
CONCURRENT ENGINEERING: Research and Applications

The Liar’s Club: Concealing Rework in Concurrent Development

David N. Ford1,* and John D. Sterman2

1Department of Civil Engineering, Texas A&M University, College Station, TX 77843-3136, USA

2Sloan School of Management, Massachusetts Institute of Technology,

50 Memorial Drive, E53-351, Cambridge, MA 02142 USA

Abstract: Successfully implementing concurrent development has proven difficult for many organizations. However, many theories

addressing concurrent development treat either technical aspects of the development process (e.g., precedence relationships) or behavioral

issues (e.g., creating effective cross-functional teams), but not their linkages. We argue that much of the complexity of concurrent

development—and the implementation failures that plague many organizations—arises from interactions between the technical and behavioral

dimensions. We use a dynamic project model that explicitly represents these interactions to investigate how a ‘‘Liar’s Club’’—concealing known

rework requirements from managers and colleagues—can aggravate the ‘‘90% syndrome,’’ a common form of schedule failure, and

disproportionately degrade schedule performance and project quality. We discuss the role of the incentives on and behavior of engineers and

managers in concurrent development failure and explore policies to improve project performance.

Key Words: concurrent development, concurrent engineering, iteration, rework, cycle time, project management, concealment, system

dynamics.

1. Introduction

Firms seeking competitive advantage to increase

market share, profit, and growth have turned to

concurrent development to speed the introduction of

new products and beat their competitors to market.

[17,24,26,29,40]. Despite some successes, implementing

concurrent development has proven difficult for many

organizations [25,40]. Implementation failure is not

unique to concurrent development. Similar failures

plague firms seeking to implement a wide range of

process improvement tools such as TQM, reengineering,

and diverse best practices in product development

[27,36]. The hallmark of these failures is a mismatch

between the technical, organizational, and dynamic

complexity of the process and the mental models of

the managers responsible for them, mental models that

lead to inappropriate organizational structures, policies,

and decisions. Studies of human decision making show

that our mental models of complex systems are often

simplistic and unreliable. Our ability to understand the

unfolding impacts of our decisions is poor. Our mental

models tend to have narrow boundaries and short time

horizons: We find it difficult to incorporate interactions

and feedbacks that cut across traditional functional,

disciplinary, or academic boundaries. We take actions

that make sense from our short-term and local

perspectives, but, due to our imperfect appreciation of

complexity, often feed back to hurt us in the long

run [35].

Many explanations have been suggested for the

concurrent development implementation challenge.

Backhouse and Brookes [4] suggest implementation

fails due to mismatches among a development organiza-

tion’s people, controls, tools, processes, and structure,

and the organization’s need for efficiency, focus,

incremental change, radical innovation, and proficiency.

Other researchers focus on organizational issues [5],

personnel selection [14,33], personnel characteristics

[20], and information transfer [9,21].

Unfortunately, many existing theories treat either the

structure of development processes without regard to

behavioral issues (e.g., [2,11,18,22]) or focus on devel-

opment team or participant characteristics without

considering the process structure (e.g., [14,20]). We

argue that improving the effectiveness of concurrent

development requires models that explicitly account for

interactions and feedbacks among technical, organiza-

tional, and behavioral features of the development

process. In this paper we develop a formal dynamic

model to explore interactions of concurrent process

structure with the behavioral decision processes of the

actors in the system. We show how technical aspects of
*Author to whom correspondence should be addressed.
E-mail: DavidFord@tamu.edu

Volume 11 Number 3 September 2003 211
1063-293X/03/03 0211–9 $10.00/0 DOI: 10.1177/106329303038028

� 2003 Sage Publications

+ [25.9.2003–8:45am] [211–220] [Page No. 211] REVISE PROOFS I:/Sage/Cer/Cer11-3/CER-38028.3d (CER) Paper: CER-38028 Keyword

http:\\www.sagepublications.com

the development process such as overlapping activities,
activity durations, and delays in the discovery of rework
requirements interact with the behavior of developers
and their managers to create unplanned iteration,
delays, higher costs, and lower quality. We explore
policies that can help improve project performance.

