green goal using one of the three tools on the right.
(B) Participants choose a tool and where to place it. (C) Upon plac-
ing the tool, physics is turned on and participants see an animation
of the scene unfolding. Figure credit: Allen et al. (2019).

Trial and error learning of this form is often modeled us-
ing either model-based or model-free reinforcement learning
(Gershman, Markman, & Otto, 2014). Model-based learning
assumes that an agent is learning more about the dynamics
of the world through its interactions, which allows it to form
better plans in the future, e.g., learning more about the flex-
ibility of the plates. But even with a perfect model of the
world, there is a near-infinite set of actions one might take –
how would you know that folding a plate is the correct thing
to do, as opposed to searching elsewhere for utensils?

In contrast, one variant of model-free reinforcement learn-
ing assumes that learning guides an agent towards promising
actions by updating a policy (which action or sequence of ac-
tions you should take from the current state to maximize re-
ward). In this way the agent learns exactly what action to take
in any given situation, and so does not have to consider the
outcomes of large sets of actions. However traditional repre-
sentations of policies are relatively brittle: common methods
create look-up tables that represent one-to-one mappings of
states and their features directly to values or actions (Collins
& Frank, 2013; Gershman et al., 2014). Such policy represen-
tations will not necessarily be flexible enough for an agent to
transfer the paper plate skill to a new kind of paper, a new
shape of plate, or possibly even a new buffet.

Allen et al. (2019) found that people instead use a hybrid
learning system for solving physical problems: they have pre-
existing models of dynamics that they can use to assess the
outcome of their actions (Battaglia, Hamrick, & Tenenbaum,
2013), but learn what actions are useful in a given context by
combining the output of that model with observations from
their own actions. However, while Allen et al. (2019) found
that people learn within a problem context, they found no ev-
idence that people generalize across problems, perhaps be-



cause the physics puzzles they used in their study required a
diverse set of strategies.

Here we ask whether people naturally transfer abstract
policies (which we refer to as “strategies”) for using objects
across different contexts, and if so, what the representation
of those strategies are. This is an important question because
previous work focuses on how to reuse past experience by di-
rectly copying policies (Collins & Frank, 2013), or learning
separate dynamics and reward functions from training tasks
(Franklin & Frank, 2018) by clustering context variables (Xia
& Collins, 2020; Momennejad, 2020). A natural question is
then: what are these context variables, and by which criteria
should they be clustered together?

Through a set of three exploratory experiments, we exam-
ine what people learn when they are repeatedly exposed to
similar physical problems, and what contexts they transfer
that learning to. In Experiment 1, we show that people learn
strategies, not generically better world models, that are selec-
tively applied to problems that appear similar to the ones they
encounter during training. In Experiment 2, we test the gener-
alization and adaptability of these learned strategies by seeing
whether people can apply them to scenes that look visually
distinct from, but require the same physical concepts of, the
training problems. Finally, in Experiment 3, we test whether
learned strategies can be parameterized by model-based vari-
ables such as an object’s weight. People trained on medium
weight objects were able to immediately adapt their strategies
to account for objects which were heavier or lighter than those
experienced during training despite no direct interaction ex-
perience with the new objects. Together, these results suggest
that people learn strategies that are object-oriented, adaptable,
and can be partially parameterized by learned world dynam-
ics.

Experiments
We perform three exploratory experiments to examine
whether participants would learn strategies, and if so, how
those strategies might be represented. We focus on the Vir-
tual Tools game proposed by Allen et al. (2019), shown in
Figure 1. Each problem is presented as an initial scene (with
physics turned off), a goal description, and three ‘tool’ ob-
jects to choose from (Fig. 1A). Participants must accomplish
the stated goal objective by selecting one of the ‘tool’ objects
and clicking to place it somewhere in the scene (Fig. 1B). Af-
ter a single ‘tool’ is placed, physics is turned on using the
Chipmunk 2D physics engine, and participants can see the
resulting trajectories of all objects in the scene (Fig. 1C). Par-
ticipants were given three attempts for each problem to ac-
complish the objective. We recorded all attempted actions
including which tool was used and where it was placed.

We followed a similar experimental protocol to Allen et al.
(2019) in order to familiarize participants with the task. First,
participants were given a set of initial instructions explain-
ing the kinds of objects that might exist in the different prob-
lems. They then interacted with a ‘playground’ level without

a goal, and were required to make 3 placements before mov-
ing on. Finally, participants were given two simple practice
levels that they had to solve before moving on; these were not
analyzed. Participants then continued on to the main body of
the experiment described in the sections below.