2. The 90% Syndrome

The ‘‘90% syndrome’’ is a common concurrent
development problem in which a project reaches about
90% completion according to the original schedule but
then stalls, finally finishing after about twice the original
project duration has elapsed. The syndrome is common
in industries including software, construction, consumer
electronics, and semiconductors [1,10,19]. Our fieldwork
with a leading semiconductor maker provides a typical
example. Figure 1 contrasts the planned and actual
progress of ASIC (Application Specific Integrated
Circuit) development projects we call Python (top) and
Rattlesnake (bottom). Python remained close to the
original schedule through week 20 and was 73%
complete by the original deadline. Progress then

slowed from 1.8% per week to 0.9% per week, and
the project was ultimately completed 77% late (week 69
vs. 39). Rattlesnake was worse: Reported progress rises
to 79% by the original deadline (week 34) but two
unplanned iterations delay completion until over twice
the original scheduled duration (81 vs. 34 weeks).
Unplanned iterations and slow late-stage progress are
typical of the 90% syndrome.

To investigate the interaction of physical and infor-
mation processes with managerial decision-making we
built a dynamic model of concurrent development
processes, described in [13], in this issue. The full
model is available at <ceprofs.tamu.edu/dford> in the
Vensim simulation language (see<www.vensim.com>).

3. Concealing Rework Requirements in
Concurrent Development

We argue in [13] that concurrent development not
only increases the vulnerability of projects to changes
and errors requiring rework, but also increases the
fraction of work released that will require changes.
Increased concurrency reduces the availability of final

.

Time (weeks from project start)

C
um

m
ul

at
iv

e
P

ro
gr

es
s

(p
er

ce
nt

)

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Planned Progress

Actual Progress

.

Time (weeks from project start)

P
ro

g
re

ss
 (

p
er

ce
n

t)

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

Planned Progress

Actual Progress

Figure 1. Planned and actual progress of the Python (top) and Rattlesnake (bottom) projects.

212 D. N. FORD AND J. D. STERMAN

+ [25.9.2003–8:45am] [211–220] [Page No. 212] REVISE PROOFS I:/Sage/Cer/Cer11-3/CER-38028.3d (CER) Paper: CER-38028 Keyword

information, technologies, and components, leading to
additional rework and iteration. In addition, behavioral

effects arising from the increased pressure felt by
developers to meet schedules that do not account for
the greater iteration and coordination required by

concurrency contribute significantly to the poor perfor-
mance of many such projects.

Here we focus on one common and problematic
behavior: purposefully concealing known problems

from development team members and managers. As
we describe next, concealing problems can have very
different causes and impacts than the concealment of

implementation details, such as in the modular design of
software [37] or other products [6] or the decomposition
of work [41]. Concealing known problems can be used
to temporarily reduce work. For example, an engineer in

a leading electronics company reported to us that design
engineers regularly delayed revealing problems they
discovered to avoid time-consuming document control

work required by the organization’s engineering change
notice process [12]. The practice of concealing rework
requirements is reinforced by people’s dislike of bad
news and information that contradicts their beliefs.

People in authority often ‘‘shoot the messenger.’’
Consequently, developers suppress information they
believe will be unpleasant to their superiors or custo-
mers. For example suppliers are reticent to report that

parts will be late even when they are members of their
customer’s development team [30]. The practice of
hiding one’s mistakes is institutionalized in many

organizations. A manager at a major automobile
manufacturer we will call AutoCo observed.

‘‘There is a basic cultural commandment in engineer-

ing—don’t tell someone you have a problem unless you

have the solution. You’re supposed to solve it—and then

tell them.’’ [30, pp. 13–14]

Concealment is often standard practice. At a major

defense contractor, weekly meetings of project team
leaders were known as ‘‘the liars’ club’’ because every-
one withheld knowledge that their subsystem was
behind schedule. Members of the liar’s club hoped

someone else would be forced to admit problems first,
forcing the schedule to slip and letting them escape
responsibility for their own tardiness. Everyone in the
liar’s club knew that everyone was concealing rework

requirements and everyone knew that those best able to
hide their problems could escape responsibility for the
project failing to meet its targets.

Purposefully concealing changes from managers and
other team members undermines core principles of
concurrent development. The team concept of concur-
rent development is designed to promote open and early

sharing of problems. But our fieldwork shows that this
is often not practiced, even in organizations staffed with
competent, well-intentioned developers and managers

well-trained in concurrent development. What causes
these managers to conceal change requirements?
Concealing problems provides the manager of an
individual phase several benefits beyond the avoidance
of responsibility for poor performance cited above:

. Concealing known problems reduces the need for
iteration (temporarily), increasing the amount of
work management perceives to be complete and can
make available to other activities. Apparent schedule
performance improves, sometimes allowing managers
to meet a critical deadline they would miss if change
requirements were revealed.

. Concealment reduces the starvation of receiving
phases and therefore avoids pressure from them to
release faster. Often a receiving phase starved for
work will complain to project leadership, leading to
unwanted attention on the supplying phase, attention
that may persist throughout the project and beyond,
as the managers of that phase develop a bad
reputation.

. Concealing known problems reduces the work
acknowledged to need coordination and rework and
therefore the amount of work considered a problem
or hindrance to progress, improving apparent project
quality.

. Delaying coordination and rework spreads the total
effort required by a concealing phase over a longer
period of time, thereby reducing peak resource
requirements.

. Hiding rework requirements increases the chance that
schedule extensions caused by other phases will
provide cover for managers and engineers to resolve
their own problems.

. Maintaining adequate apparent progress reduces the
likelihood that upper management will intervene or
replace the manager with someone believed to be
better able to meet targets. Concealment enhances the
manager’s job security and authority.

We simulate the effects of concealing rework
requirements by disaggregating the work known to
require rework into a fraction acknowledged and a
fraction concealed. Tasks found to require rework that
is then concealed are approved and eventually released,
instead of moving into the stock of tasks requiring
coordination and rework. Concealment therefore acts
like a drop in the effectiveness of quality assurance.
Modeling concealment in this fashion does not change
the probability that a task requires rework, increase
project scope or complexity, nor reduce the quality of
the work done (conditioned on the information
available to the phase). We assume only that conceal-
ment results in the approval of some work that is
known to require rework.

To calibrate the model to the Python project ([13] this
issue) we estimated that the pressure to show progress

The Liar’s Club: Concealing Rework in Concurrent Development 213

+ [25.9.2003–8:45am] [211–220] [Page No. 213] REVISE PROOFS I:/Sage/Cer/Cer11-3/CER-38028.3d (CER) Paper: CER-38028 Keyword

caused personnel in the requirements, design, and
prototyping phases to conceal half of the rework
requirements they discover. While 50% concealment
may appear high, our fieldwork suggests this fraction is
often exceeded. We also assume, a fortiori, that the final
test phase detects all errors and does not conceal any of
them. In reality, testing is less than 100% effective and
managers of the test phase may conceal known
problems when faced with deadline pressure. Note that
testing cannot uncover certain types of errors made in
the product definition phase, so that the product may
not meet customer requirements even though it is fully
compliant with the specifications released to the
designers—a common situation.
Figure 2 simulates the Python project assuming 0 and

100% concealment of rework requirements in the
product definition, design, and prototyping phases.
Concealment shows faster progress through most of
the original 39 week schedule, but delays the last portion
of the project into the characteristic pattern of the 90%
syndrome (and even a 10 week period where the
perceived fraction complete falls as testing reveals
some of the errors other phases did not report). The
project is completed 98% (38 weeks) later than
originally planned and 15 weeks (25%) later than when
managed without concealment. Concealment increases
total work effort as later discovery of errors means
more work has to be redone when the errors are found
(from 134% of project scope with no concealment to
200% of project scope under full concealment).
Concealment also dramatically reduces project quality
by causing more errors in product definition to remain
undiscovered when the project is completed (errors
released rise from less than 1% of project scope with no
concealment to 6.8% under full concealment).
Concealment is locally rational for individuals but
globally irrational for the organization.
Figure 3 shows that increasing concealment signifi-

cantly lengthens project durations, increases costs
(through more iteration and rework), and lowers quality
(more errors are released with the product). The results
also show an interaction between concurrence and

concealment: The greater the concealment of known
problems, the smaller is the cycle time reduction enabled
by increasing concurrence, and the lower the quality of
the final product. For example, increasing concurrence
by 50% relative to the base case reduces project
duration almost 30 weeks when there is no concealment,
but only 11 weeks when there is 100% concealment.
Similarly, defects remaining when the project is released
to the customer rise 0.4% from 1 to 1.4% of project
scope when there is no concealment (a 40% increase),
but rises 3.0% from 6.8 to 9.8% of project scope when
the concealment fraction is 1.0 (a larger increase of 44%
on a much larger base). Concealment has greater impact
with high concurrence because more work has been
done before the errors that are concealed are finally
detected and revealed, and because greater concurrence
generates more errors and thus causes more tasks
requiring rework to be concealed.