Experiment 1: Learning strategies

Allen et al. (2019) found no evidence of learning when peo-
ple played 14 unrelated levels of the Virtual Tools game. They
proposed that people were likely not learning better models of
the world while they interacted with it, but instead learned a
policy which allowed people to make better use of a model in
individual trials. Since the trials differed substantially across
training, reusing these policies in new scenes would be mal-
adaptive. Instead, it could be that participants will only reuse
learned policies when those policies would be useful in ac-
complishing their goals.

Procedure To test whether people could learn strategies,
we designed four types of levels: Catapulting, Tipping,
Blocking and Tabling. We then created 10 random variations
of each level type where different aspects of the scene were
varied, including the sizes and positions of each object and
the shapes of each tool (see Fig 2A). Each participant was
assigned to one of the four level types, and played all 10 ran-
dom levels of that type. Participants were only given three at-
tempts to solve each trial; if they did not succeed within those
attempts, the level was marked as unsolved and they moved
on to the next training level. The trial order was randomized
across participants. After the training phase, all participants
were given the same six testing problems: one from each of
the four basic categories, and two chosen as controls to en-
sure that certain training conditions did not allow participants
to get generically better at the game (Fig 2B). The two control
levels were taken from Allen et al. (2019): Chaining was rel-
atively difficult for participants, while Unbox was relatively
easy. Just as in the training levels, participants were only al-
lowed three attempts to solve the test levels.

153 participants were recruited using Amazon Mechanical
Turk. We only analyze data from participants who succeeded
on at least one of their training levels – criteria excluded four
participants.

Results We first test whether there is any learning during
training, and find that accuracy (whether a participant suc-
ceeded within 3 attempts) does improve over this phase (for
all conditions, all χ2(1)> 4.4, all ps < 0.036; Fig. 3A), thus
suggesting that training was effective.

During testing, we find no evidence of difference in per-
formance on the control trials based on training condition
(Unboxing: χ2(3) = 2.29, p = 0.51, Chaining: χ2(3) =
6.16, p = 0.10 respectively). This suggests that participants
were not differentially learning more about the game in gen-
eral, similar to how Allen et al. (2019) found no transfer
learning across different types of levels.

Instead, people behave differently in test levels depending



Figure 2: Diagram of Experiment 1. (A) Participants start with a learning phase where they play 10 related levels with random tool
options with only three attempts per level. (B) Participants play the same set of 6 levels in random order during the testing phase. See
bit.ly/toolgame to play the test levels without limits on the number of attempts.

on the level type they were trained on. Participants were re-
liably more accurate in the Tipping (94% trained vs. 61%
untrained; χ2(1) = 17.5, p < 0.001, odds-ratio = 10.8) and
Table conditions, (90% trained vs. 61% untrained; χ2(1) =
13.0, p < 0.001, odds-ratio = 5.7), but not in the Catapult
(50% trained vs. 63% untrained; χ2(1) = 2.01, p = 0.16,
odds-ratio = 0.59) and Blocking (97% trained vs. 90% un-
trained; χ2(1) = 1.93, p = 0.17, odds-ratio = 3.52) con-
ditions (Fig. 3B). While the Blocking condition can be ex-
plained by ceiling effects (all participants find this level easy),
Catapult requires a more detailed analysis.

To understand why trained participants are not more accu-
rate on the Catapult testing level, we examine the detailed
placements people tried (Fig. 3C). For this level there are 2
types of solutions: one solution type involves catapulting the
ball into the goal, while the other involves hitting the ball di-
rectly and launching it into the goal. Participants in the Cata-
pult training condition always try to use the catapulting strat-
egy. However, in this particular level, that strategy is more

difficult than directly hitting the ball. Participants who were
not trained on Catapult hit the ball directly more often, and
therefore had a slight advantage, leading to similar overall
performance in terms of accuracy but easily distinguishable
behavior.

What is learned? While we suggest that people are learn-
ing flexible strategies over objects and scenes, an alternate
explanation could be that people are instead learning simple
associations of where to place objects. This association must
be more complex than simply placing objects in particular
spatial locations, as the particular places that lead to success
vary across each level. Instead, to improve in performance,
they would need to learn an object-oriented strategy such as
putting an object beneath the platform in Table, or above the
lever in Catapult.