It is tempting to argue that managers with better
training or more experience with concurrent develop-
ment would resist the temptation to conceal problems
and join a liar’s club. But consider the predicament of
managers of individual phases. Aggressive deadlines
and overly optimistic assumptions about productivity
and work quality mean most soon find themselves
behind schedule. The pressure can be enormous.
A manager at a major automobile maker said ‘‘. . . the
only thing they shoot you for is missing product
launch. . . everything else is negotiable.’’ [28]. Managers
have several options once they realize that revealing
problems would cause them to miss a deadline. They
can reveal the problem, miss their original deadline,
and perhaps be identified as the manager responsible
for delaying the entire project—thus risking being
‘‘shot’’ for ‘‘missing product launch’’. Alternatively,
they can identify the errors they inherited from other
phases but conceal the problems generated by their own
phase, blaming their peers for problems their phase is
experiencing. If the deadline then slips, the managers
have gained time to solve the problems generated by their
own phase without having to take responsibility for
them. But they will alienate the managers of the phases

0

20

40

60

80

100

0 20 40 60 80

Weeks

P
e
rc

e
n

t
C

o
m

p
le

te
d

0% Concealment

100% Concealment

Figure 2. Simulated Python project with different levels of rework concealment.

214 D. N. FORD AND J. D. STERMAN

+ [25.9.2003–8:45am] [211–220] [Page No. 214] REVISE PROOFS I:/Sage/Cer/Cer11-3/CER-38028.3d (CER) Paper: CER-38028 Keyword

they exposed and open the door to retaliation. Only by
joining the liar’s club and remaining silent about both
their own problems and those generated by other phases
can they avoid responsibility for failure, prevent retalia-
tion by other managers, and seek to solve their problems
in relative secrecy.

The liar’s club forms a prisoner’s dilemma (PD) in
which engineers play the role of prisoners being
interrogated about their progress by management.
The engineers can cooperate with one another by
concealing the problems they know to exist, or defect
by revealing those problems to management. If all
engineering groups cooperate by concealing known
problems the schedule remains the same and they
avoid blame for delays (a small payoff). If they reveal
problems caused by others they get a large payoff
because the schedule will slip, giving them a chance
to fix their own problems without detection; their
colleagues then face a large negative payoff as manage-

ment blames them for the delay. However, if all
engineering groups defect by revealing all known
problems, the schedule slips, but everyone faces the
wrath of management, a large negative payoff for all.

In most literature on social dilemmas like the PD
cooperation is seen as desirable, and the challenge has
been to find conditions that encourage greater coopera-
tion, raising total welfare. Here, however, cooperation
hurts overall project performance, and the policy goal is
to promote defection (that is, to promote an atmosphere
of honesty and early disclosure). An extensive literature
(beginning with Axelrod [3]) shows that cooperation
can flourish in the repeated PD, where participants
choose to cooperate or defect multiple times. The more
people expect to interact, and the more they expect
to interact with the same people, the greater the chance
for cooperation. Development projects constitute a
repeated PD where the engineers work with the same
people throughout a project, and have the chance to

0.7

0.8

0.9

1.0

1.1

1.2

0.0 0.2 0.4 0.6 0.8 1.0
D

u
ra

ti
o

n
/B

a
s
e
 C

a
s
e

Fraction of Rework Requirements Concealed

Project Duration

Base

+25% Concurrence

+50% Concurrence

1.0

1.2

1.4

1.6

1.8

2.0

0.0 0.2 0.4 0.6 0.8 1.0

T
o

ta
l

T
a

s
k

s
 D

o
n

e
/P

ro
je

c
t

S
c

o
p

e

Fraction of Rework Requirements Concealed

Work Effort

Base

+25% Concurrence

+50% Concurrence

0.00

0.02

0.04

0.06

0.08

0.10

0.0 0.2 0.4 0.6 0.8 1.0

E
rr

o
rs

 R
e
m

a
in

in
g

/P
ro

je
c
t

S
c
o

p
e

Fraction of Rework Requirements Concealed

Errors Remaining at Completion

Base

+25% Concurrence

+50% Concurrence

Figure 3. Impact of concealment on duration, work effort, and quality.