However, this does not rule out learning a simple object-
oriented spatial prior on actions to take – e.g., placing the
tool under or over the key object. We can examine whether

bit.ly/toolgame


a simple over/under prior is being learned by looking at how
participants perform on Tipping – a test level that could be
solved by placing the tool over or under an object – depending
on whether they were trained on levels that require dropping
a tool from above (Catapult) or placing a tool underneath an
object (Table). If this simple strategy is learned, we would
expect participants in the Catapult training condition to be
more likely to place a tool above, whereas participants trained
on Table levels would be more likely to place a tool below.
However, we find no evidence for any differences: the same
proportion of participants placed the tool above regardless of
whether they were trained on Catapult (82%) or Table (80%;
χ2(1) = 0, p = 1; Fig. 3D). Thus we find evidence that the
strategies participants are learning are context specific.

Experiment 2: Generalizing strategies

How context specific are the learned strategies? In Experi-
ment 2 we tested whether the context depends on the presence
of more abstract physical concepts even when the problem ap-
pears visually distinct. Participants were randomly assigned
to three training conditions (Catapult, Tipping and Table) and
trained using the same 10 levels from Experiment 1. Each
participant then played 6 testing levels: 3 matched testing
levels from Experiment 1, and 3 “transfer” levels designed
for each level type (Fig 4C).

The transfer levels were designed to maintain the same
physical concept as the training levels but appear visually dis-
tinct. For example, in the Catapult Transfer level, one must
drop a tool on the left side of the plank (it is always on the
right during training) in order to catapult the ball so that it
hits a smaller ball which will then roll into the goal. In the Ta-
ble Transfer level, succeeding requires supporting two planks
simultaneously by putting a large block underneath them. In
the Tipping Transfer level, participants need to place an object
underneath the platform to destabilize it, thus tipping the ball
into the container. If trained participants solve their transfer
level more efficiently, this suggests that the representation of
strategies and when to apply them is based on abstract physi-
cal concepts rather than simple visual similarity.

Sixty-two participants were recruited using Amazon Me-
chanical Turk. We only analyze data from participants who
succeeded on at least one of their training levels – this caused
four participants to be filtered from our analysis.

Results We broadly replicate the results of Experiment 1,
first finding a significant improvement in accuracy over the
course of training (for all conditions, all χ2(1) > 11.9, all
ps < 0.001). The important test for Experiment 2 involves
looking at the test accuracy in the generalization conditions
(Figure 4.). Here, in both the Catapult Transfer and Table
Transfer levels, we see significantly better accuracy for par-
ticipants trained on that level type (Catapult Transfer: 76%
trained vs. 32% untrained; χ2 = 9.58, p = 0.002, odds-ratio
= 6.75, Table Transfer: 100% trained vs. 63% untrained;
χ2 = 10.9, p < 0.001). We do not find evidence of improve-
ment for the Tipping Transfer level (39% trained vs. 52%

untrained; odds-ratio = 0.59). We can again look at the fine-
grained participant behavior to understand why this is.

During training on the Tipping levels, participants could
solve each level using two distinct strategies. One strategy in-
volves tipping the container from above with a precise place-
ment on the side of the container to flip it over. The other
strategy involves tipping the container from below by putting
any object beneath the container to destabilize it. In Exper-
iment 1, almost all participants found and used the “tipping
from below” strategy since it is more robust. We expected
a similar effect in Experiment 2, and so the Tipping Trans-
fer level is only solvable by destabilizing the platform from
below. However, in Experiment 2 a significant proportion of
our participants found and consistently used the “tipping from
above” strategy: 55% of participants in the Tipping condition
never tried tipping the container from below. Instead, they
became adept at tipping from above.1

In Figure 5, we split participants by those who “tip from
below” and those who “tip from above”, and compared them
to participants who were not trained in this condition. It
is clear that (a) participants who learned to tip from above
develop an exceptionally precise strategy compared to those
who were untrained in this condition, and (b) if participants
discover “tipping from below” they use it consistently and
can generalize it to the transfer level reasonably well (with
a mean accuracy of 70% compared to 0% for those “tipping
from above” and 50% for those who were untrained).