The Liar’s Club: Concealing Rework in Concurrent Development 215

+ [25.9.2003–8:45am] [211–220] [Page No. 215] REVISE PROOFS I:/Sage/Cer/Cer11-3/CER-38028.3d (CER) Paper: CER-38028 Keyword

cooperate or defect every day. Even after the current

project ends, engineers expect to be assigned to new

projects in which they will again face the choice of

cooperation or defection, and will be working with

many of the same people. These conditions strongly

favor concealment of known problems. Given the risks

and benefits of concealment described above, it is small

wonder that many development organizations have

developed strong liar’s clubs with a self-replicating

culture of concealment.

The liar’s club can be strongly self-reinforcing even

though it is dysfunctional for the organization [28].

In the short run it is rational for individual managers to

conceal change requirements, especially if they believe

other phases also do so. However, concealment worsens

overall progress for the entire project by preventing

‘‘. . . synchronization of information exchange, decisions,

and iterations across processes’’ recommended by

Browning [9]. The resulting delays, cost overruns, and

quality problems may feed back to intensify financial

stress on the organization, leading to even more

aggressive schedules and greater pressure to conceal

changes in future projects. Managers who conceal

successfully are likely to be rewarded and promoted,

teaching personnel throughout the firm that conceal-

ment is the route to career success.

There are some counteracting forces that might

weaken the self-enforcing dynamic of widespread con-

cealment. Members of the liar’s club may try to reveal

the flaws of other phases anonymously to gain time and

shift blame but escape retaliation. An AutoCo developer

reported that ‘‘. . . the supplier will say things like (for

example), ‘You didn’t hear it from me, but something is

going to be late and somebody’s lying to you. Don’t tell

anyone I told you.’’’ ([30], pp. 18–19). Leaking,

however, eventually results in tighter controls over

information and still less communication among

phases. One might hope that successful engineers, once

promoted to management, would know about the liar’s

club and take steps to counter it. Instead, as documen-

ted in Repenning and Sterman [28], senior project

personnel sometimes respond by further accelerating

schedules and increasing the pressure on teams to finish

as fast as possible, as illustrated by a manager in an

automobile maker, who recalled

‘‘. . . [one] executive engineer used to have what I would

call ‘fighting meetings’. . .. His attitude was we should

tell everybody that they’re all [behind schedule], they’re

all failing, they have to make changes faster [and that] if

we don’t make changes right now, we’re going to shut

the whole division down . . .’’

The consequence, of course, is to create even stronger

incentives for concealment.

4. Discussion: Integrated Iteration
Design and Management

The frustration of competent and well-intentioned
managers in concurrent development projects can be
understood as resulting from process-constrained pro-
gress, magnified by concurrent development practices,
and distorted by short-sighted management policies.
Shifting development focus and concealing rework
requirements in response to the schedule pressure
induced by concurrent development practices shifts the
burden of and responsibility for change discovery away
from individual phases while temporarily improving
apparent performance. Such behavior creates the
impression that projects are proceeding as planned
throughout most of the original schedule, so managers
do not receive signals that could initiate corrective
action. By the time changes are discovered and
acknowledged, project managers face a large backlog
of hidden rework. The resulting iteration cycles delay
completion and increase cost even when resources are
ample because the iterations are constrained by the
underlying concurrent development structure of infor-
mation exchange. The liar’s club and incentives for
individual phases to conceal known problems suggests
that solving the ‘‘how frequent to meet’’ problem
addressed by Ha and Porteus [15] or ‘‘when to meet’’
problem addressed by Loch and Terwiesch [22] can be
inadequate. Since managers typically have less influence
over processes than resources, they have few effective
tools and methods with which to accelerate throughput
when rework discovery delays and iteration cycles
constrain progress. Indeed, attempts to remedy these
delays through overtime and hiring can worsen the
problem through fatigue, skill dilution, and higher
coordination and training requirements [8,16,39]. The
interaction between process and behavior helps explain
how the 90% syndrome can occur in stable, competently
managed, adequately staffed projects and organizations.

Effective policies must integrate the decision-making
heuristics people actually use with the physical structure
and information flows characterizing a project. For
example, changing the perceived payoffs of members of
the liar’s club to reward the early disclosure of problems
and (more difficult) the cultural norms that support the
club could change both managerial behaviors and the
paths and speeds of information flows; these benefits
would then make increased concurrence more effective.
However research that integrates physical processes and
behavior are rare. Most studies addressing team
characteristics, worker motivation and skill, and other
human resource issues generally omit consideration of
the process structure, and vice-versa. For example,
Moffatt [25] concludes that ‘‘. . . team effectiveness [in
goal setting, conflict resolution, and decision-making]
and project schedule simultaneity [process concurrence]