Broadly, the successful transfer of strategies to different
levels which maintain an abstract strategy concept but change
the composition of the scene suggests that people flexibly
adapt learned skills to new settings. While evidence from Ex-
periments 1 and 2 suggests that people do not form generic
spatial relation priors such as “putting something below”,
they do transfer more abstract fine-grained strategies, such as
“supporting an object from below”, “tipping an object from
below”, or “catapulting” an object.

Experiment 3: Composing strategies and models
Based on Experiments 1 and 2, we established that people
can learn strategies which shape how they interact with a new
problem. Previous work has found that people can learn about
object properties such as weight by observing how they in-
teract with other objects (Schwettmann, Tenenbaum, & Kan-
wisher, 2019; Yildirim, Smith, Belledonne, Wu, & Tenen-
baum, 2018), but we do not know whether this kind of object
property learning can be combined with learned strategies.

If people learn strategies that are more akin to habits,
these new object types should not affect the kinds of actions
that people take until they have acquired significant interac-
tion experience with the new object type. In the more ex-
treme case, if people learn about the object properties purely
through observation with no direct interaction, their strategies

1This could be due to the difference in the number of participants
recruited: Experiment 1 had 40 participants in the Tipping condition
while Experiment 2 only had 19.



Figure 4: Performance in Experiment 2. (A) Proportion of successful participants on testing levels is generally higher for those trained on
the strategy. (B) Specific placements and tool used on the first attempt for the transfer conditions in each strategy. People were trained on
levels from Experiment 1.

Figure 5: First placements of participants in the Tipping condition
split into those who learned to tip from above, those who learned to
tip from below, and those who were untrained.
could not be updated using most standard RL learning proce-
dures. Therefore, if people do compose observed models with
learned strategies without any direct interaction experience,
it suggests that people are using strategies to guide a model-
based sampling process with an updated model, or that the
representations of the strategies themselves are parameterized
by a model. This presents a unique and complementary per-
spective on model-based and model-free decision making in
humans, as prior work generally assumes models are learned
by interacting with the world, not via passive observation.

Stimuli We designed two new types of levels to test model-
strategy composition, Push and Launch, and included a sub-
set of the Catapult levels from Experiments 1 and 2. In each
level type, the ball size is kept constant so that participants
cannot learn strategies that implicitly depend on the weight
of the ball through its size.

In Push, a ball rolls down a steep slope and participants
must put an object in its path to slow it down such that it re-
mains in the green goal region. When the slope is very steep,
solving these levels requires placing an object far in front of
the goal region to slow the ball. Physically, we measure this
as the amount of work that the ball needs to do to the tool
in order to end up in the green region. In the training levels,
we vary the steepness and length of the slope, as well as the
position of the goal region.

In Launch, participants must drop a tool onto a ball that

will roll into another ball and cause it to fall into the con-
tainer. Depending on the relative positions and heights of the
container and table, succeeding could require hitting the ball
very hard or very lightly. Physically, we measure this as the
amount of momentum that needs to be applied to the ball in
order to succeed. In the training levels, the positions of the
balls, height of the table, and position of the goal is varied.

Finally we also include a subset of the Catapult levels from
Experiments 1 and 2. Depending on the location of the con-
tainer relative to the ball, succeeding requires applying differ-
ing amounts of momentum to the platform to ensure the ball
does not under or overshoot the container.

Procedure Participants were trained on 5 levels of either
the Catapult, Push or Launch types, with 3 attempts per trial.
After training, all participants watched two videos of a blue
ball interacting with a pink object, and two videos of it in-
teracting with a purple object. The pink objects were lighter
(with a density 0.2× the blue and red objects), while the pur-
ple objects were heavier (with a density 2× the blue and red
objects). After watching the four videos, participants then
played a level of the same type as their training condition,
but with either a red, pink or purple object. In this way, we
could test whether people composed knowledge from observ-
ing dynamics with a learned strategy without requiring any
interaction experience. Participants then also played every
other level type with a randomly selected object mass.

At the end of the experiment, participants filled out a ques-
tionnaire which included the questions: “Which color cor-
responds to the heaviest objects?” and “Which color corre-
sponds to the lightest objects?”. Both questions could be an-
swered with “red”, “purple” or “pink”.

We recruited a total of 168 participants across 9 condi-
tions (3 category types × 3 weight conditions). Like in Ex-
periments 1 and 2, we only analyzed data from participants
who succeeded on at least one training level. Additionally,
since we were interested in whether people composed new
knowledge about object properties with learned strategies,
we only included participants who either correctly answered
which object color was heaviest (purple), or which object



color was lightest (pink) to ensure they had learned relative
object weights. Using both filters resulted in 31 participants
being eliminated from the analysis (16 who failed because of
the success criteria, and 15 because of the questionnaire).