216 D. N. FORD AND J. D. STERMAN

+ [25.9.2003–8:45am] [211–220] [Page No. 216] REVISE PROOFS I:/Sage/Cer/Cer11-3/CER-38028.3d (CER) Paper: CER-38028 Keyword

are separate, independent paths to improved project
performance.’’ We argue instead that the structure of
concurrence relationships and information flow interact
strongly with the decision-making behavior of the
people working in and managing the project. Scholars
and practitioners need to integrate the technical dimen-
sions of project management (e.g. critical path/PERT,
precedence relationships, Design Structure Matrix) with
the behavioral aspects (e.g. the liar’s club, culture,
incentives) to identify high leverage policies for
improved project management.

Changing the perspectives of managers and devel-
opers—from optimizing phase performance to optimiz-
ing project performance, from a focus on technical or
behavioral issues to the integration of technical and
behavioral issues—faces serious implementation bar-
riers. The bounded rationality of managers limits the
scope and complexity they can perceive, understand and
use individually [32] or in teams [7]. Many development
projects may be too big and complex for managers to
simultaneously ‘‘think globally’’ (at the project level) but
‘‘act locally’’ (operate in specific phases) because it
requires both the expansion of their mental models and
aligning their local incentives with the global goals of
the project. Our fieldwork indicates that when forced to
choose, most managers focus locally where they can
have both an understanding of the impacts of policies
and the influence to implement those policies.

Effective strategies address the managerial behaviors
that cause iteration cycles to constrain progress. Various
management and project team member decisions, such
as concealing known problems, can cause excess
unplanned iteration. Each iteration introduces delay,
but in addition these unplanned iterations increase the
distance information must travel, slow the speed at
which information traverses the distance, and occur
later than they might have. All these characteristics lead
to disproportionate increases in costs and loss of quality
by increasing the amount of work done in good faith
that must be scrapped, forcing management to make
more and larger unplanned changes in resource alloca-
tion, decreasing skill and experience of workers assigned
to a project, increasing the likelihood of excessive
overtime that leads to worker burnout and higher
error rates, and so on. Researchers have proposed
process designs to manage iteration cycle number,
speed, length, or timing. For example Terwiesch et al.
[38] recommend ‘‘a fast process of problem detection,
problem solving, and engineering change implementa-
tion’’ which increases iteration cycle speed. They suggest
‘‘loosening the coupling (dependence) between develop-
ment activities’’ and improving the accuracy of pre-
liminary information, both which reduce the number of
cycles. McAllister and Backhouse [23] suggest redesign-
ing work flows to reduce the number of iteration paths
in a project network. There may be ways to partition

development to reduce interactions among subsystems,
to improve the accuracy of preliminary information, and
to minimize the number and length of iterations, but
doing so requires deep knowledge of the interactions
and of customer requirements, and the organizational
and human resource flexibility to act. Developing such
knowledge and flexibility takes time and effort,
resources that are already scarce in most organizations.
It is far easier and more tempting to ignore interactions,
release specifications and subsystems before they are
mature, and conceal the need for rework until forced by
circumstances to reveal them.

Process changes cannot improve concurrent develop-
ment project performance if they do not also address the
behaviors that drive iteration cycles such as the policy of
concealing rework requirements. Information technol-
ogy can play a role by acting on both processes and
behaviors simultaneously. For example Sabbagh [31]
reports Boeing’s use of computer assisted design and
drafting (CADD) to identify conflicts among functional
systems for use of the limited space in the aircraft,
reducing the potential for concealing change require-
ments and accelerating error detection. Such virtual
worlds and simulations offer great potential for short-
ening the delay in discovering rework requirements and
preventing concealment. At the same time, creating such
virtual worlds is challenging—to be technically sound
the models must include interactions that cross estab-
lished disciplinary and functional boundaries. To be
used, project participants must have confidence that the
models are not biased against their particular specialty
or phase. Creating the needed trust and aligning incen-
tives takes time and effort, resources that are often
scarce. Yet it can be done, as shown by examples such as
those described in [34 (Ch. 2, 6.3.4)]; see also [28].

In this paper we have used a dynamic model of a
development project to describe, quantify and simulate
how physical and information processes interact with
managerial decision making to constrain progress and
cause project overruns. We have shown how concealing
known rework requirements is locally rational but
globally irrational. Such concealment is common in
development projects. It arises from the mental models
of the managers and developers of individual phases and
is amplified by concurrent processes, local incentives,
and organizational cultures favoring concealment. Our
model can illustrate these interactions to practitioners
and facilitate improvements in project design and
management.

Acknowledgment

The authors thanks the Organizational Learning
Center and the System Dynamics Group at the
MIT Sloan School of Management and the Python

The Liar’s Club: Concealing Rework in Concurrent Development 217

+ [25.9.2003–8:45am] [211–220] [Page No. 217] REVISE PROOFS I:/Sage/Cer/Cer11-3/CER-38028.3d (CER) Paper: CER-38028 Keyword

organization for financial support. Special thanks to the
members of the Python project for their interest,
commitment, and time.

References

1. Abdel-Hamid, T. (1988). Understanding the ‘‘90%
Syndrome’’ in Software Project Management: A
Simulation-Based Case Study, Journal of Systems and
Software, 8: 319–330.

2. Adler, P.S., Mandelbaum, A., Vien, N. and Schwerer, E.
(1995). From Project to Process Management: An
Empirically-based Framework for Analyzing Product
Development Time, Management Science, 41(3): 458–484.

3. Axelrod, R. (1984). The Evolution of Cooperation, New
York: Basic Books.

4. Backhouse, C.J. and Brookes, N.J. (1996). Concurrent
Engineering, What’s Working Where, Gower, Brookfield,
VT: The Design Council.

5. Bailey, D.D. (Nov. 1999). Challenges of Integration in
Semiconductor Manufacturing Firms, IEEE Transactions
of Engineering Management, 46(4): 417–428.

6. Baldwin, C.Y. and Clark, K.B. (2000). Design Rules: The
Power of Modularity, MIT Press, Cambridge, MA.

7. Brehmer, B. (1998). Effects of Time Pressure on Fully
Connected and Hierarchical Architectures of Distributed
Decision-making, In: Yvonne Waern (ed.), Co-operative
Process Management, Cognition and Information
Technology, London: Taylor & Francis, Ltd.

8. Brooks, F.P. (1978). The Mythical Man-Month, Reading,
MA: Addison-Wesley.

9. Browning, T. (Oct. 1999). Sources of Schedule Risk in
Complex System Development, Systems Engineering, 2(3):
129–142.

10. DeMarco, T. (1982). Controlling Software Projects,
Yourdon, New York.

11. Ettlie, J.E. (1995). Product-Process Development
Integration in Manufacturing, Management Science, 41:
1224–1237.

12. Ford, D.N., Hou, A. and Seville, D. (1993). An
Exploration of Systems Product Development at Gadget
Inc. System Dynamics Group Report D-4460, Sloan
School of Management. Massachusetts Institute of
Technology, Cambridge, MA.

13. Ford, D.N. and Sterman, J.D. (2003). Overcoming the
90% Syndrome: Iteration Management in Concurrent
Development Projects, Concurrent Engineering: Research
and Applications (this issue).

14. Gerwin, D. and Moffat, L. (1997). Withdrawl of Team
Autonomy During Concurrent Engineering, Management
Science, 43(9): 1275–1287.

15. Ha, A.Y. and Porteus, E.L. (1995). Optimal Timing of
Review in Concurrent Desing for Manufacturabillity,
Management Science, 41(9): 1431–1447.

16. Haddad, C. (1996). Operationalizing the Concept of
Concurrent Engineering: A Case Study from the US
Auto Industry, IEEE Transactions on Engineering
Management, 43(2): 124–132.

17. Hayes, R.H., Wheelwright, S.C. and Clark, K.B. (1988).
Dynamic Manufacturing, Creating the Learning
Organization, New York: The Free Press.

18. Joglekar, N.R., Yassine, A.A., Eppinger, S.D. and
Whitney, D.E. (2001). Performance of Coupled Develop-
ment Activities with a Deadline, Management Science,
47(12): 1605–1620.

19. Kiewel, B. (January 1998). Measuring Progress in Software
Development, PM Network, Project Management
Institute, 12(1): 29–32.

20. King, N. and Majchrzak, A. (1996). Concurrent
Engineering Tools: Are the Human Issues Being Ignored,
IEEE Transactions on Engineering Management, 43(2):
189–201.

21. Krishnan, V. (1996). Managing the Simultaneous
Execution of Coupled Phases in Concurrent Product
Development, IEEE Transactions on Engineering
Management, 43(2): 210–217.