Results Participants showed improvement throughout
training in all conditions (all χ2 > 7.8, all p < 0.005). In the
red ball test trials, there is also an overall effect of training
condition (p = 0.01), consistent with Experiments 1 and 2.
To test model-strategy composition, we examine what people
do on their first attempt in the test level when the density of
the ball has changed.

In Figure 6A, we show participants’ first attempts in the
heavy and light testing conditions for each level type. Partic-
ipants appear to take the weight of the ball into account when
choosing where to place an object and which object to place.
For both Catapult and Launch, participants generally choose
heavier objects and place them higher when the ball is heavier
(purple), while in Push they place the tool farther to the left
to slow down the ball.

We can quantify this by looking at the momentum applied
across weight conditions for Launch and Catapult, and the
work done across weight conditions for Push (Figure 6B).

In Launch, we find that there is an effect of object weight
on how much momentum participants impart with their tool
(F(2,40) = 5.0, p = 0.011, partial η2 = 0.201). We do not
find a reliable difference for participants trained on Cata-
pult (F(2,43) = 1.6, p = 0.22, partial η2 = 0.067), but this
appears to be because people in the heavy condition sepa-
rate into two groups: one group which applies a significant
amount of momentum, and one who does not. A subset of
participants use the lighter tools on their first attempt, but af-
ter observing this single failure, 13/15 participants used the
heaviest tool on their second attempt.

Similarly, in Push, there is no statistically significant effect
of weight on work done (F(2,45) = 2.8, p = 0.069, partial
η2 = 0.112). It again appears that in the heavy condition a
subset of participants realized they needed to place the heavy
object to the left of the goal, while the rest did not. Of the
participants who did not succeed on the first attempt, 10/11
increased the work done in the second attempt.

Discussion
Through three exploratory experiments, we showed that in a
physical problem solving task, people learn abstract strategies
that are object-oriented (Exp 1), can be transferred to con-
texts that differ visually but rely on similar principles (Exp
2), and can be parameterized by model-based variables such
as weight (Exp 3). These results hint at a picture of rapid
trial-and-error learning which focuses on abstract strategies
that can be used to guide a model-based sampling procedure
towards promising regions of the problem space.

There remain several open questions for future work to bet-
ter understand the underlying representation of these strate-
gies and how they are connected to model-based reasoning.
Specifically, the kinds of strategies learned here are not the

Figure 6: Momentum applied in the Catapult and Launch condi-
tions, and the amount of work that would need to be done to the
placed object to succeed in the Push condition.

same as more traditional object-specific affordances that have
been a popular framework for thinking about tools in cogni-
tive psychology (Gibson, 1979). This was by design – in our
experiments we explicitly randomized the tools available for
each problem, and therefore the learned strategies had to be
agnostic to any specific tool. However, we want to emphasize
that we consider the objects here to still be tools, just unfa-
miliar ones. We see this as akin to a paper plate that can be
re-purposed as a scoop, or a broom that can be re-purposed
as a table leg. In future experiments, we would like to inves-
tigate whether people can learn object-specific strategies that
dictate how a particular object can be used to accomplish a
new objective.

In Exp 3, we saw a mixture of people who composed strate-
gies and models without any experience, and those who re-
quired a single interaction with the scene to adjust their strat-
egy. This suggests that even those who do not immediately
generalize learn a strategy that is abstract enough to allow
rapid updates. Further work could study the form of this rep-
resentation and why individual differences exist.

Our experiments suggest that people’s trial-and-error phys-
ical problem solving does not fit neatly into model-based re-
inforcement learning or model-free reinforcement learning.
Instead, the content of people’s strategies and how they know
to apply them might be based on more abstract principles,
allowing for broader generalization than previous studies of
decision making would imply. However, these experiments
are exploratory, and many open questions remain. Does the
applicability of a strategy really depend on physical concepts,
or is it the recognition of key objects and object-object rela-
tionships that appeared in a training level? How diverse can
the training levels be? Can people learn multiple strategies
simultaneously? Such questions present a wide and exciting
space for future work to better understand the representations
of physical problem solving strategies and how they are ap-
plied to new scenarios.
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