22. Loch, C.H. and Terwiesch, C. (1998). Communication and
Uncertainty in Concurrent Engineering, Management
Science, 44(8): 1032–1048.

23. McAllister, J. and Backhouse, C. (1996). An Evolving
Product Introduction Process. In: Backhouse, C. and
Brookes, N. (eds), Concurrent Engineering, What Works
Where, Gower, Brookfield, VT.

24. Meyer, C. (1993). Fast Cycle Time, How to Align Purpose,
Strategy, and Structure for Speed, New York: The Free
Press.

25. Moffat, L.K. (1998). Tools and Teams: Competing Models
of Integrated Product Development Project Performance,
Journal of Engineering Technology and Management, 15:
55–85.

26. Patterson, M.L. (1993). Accelerating Innovation, Improving
the Process of Product Development, New York: Van
Nostrand Reinhold.

27. Repenning, N.P. and Sterman, J.D. (2000). Getting
Quality the Old-Fashioned Way: Self-Confirming
Attributions in the Dynamics of Process Improvement,
In: Scott, R. and Cole, R. (eds), Improving Theory and
Research on Quality Enhancement in Organizations,
pp. 201–235, Thousand Oaks, CA: Sage.

28. Repenning, N. and Sterman, J. D. (2001). Nobody Ever
Gets Credit for Fixing Defects that Didn’t Happen:
Creating and Sustaining Process Improvement, California
Management Review, 43(4): 64–88.

29. Rosenthal, S.R. (1992). Effective Product Design and
Development, Homewood, IL: Business One Irwin.

30. Roth, G. and Kleiner, A. (1996). The Learning Initiative
at the AutoCo Epsilon Program, 1991–1994, Center
for Organizational Learning, Sloan School of
Management, Massachusetts Institute of Technology,
Cambridge, MA.

31. Sabbagh, K. (1995). 21st Century Jet, The Making of the
Boeing 777, London: Pan Books.

32. Simon, H.A. (1995). The Sciences of the Artificial,
Cambridge, MA: The MIT Press.

33. Stahl, J., Luczak, H., Langen, R., Weck, M., Klonaris, P.
and Pfeifer, T. (1997). Concurrent Engineering of Work
and Production Systems, European Journal of Operational
Research, 100: 379–398.

34. Sterman, J.S. (2000). Business Dynamics, Systems Thinking
and Modeling for a Complex World, New York: Irwin
McGraw-Hill.

35. Sterman, J.D. (1994). Learning in and about Complex
Systems, System Dynamics Review, 10(2–3): 291–330.

218 D. N. FORD AND J. D. STERMAN

+ [25.9.2003–8:45am] [211–220] [Page No. 218] REVISE PROOFS I:/Sage/Cer/Cer11-3/CER-38028.3d (CER) Paper: CER-38028 Keyword

36. Sterman, J., Repenning, N. and Kofman, F. (1997).
Unanticipated Side Effects of Successful Quality
Programs: Exploring a Paradox of Organizational
Improvement, Management Science, 43(4): 503–521.

37. Sullivan, K.J., Griswold, W.G. and Ben Hallen, Y.C.
(September 2001). The Structure and Value of Modularity
in Software Design, In: Proceedings of the Joint
International Conference on Software Engineering and
ACM SIGSOFT Symposium on the Foundations of
Software Engineeering, Vienna.

38. Terwiesch, C., Loch, C.H. and DeMeyer, A. (1998).
Preliminary Information, Interdependence and Task
Concurrency in Product Development, Forthcoming in
Organization Science.

39. Thomas, H.R. and Raynar, K.A. (1994). Effects of
Scheduled Overtime on Labor Productivity: Quantitative
Analysis, Source Document 98, Construction Industry
Institute, Austin, TX.

40. Wheelwright, S.C. and Clark, K.B. (1992). Revolutionizing
Product Development, Quantum Leaps in Speed, Efficiency,
and Quality, New York: The Free Press.

41. Yassine, A., Joglekar, N., Braha, D., Eppinger, S.
and Whitney, D. (2003). Information Hiding in
Product Development: The Design Churn Effect,
Forthcoming Research in Engineering Design, Volume 14.

The Liar’s Club: Concealing Rework in Concurrent Development 219

+ [25.9.2003–8:45am] [211–220] [Page No. 219] REVISE PROOFS I:/Sage/Cer/Cer11-3/CER-38028.3d (CER) Paper: CER-38028 Keyword

