
A Neuro�Dynamic Programming Approach to
Retailer Inventory Management�

Benjamin Van Royyz

Dimitri P� Bertsekasz

Yuchun Leey

John N� Tsitsiklisz

yUnica Technologies� Inc�
Lincoln North

Lincoln� MA �����

and

zLaboratory for Information and Decision Systems
Massachusetts Institute of Technology

Cambridge� MA �����

�This material is based upon work supported by the National Science Foundation un�

der award number �������� Any opinions� 	ndings� and conclusions or recommendations

expressed in this publication are those of the authors and do not necessarily re
ect the

views of the National Science Foundation�

ABSTRACT

We present a model of two	echelon retailer inventory systems� and we cast
the problem of generating optimal control strategies into the framework of dy	
namic programming� We formulate two speci
c case studies� for which the
underlying dynamic programming problems involve thirty	three and forty	six
state variables� respectively� Because of the enormity of these state spaces�
classical algorithms of dynamic programming are inapplicable� To address
these complex problems� we develop approximate dynamic programming al	
gorithms� The algorithms are motivated by recent research in arti
cial intel	
ligence involving simulation�based methods and neural network approxima	
tions� and they are representative of algorithms studied in the emerging
eld
of neuro	dynamic programming� We assess performance of resulting solutions
relative to optimized s�type �order�up�to�� policies� which are generally ac	
cepted as reasonable heuristics for the types of problems we consider� In both
case studies� we are able to generate control strategies substantially superior
to the heuristics� reducing inventory costs by approximately ten percent�

�

� Introduction

Many important problems in operations research involve sequential decision	
making under uncertainty� or stochastic control� Dynamic programming �Bertse	
kas� ����� provides an omnipotent framework for studying such problems� as
well as a suite of algorithms for computing optimal decision policies� Unfor	
tunately� the overwhelming computational requirements of these algorithms
render them inapplicable to most realistic problems� As a result� complex
stochastic control problems that arise in the real world are usually addressed
using drastically simpli
ed analyses and�or heuristics�

An exciting new alternative that is more closely tied to the sound frame	
work of dynamic programming is being developed in the emerging
eld of
neuro	dynamic programming �Bertsekas and Tsitsiklis� ������ This approach
makes use of ideas from arti
cial intelligence involving simulation�based al	
gorithms and functional approximation techniques such as neural networks�
The outcome is a methodology for approximating dynamic programming solu	
tions without demanding the associated computational requirements�

Over the past few years� neuro	dynamic programming methods have gen	
erated several notable success stories� Examples include a program that plays
Backgammon at the world champion level �Tesauro� ������ an elevator dis	
patcher that is more e�cient than several heuristics employed in practice
�Crites and Barto� ������ and an approach to job shop scheduling �Zhang
and Dietterich� ������ Additional case studies reported by Bertsekas and
Tsitsiklis ������ further demonstrate signi
cant promise for neuro	dynamic
programming� However� neuro	dynamic programming is a young
eld� and
the algorithms that have been most successful in applications are not fully
understood at a theoretical level� Furthermore� there is a large conglom	
eration of algorithms proposed by researchers in the
eld� and each one is
complicated and parameterized by many values that must be selected by a
user� It is unclear which algorithms and parameter settings will work on a
particular problem� and when a method does work� it is still unclear which
ingredients were actually necessary for success� Because of this� application of
neuro	dynamic programming often requires trial and error� in a long process
of parameter tweaking and experimentation�

In this paper� we describe work directed towards developing a stream	
lined neuro	dynamic programming approach for optimizing performance of

�

retailer inventory systems �Nahmias and Smith� ������ This is the problem
of ordering and positioning retailer inventory at warehouses and stores in or	
der to meet customer demands while simultaneously minimizing storage and
transportation costs� This problem can also be viewed as a simple example
from the broad class of multi	echelon inventory control problems that has re	
ceived signi
cant attention in the
eld of supply	chain management �Lee and
Billington� ������

The remainder of this paper is organized as follows� The next section
provides an overview of the research and results obtained� Section � de	
scribes in detail the model of retailer inventory systems used in this study�
while Section � discusses the use of s�type policies in this model� Dynamic
programming and neuro	dynamic programming are presented in Sections �
and �� respectively� Rather than presenting the methodologies in full gener	
ality� the material in these sections is customized to the purposes of retailer
inventory management� Experimental results are discussed in Section �� Sec	
tion � contains some concluding remarks� Finally� formal state equations are
provided in the appendix as a mathematically precise description of our re	
tailer inventory system model�

� Overview of Research

Rather than simply describing the
nal results obtained at the end of this
research� we attempt in this paper to present some of the obstacles that were
encountered and how they were overcome� We hope that this will lead to a
better perspective on the state	of	the	art in neuro	dynamic programming� as
well as the potential di�culty of applying the methodology� In this section�
we overview the steps taken in this research and the results obtained at the
end of the process� Subsequent sections provide a far more detailed account
of what we discuss here�

In formulating a model of retailer inventory systems� we attempted to
re�ect the complexities that make the problem di�cult� However� we did
not attempt to capture all aspects of the problem that may be required for
modeling a real	world retailer inventory system� The objective of this study
was to establish the viability of neuro	dynamic programming as an e�ective
approach to optimizing retailer inventory systems� We expect that success
demonstrated on the models we present will generalize to more realistic mod	
els�

To gauge the e�cacy of the neuro	dynamic programming algorithms de	

�

veloped in this study� performance was compared with optimized s�type
policies �i�e�� order	up	to� policies�� which have been the most commonly
adopted approach in past research concerning optimization of retailer invent	
ory systems �Nahmias and Smith� ����� Nahmias and Smith� ������ The
details of this heuristic method are discussed in Section ��

In choosing and customizing neuro	dynamic programming algorithms for
the purpose of retailer inventory management� an e�ort was made to minimize
the complexity of the methods� Only ingredients deemed critical to success
were included� and we avoided many of the frills� that make for additional
parameters to be tweaked� We initially selected two neuro	dynamic program	
ming algorithms and specialized them for the purposes of retailer inventory
management� The two algorithms were approximate policy iteration and an
on	line temporal	di�erence method �Bertsekas and Tsitsiklis� ������

In solving a stochastic control problem like that of retailer inventory man	
agement� neuro	dynamic programming algorithms approximate the problem�s
cost	to	go function by tuning parameters of an approximation architecture�
Appropriate approximation architectures must be chosen for the problem at
hand� In this research� we chose to employ linear and multilayer perceptron
�neural network� architectures coupled with the extraction of features per	
tinent to the problem� We describe the chosen features and architectures in
more detail later in this paper�

In an initial set of experiments� we analyzed only a very simple retailer
inventory system� This system consisted of one warehouse and one store� and
the underlying stochastic control problem involved only three state variables�
A multilayer perceptron architecture� using the raw state variables as in	
put features� was coupled with the neuro	dynamic programming algorithms
to solve the problem� Unfortunately� the neuro	dynamic programming al	
gorithms led to control strategies that performed far worse than an optimized
s�type policy�

Extensive experimentation and a study of where the neuro	dynamic pro	
gramming algorithms were failing on this simple problem led to a modi
cation
in the on	line temporal	di�erence algorithm� This involved adding an element
of active exploration to the workings of the algorithm� the details of which will
be described in a later section� The resulting algorithm generated approxim	
ations using the multilayer perceptron architecture that yielded performance
essentially equivalent to the heuristic approach�

It is not surprising that the heuristic and the neuro	dynamic programming
approach delivered similar levels of performance on the
rst problem� In
particular� since the problemwas so simple� bothmethods were probably near	

�

optimal� A second set of experiments was performed on a more complex case
study� This new problem involved a central warehouse and ten stores with
substantial transportation delays� The underlying stochastic control problem
this time involved �� state variables� A set of �� features was selected based
on the given problem� and a feature	based linear architecture was tried with
the on	line temporal	di�erence algorithm� This combination was successful�
generating policies that reduced costs by about ten percent over the cost of
an optimized heuristic policy�

To see if this result could be further improved� we tried two variations of
the approach� First� we replaced the feature	based linear architecture with
a feature	based multilayer perceptron architecture �using the same features��
However� this did not lead to performance superior to the linear case� A
second variation involved increasing the degree of exploration in the on	line
temporal di�erence method� Again� this did not improve performance�

We tested the neuro	dynamic programming approach on an additional
problem of even greater complexity� This time� the underlying stochastic
control problem involved �� state variables� Again� the combination of a
feature	based linear architecture and the on	line temporal di�erence method
�with active exploration� led to costs about ten percent lower than the heur	
istic�

In the
nal analysis� neuro	dynamic programming proved to be successful
in solving two complex retailer inventory management problems� To sum	
marize the results obtained� we reiterate some key points�

�� The straightforward approximate policy iteration algorithms that were
employed in the initial stages of this research do not work in their initial
simple form�

�� The on	line temporal di�erence method with active exploration� coupled
with a feature�based linear architecture� consistently cut costs by about
ten percent �over a well�accepted heuristic approach� on two di�erent
complex retailer inventory management problems�

�� Given the chosen features� using a multilayer perceptron instead of the
linear architecture did not lead to improved performance�

�� Increasing the degree of exploration in the temporal	di�erence algorithm
did not lead to improved performance �just a small amount of explora	
tion seemed to be required to make the huge di�erence in performance
over having no exploration at all��

�

warehouse

stores

customer
demandsmanufactured

goods

special deliveries

Figure �� Schematic diagram of a retailer inventory system�

� A Model of Retailer Inventory Systems

In this section� we describe the model of retailer inventory systems used in
this study� The characteristics of this model are largely motivated by the
studies of �Nahmias and Smith� ����� and �Nahmias and Smith� ������ The
general structure is illustrated in Figure � and involves several stages�

�� Transportation of products from manufacturers

�� Packaging and storage of products at a central warehouse

�� Delivery of products from the warehouse to stores

�� Ful
llment of customer demands using either store or warehouse invent	
ory

Demands materialize at each store during each time period� Each unit of
demand can be viewed as a customer request for the product� If inventory is
available at the store� it is used to meet ongoing demands� In the event of a
shortage� the customer will� with a certain probability� be willing to wait for
a special delivery from the warehouse� If the customer is in fact willing to
wait� the demand is
lled by inventory from the warehouse �if it is available��

At the end of each day� the warehouse orders additional units of inventory
from the manufacturers� and the stores place orders to the warehouse� The
warehouse manager
lls store orders as much as possible given current levels
of inventory� As materials travel from manufacturers to the warehouse and
from the warehouse to the stores� they are delayed by transportation times�

�

warehouse

stores

customer
demands

manufactured
goods

Figure �� An illustration of the bu�ers in the retailer inventory system�

Coupled with the uncertainty of future demands� these delays create the need
for storage of inventory at stores�

The di�ering impact of inventory at the warehouse on costs and service
performance makes it desirable to also maintain stock there� For example�
inventory stored at the warehouse provides a greater degree of �exibility
than that maintained at a single store� In particular� inventory stored at
the warehouse can be used to
ll special orders made by customers at any
store �for individual customers who are willing to wait�� and can also be
sent to any store in the advent of a shortage of goods� On the other hand� a
surplus of inventory at one store cannot be used to compensate for a shortage
at another� Furthermore� storage costs at stores are often higher than at the
warehouse�

In the remainder of this section� we present some technical details con	
cerning aspects of the model we have described� In particular� we further
discuss the dynamics of inventory �ow� the nature of the stochastic demand
process� and the cost structure�

��� Dynamics of Inventory Flow

As illustrated in Figure �� inventory is stored at two stages� The warehouse
holds reserves in anticipation of special orders and shipments to stores� which
make up the second stage of inventory storage� There are delays in the trans	
portation of stock from one stage to the next� and to simplify our discussion�
we consider the delays to be multiples of a
xed unit of time which we will
take to be a day� Hence� the model involves a dynamic system that evolves
in discrete time�

The delays in the inventory system are illustrated in Figure �� Each square
represents a bu�er where goods may be located at a particular point in time�

�

The movement of goods between bu�ers is synchronized by a single clock that
ticks� once per day� Goods enter and exit bu�ers only at the clock ticks� The
row of bu�ers to the left of the warehouse bu�er are associated with delays in
the transportation of goods from a manufacturer to the warehouse� At each
clock tick� goods located in any one of these bu�ers moves one bu�er to the
right� Similarly� the row of bu�ers to the left of each store bu�er is associated
with delays in transporting goods from the warehouse to the store� Again�
at each clock tick� goods proceed one bu�er to the right� as transportation
progresses�

The entrance of goods into the system and the movement of goods from
the warehouse to transportation bu�ers are controlled by decisions of the
inventory manager� which are made just prior to each tick� At each tick� a
speci
ed quantity of goods �the warehouse order� enters the system at the
leftmost bu�er� This quantity is limited by a production capacity as well as
the warehouse capacity� The amount ordered at any one time cannot exceed
the production capacity� and the total quantity of goods currently at and
on	route to the warehouse cannot exceed the warehouse capacity�

Also at each tick� a speci
ed quantity of goods are transferred from the
warehouse to the leftmost transportationbu�ers of speci
ed stores� Of course�
the total quantity of goods transfered here must be less than the amount
available at the warehouse prior to the tick� Furthermore� at any time� the
total quantity of goods currently at and on	route to any particular store can
be no greater than the store capacity�

Goods exit the system upon customer demand� At each tick� such de	
mands arise at each of the stores� If the amount demanded at a particular
store is less than or equal to the quantity of inventory available just prior
to the tick� the store�s inventory level is reduced by the demanded quantity�
Otherwise� the store�s inventory is completely depleted� and each unsatis
ed
customer is allowed the option to request a special delivery from the ware	
house� In our model� each individual customer makes such a request with a
given probability� If a customer whose demand has not been satis
ed by the
store does make such a request� and a unit of inventory is available� then the
warehouse inventory is decremented by one�

To be completely precise� we must specify the ordering of events that
occur at each clock tick� First� goods ordered by the warehouse enter into the
system� Second� goods are transferred from the warehouse to the appropriate
transportation bu�ers� Then� demands are
lled as needed� Finally� goods in
transportation bu�ers progress towards the right�

�

��� Demand Process

In the model� stochasticity arises from the uncertainty of future demands�
In this research� the demands were modeled as random variables that are
independent and identically distributed through time and among di�erent
stores� Each sample was generated as follows�

�� sample from a normal distribution with a given mean and a given stand	
ard deviation�

�� round o� this value to the closest integer�

�� take the maximum of zero and the resulting value�

��� Cost Structure

At each clock tick� a cost of operation is incurred by the retailer inventory
system� The objective of the
rm is to minimize these costs� on average� The
cost can be broken down into three categories� storage cost� shortage cost�
and transportation cost� In this section� we describe how each of these costs
are computed�

Storage costs are incurred at both the warehouse and the stores� At each
clock tick� the total quantity of inventory at stores is multiplied by a store
cost of storage� and the quantity of inventory at the warehouse is multiplied
by a warehouse cost of storage� The sum of these two products is the storage
cost for that day�

Shortage costs are costs associated with unful
lled demands� A customer�s
demand may be satis
ed by inventory either at the store where the customer
is located or the warehouse �if the customer opts for a special delivery�� Any
customer whose demands are not
lled by either of these two places incurs a
shortage cost to the system�

Transportation costs in our model are associated only with special de	
liveries� In particular� each special delivery made to a customer incurs a
particular cost� Note that for special deliveries to be pro
table� the cost of
an unful
lled unit of demand �i�e�� shortage cost� must be greater than that
of a special delivery�

��� Model Parameters

Now that we have described the dynamics of the model in detail� it may be
useful to enumerate the model parameters� Values must be assigned to these

�

parameters in order to make the model behavior commensurate with that of
a speci
c manifestation of a retailer inventory system� The list follows�

�� Number of stores

�� Delay to stores

�� Delay to warehouse

�� Production capacity

�� Warehouse capacity

�� Store capacity

�� Probability of customer waiting

�� Cost of special delivery

�� Warehouse storage cost

��� Store storage cost

��� Mean demand

��� Demand standard deviation

��� Shortage cost

� Heuristic Policies

A heuristic policy for controlling the retailer inventory system was imple	
mented and used as a baseline for comparison against neuro	dynamic pro	
gramming approaches� The type of heuristic used is known as an s	type� or
order	up	to�� policy and is accepted as a reasonable approach to problem
formulations that have independent identically distributed demands� like the
one we have proposed� Examples of research where such policies are the focus
of study are discussed in �Nahmias and Smith� ����� and include �Nahmias
and Smith� ������

The s�type policy we implemented is parameterized by two values� a
warehouse order	up	to level and a store order	up	to level� Essentially� at
each time step the inventory manager tries to order inventory such that all

�

inventory at and expected to arrive at the warehouse is equal to the ware	
house order	up	to level and all the inventory at or expected to arrive at any
particular store is equal to the store order	up	to level�

Although the main idea is simple� the details of how store orders are gener	
ated by the heuristic policy are tedious� First� a desired order� equal to the
di�erence between the store order	up	to level and the total of inventory cur	
rently at the store and inventory currently on	route to the store is computed
for each store� If all desired orders can be
lled by the inventory currently
available at the warehouse� then they are� Otherwise� all inventory at the
warehouse is sent to stores� and the preference among stores is decided in a
way that always maximizes the minimum among stores of the total of current
inventory and inventory on	route to a store�

Once the store orders have been computed� we compute the total of invent	
ory currently at the warehouse and all inventory on	route to the warehouse�
less the total of store orders� If the di�erence between this quantity and the
warehouse order	up	to level is less than the production capacity� then the
warehouse order is set equal to this di�erence� Otherwise� the warehouse
order is equal to the production capacity�

Note that we have discussed only how the heuristic policy works given
speci
ed order	up	to levels� but not how the order	up	to levels are to be
determined� In this research� the best order	up	to levels were determined
by an exhaustive search� where the average cost associated with each pair
of order	up	to levels was assessed in a lengthy simulation� Note that an
exhaustive search of this type would be computationally prohibitive if we
allowed the stores to have di�erent order	up	to levels� which would be called
for if the stores had independent attributes �e�g�� di�erent transportation
delays��

� Dynamic Programming

Dynamic programming �DP� o�ers a very general framework for stochastic
control problems �Bertsekas� ������ In this section� we present a DP frame	
work that is a bit di�erent from the standard� In particular� our setting is
somewhat specialized to the retailer inventory problem and leads to more
e�cient computational approaches in the context of neuro	dynamic program	
ming �NDP�� We also present in detail the way in which we formulated the
retailer inventory management problem in terms of this DP framework� To
make the exposition of DP both brief and precise� we only discuss the case

��

involving systems that evolve over
nite state spaces and in discrete time�
Let S be the state space of a system of interest �each element corresponds

to a particular combination of inventory levels�� We associate two states
xt� yt � S to any nonnegative integer time t� We refer to xt as the pre	
decision state� and yt as the post	decision state�� Furthermore� a decision
ut that in�uences the system is selected from a
nite set U at each time step�
The state evolves according to two di�erence equations� xt�� � f��yt� wt�
and yt � f��xt� ut�� where f� and f� are some functions describing the system
dynamics and wt is a random noise term taken from a
xed distribution�
independent from all information available up to time t� There is a cost
g�yt� wt� associated with the system a�ected by a noise term wt while the
post	decision state is yt�

A policy is a mapping � � S �� U that determines a decision as a function
of pre	decision state� i�e�� ut � ��xt�� The goal in stochastic control is to select
an optimal policy �i�e�� one that minimizes long	term costs�� We express the
long	term cost to be minimized as the expectation of a discounted in
nite
sum of future costs� as a function of an initial post	decision state� i�e��

J��y� � E

�
�X
t��

�tg�yt� wt�jy� � y� �

�
�

Here� � � ��� �� is a discount factor and J��y� denotes the expected long	term
cost given that the system starts in post	decision state y and is controlled by
a policy �� An optimal policy �� is one that minimizes J� simultaneously
for all initial post	decision states� and the function J�

�

� known as the value
function� is denoted by J��

A well known result in dynamic programming is that the value function
satis
es Bellman�s equation� which in our formulation� takes on the form

J��y� � Ew

�
g�y� w�� � �J�f��y� w��

�
�

where �J is given by
�J�x� � min

u�U
J��f��x� u���

Furthermore� a policy �� is optimal if and only if it satis
es

���x� � argmin
u�U

J��f��x� u���

Note that� using this expression� we can generate an optimal policy based on
a value function J� that is de
ned only over the post�decision states� If this

��

function is available� there is no need for the function �J � which de
nes values
for pre�decision states�

In principle� an optimal policy can be found by
rst numerically solving
Bellman�s equation and then computing the optimal policy using the resulting
value function� However� this requires computation and storage of J��y� for
each post	decision state� which is generally infeasible given the enormity of
state spaces for practical problems�

We now describe how the retailer inventory management problem was
formulated in terms of the DP framework we have described� First of all� the
state of the retailer system is described by a vector in which each component
corresponds to a bu�er �see Figure ��� At any time� each state variable takes
a value equal to the quantity of goods currently located at the corresponding
bu�er� Hence� the number of state variables �components of the state vector�
is equal to one plus the warehouse transportation delay plus the number of
stores times one plus the store transportation delay� Note that the size of the
state space here grows exponentially with the number of state variables� and
therefore quickly becomes intractable�

Each decision ut corresponds to a vector of store and warehouse orders
during the tth time step� The decision ut must be made on the basis of the
pre	decision state xt� Given the pre	decision state xt and the decision ut�
the post	decision state yt is generated deterministically� This involves the
entrance of goods ordered by the warehouse into the leftmost bu�er and the
transition of goods ordered by stores from the warehouse bu�er to appropriate
transportation bu�ers�

The post decision state yt is transformed as customer demands are ful
lled
and transportation progresses� The result of these transformations is the
next pre�decision state xt��� Note that the transition from yt to xt�� is
in�uenced by stochastic demands� In the context of our DP formulation�
demands correspond to the random noise term wt� The dynamics of the
state transitions can be inferred from the description of our retailer inventory
system model� provided in Section �� Nevertheless� to enhance clarity� we
present formal state equations in the appendix�

Costs g�yt� wt� are computed in a fairly straightforward manner as de	
scribed in Section �� The discount factor used in our formulation was �����
The reason is that policies will be evaluated in terms of average costs and set	
ting the discount factor close to one makes the discounted problem resemble
the average cost problem�

��

FeatureState

Feature
Vector

Parameter
Vector

Cost-To-Go
Extractor

Function
Approximator

Figure �� A feature�based approximation architecture�

� Neuro�Dynamic Programming

Dynamic programming o�ers a suite of algorithms for generating optimal con	
trol strategies� However� the overwhelming computational requirements asso	
ciated with these algorithms render them inapplicable in practical situations�
Due to a lack of other systematic approaches for dealing with such problems�
simpli
ed problem	speci
c analyses and heuristics have become the norm�
Such analyses and heuristics often ignore much information that is import	
ant to e�ective decision	making� leading to control policies that are far from
optimal� The recent emergence of neuro	dynamic programming puts forth an
exciting new possibility� New and highly promising approaches to address	
ing complex stochastic control problems have been developed in this
eld�
These approaches focus on approximating solutions that would be generated
by dynamic programming� except in a computationally feasible manner�

The main idea in neuro	dynamic programming is to approximate the map	
ping J� � S �� � using an approximation architecture� An approximation ar	
chitecture can be thought of as a function �J � S ��k �� �� NDP algorithms
try to
nd a parameter vector r � �k such that the function �J��� r� closely
approximates J��

In general� choosing an appropriate approximation architecture is a prob	
lem dependent task� In this research� we designed approximation architec	
tures involving two stages� a feature extractor and a function approximator
�see Figure ��� The feature extractor uses the post	decision state yt to com	
pute a feature vector zt� The components of zt are values that we thought
were natural for capturing key information concerning states of the retailer
inventory management problem� This feature vector was used as input to a
second stage� which involved a generic function approximator parameterized

��

by a vector r� Two types of function approximators were employed in this
research� linear approximators and the multilayer perceptron neural network
with a linear output node� In the case of the linear approximator� all but
one component of the parameter vector r correspond to coe�cients that are
multiplied by individual components of the feature vector� The remaining
component is a scalar o�set term� In the case of the multilayer perceptron�
the parameter vector r stores the weights of the network connections�

In the remainder of this section� we describe the NDP algorithms that were
used to tune parameters of our approximation architectures� The features we
used are described in Section �� The function approximators �linear and
multilayer perceptron� are well known� and we omit any detailed discussion
about them�

��� Approximate Policy Iteration

Approximate policy iteration is a generalization of policy iteration� a classical
algorithm in dynamic programming� The policy iteration algorithm generates
a sequence �i of improving policies� The initial policy �� is usually chosen
to be some reasonable heuristic� and the cost function J�� associated with
the policy is computed �one value is computed for each state�� Then� a new
policy �� is generated according to the equation

���x� � argmin
u�U

J���f��x� u���

The same procedure is iterated to generate subsequent policies� It is well	
known that for problems with a
nite number of policies� �i is equal to ��

and J�i is equal to J� for su�ciently large i�
In approximate policy iteration� instead of computing the cost function J�i

exactly at each iteration� the function is approximated by some architecture
�J��� ri�� where ri is a parameter vector chosen to make �J��� ri� close to J�i �
The subsequent policy is then generated via

�i���x� � argmin
u�U

�J�f��x� u�� ri��

There have been many methods used for approximating J�i in each ith
policy iteration� A comprehensive survey is provided in �Bertsekas and Tsit	
siklis� ������ In this research� we chose to use the on	line TD��� method�
which at each iteration� e�ectively computes the parameter vector ri that
minimizes X

x�S

�i�x�
�
J�i�x�� �J�x� ri�

��
�

��

where �i�x� stands for the relative frequency of occurrence of state x when
the system is controlled by policy �i� We refer the reader to �Bertsekas and
Tsitsiklis� ����� for a detailed discussion of this method�

��� An On�Line Temporal�Di�erence Method

Variants of the temporal	di�erence algorithm �Sutton� ����� Tsitsiklis and
Van Roy� ����� have been applied successfully to several large scale applic	
ations of NDP� Examples include a Backgammon player �Tesauro� ������
an elevator dispatcher �Crites and Barto� ������ and a job shop scheduling
method �Zhang and Dietterich� ������ The variants used in these applica	
tions bear signi
cant di�erences� and in this research project� we tried to
use a simple algorithm that possessed what we felt were the most import	
ant properties� In this section� we present the algorithm in its initial form�
This algorithmmay be viewed as an extreme form of optimistic approximate
policy iteration�� as discussed in �Bertsekas and Tsitsiklis� ������ As men	
tioned in Section �� this algorithm was not successful until we added active
exploration� which is discussed in the next section�

The algorithm updates the parameter vector of an approximation archi	
tecture during each step of a single endless simulation� In particular� we start
with an arbitrary parameter vector r� and generate a sequence rt using the
following procedure�

�� Given the initial pre�decision state x� of the simulator� generate a con	
trol u� by letting

u� � argmin
u�U

�J�f��x�� u�� r���

�� Run the simulator using control u� to obtain the
rst post	decision state

y� � f��x�� u���

�� More generally� at time t� run the simulator using control ut to obtain
the next pre	decision state

xt�� � f��yt� wt��

and the cost g�yt� wt��

�� Generate a control ut�� by letting

ut�� � argmin
u�U

�J�f��xt��� u�� rt��

��

�� Run the simulator using control ut�� to obtain the post	decision state

yt�� � f��xt��� ut����

�� Update the parameter vector via

rt�� � rt � �t

�
g�yt� wt� � �J�yt��� rt�� �J�yt� rt�

�
rr

�J�yt� rt��

where �t is a small step size parameter�

�� Return to step ����

��� Active Exploration

As we mentioned in the introduction� it was only after we added active ex	
ploration to the workings of the temporal	di�erence method that it performed
well� Note that the algorithm described in the previous section always up	
dates the parameter vector to tune the approximate values �J�x� r� at states x
visited by the current policy� which in turn are determined by the parameter
vector r� In some sense� the exploration here is passive� i�e�� only states that
naturally occur on the basis of the current approximation to the value func	
tion are visited� By active exploration� we refer to a mechanism that brings
about some tendency to visit a larger range of states�

Except for the steps involving generation of control decisions� the temporal	
di�erence algorithm that we used with active exploration follows the same
routine as that without active exploration� In particular� the algorithm can
be described by the steps enumerated in the previous section� except with the
equations of Steps ��� and ��� replaced by

u� � n� � argmin
u�U

�J�f��x�� u�� r���

and
ut�� � nt � argmin

u�U

�J�f��xt��� u�� rt��

respectively� where each nt is a noise term� Note that the only di�erence is
the addition of a noise term� The structure of the noise term is described on
a case	by	case basis in the next section�

��

� Results With the NDP Approach

In this section� we present the results obtained from applying the NDP ap	
proaches we developed to the retailer inventorymanagementproblem� Through
our development� much of which occurred in the process of experimentation�
we arrived at an approach that was successful relative to the heuristic s	type
policies� To the extent of our experimentation� the method also proved to be
robust to changes in problem	speci
cs�

In this section� we present a relatively detailed account of our experi	
mental results� Experiments were conducted using three di�erent problems
as test beds� each described in the following subsections with its associated
experiments�

	�� Initial Experiments With a Simple Problem

The
rst set of experiments involved optimization of a very simple retailer in	
ventory system� The purpose of these experiments was to debug the software
packages developed in the initial stages of research and also to ensure that
the NDP methodologies worked reasonably well on a simple problem� before
moving to complex situations�

The system included only one store in addition to the warehouse� There
was no delay for goods ordered by the warehouse� and there was a delay of
only one time unit between the warehouse and the store� There were there	
fore only three state variables involved �each corresponding to the quantity
of goods within a bu�er�� The list of parameter settings for this problem
are provided in the table below� Note that we also have provided the true
mean and standard deviation of demands �recall from Section � that the mean
and standard deviation parameters do not correspond to the true mean and
standard deviations of the resulting stochastic demands��

��

number of stores �

delay to stores �

delay to warehouse �

production capacity ��

warehouse capacity ��

store capacity ��

probability of customer waiting �

cost of special delivery ��

warehouse storage cost �

store storage cost �

mean demand �true mean� � �����

demand stdev �true stdev� � �����

shortage cost ��

As a baseline for comparison� we developed an s	type policy� optimizing
the order	up	to levels associated with the warehouse and store� Figure � illus	
trates how varying the order	up	to levels a�ects the average cost of the policy�
Each point on the graph is computed by averaging costs over a lengthy simu	
lation� The optimal order	up	to levels turned out to be �� for the warehouse
and �� for the store� The corresponding average cost was �����

Several NDP algorithms were tried with a single approximation architec	
ture� The architecture consisted of a multilayer perceptron with ten hidden
nodes in a single hidden layer� Three features were used as input to the net	
work� each a normalized version of one of the state variables� In particular�
if the bu�er levels at a given point in time were bi� i � �� �� �� then the ith
input feature was given by

ci �
bi � �bi
�i

�

The �bi�s and �i�s were computed prior to execution of the NDP algorithm
as follows� A large collection of �post	decision� states sampled while simu	
lating the heuristic policy �with the optimal order	up	to levels� was collected�
From this data� each �bi was set equal to the sample mean of the ith state
variable� and each �i was set equal to the sample standard deviation of the
ith state variable�

The approximate policy iteration algorithm� in the form described in Sec	
tion �� was tried on the problem� The s�type policy �with optimized order	up	
to levels� was used as the initial policy� This algorithm consistently generated
a second policy that was far worse than the initial one�

��

0
10

20
30

40
50

0

10

20

30

40

50

50

100

150

200

250

300

350

store level

warehouse level

av
er

ag
e

co
st

Figure �� Performance of the heuristic as a function of order	up	to levels� The
optimum levels was �� for the warehouse and �� for the store� With these
levels� the average cost was �����

Upon failure of the approximate policy iteration algorithm� experiments
were conducted using the on	line temporal	di�erence method� Again� only
policies that were far worse than the heuristic were generated�

Next� we tried adding a small degree of exploration to the on	line temporal
di�erence method� In particular� each time a decision was generated using
the approximation architecture �J � a noise term was added to the decision�
Recall that there are two decision variables� the warehouse order and the
store order� The noise term was generated by adding a unit normal random
variable to each decision variable� rounding o� to the closest integer in each
case� and then making sure the decision variables stayed within their limits�
That is� if the noise term made a variable negative� the variable was set to
zero� and if the noise term made a variable too large �e�g�� having a warehouse
order greater than the production capacity�� then the variable was set to its
maximum allowable value�

With the extra exploration term� the on	line temporal	di�erence method
essentially matched the performance of the heuristic� Figure � displays the
evolution of average cost as the algorithm progresses in tuning the parameters
of the multilayer perceptron� in experiments performed both with and without
active exploration� In both cases� a step size �t � ���� was used for the
rst
�� ��� time steps� and a step size �t � ����� was used for the next �� ���

��

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
7

50

55

60

65

70

75

80

85

90

95

100

number of steps

av
er

ag
e

co
st

 o
ve

r
pr

ev
io

us
 1

00
00

 s
te

ps

Figure �� A demonstration of the importance of exploration� The two
plots show the evolution of average cost using the on	line temporal	di�erence
method with �lower plot� and without �higher plot� exploration� Each point
represents cost averaged over ten thousand consecutive time steps during the
execution of an algorithm�

time steps�
Note that in the graph of Figure � associated with the exploratory version

of the algorithm� the average cost is computed during the execution of the al	
gorithm� and is thus a�ected by the active exploration� In particular� a policy
based on the
nal approximate value function without any exploratory term
should perform better than the policy with active exploration �the exploration
is there to improve the learning and discovery� process that the algorithm
goes through� rather than to improve performance of a policy at any given
time�� Indeed� a simulation employing a non	exploratory policy based on the

nal approximate value function generated an average cost of ����� which was
slightly better than average costs sampled during execution of the exploratory
on	line algorithm�

	�� Case Study �

With the success of the on	line temporal	di�erence method on a simple prob	
lem� a subsequent set of experiments was conducted on a more complex test
bed� The parameters used for the retailer inventory management problem of

��

this case study are given in the table below�

number of stores ��

delay to stores �

delay to warehouse �

production capacity ���

warehouse capacity ����

store capacity ���

probability of customer waiting ���

cost of special delivery �

warehouse storage cost �

store storage cost �

mean demand �true mean� � �����

demand stdev �true stdev� �� �����

shortage cost ��

Once again� an s�type heuristic policy was developed by optimizing over
order	up	to levels� Since the properties of all stores were identical� we as	
sumed that the order up	to	levels of all stores should be the same� and there
were again only two variables to optimize� a warehouse order	up	to level and
a store order	up	to level� Figure � shows how the average cost of the sys	
tem varies with these two variables� Each value in the graph was computed
from a lengthy simulation� The optimal order	up	to levels were ��� for the
warehouse and �� for each store� The corresponding average cost was �����

In the simple problem of the previous section� there were only two invent	
ory sites for which orders had to be placed� In the more complex problem of
this section� on the other hand� there are eleven inventory sites� and exhaust	
ing all possible combinations of orders that can be made for these eleven sites
would take too long� In particular� the minimizations carried out in steps
��� and ��� of the on	line temporal	di�erence method would be essentially
impossible to carry out� Because of this� we constrained the decision space
to a more manageable subset�

First of all� we represented decisions in terms of two variables� a ware	
house order and a store order	up	to level� Given particular values for the two
variables� the individual store orders would be set to exactly what the s�type
policy described in Section � would set them to given the store order	up	to
level� Note� however� that unlike the case of the heuristic s�type policy� the
store order	up	to	level here is chosen at each time step� rather than taken to
be a
xed constant�

��

0
10

20
30

40

0

200

400

600

1000

2000

3000

4000

5000

6000

store level

warehouse level

av
er

ag
e

co
st

Figure �� Performance of the heuristic as a function of order	up	to levels�
The optimum levels were ��� for the warehouse and �� for each of the stores�
With these levels� the average cost was �����

To further accelerate execution of the on	line temporal	di�erence method�
we limited the space of decisions considered at each time step to the set
involving warehouse orders ranging from �� to ��� in increments of �� and
store order	up	to levels ranging from � to �� in increments of �� There were
therefore a total of �� possible decisions considered at each time step� The
minimization in Step ��� of the temporal	di�erence algorithm was carried out
by exhaustive enumeration of these �� possible decisions�

The approximation architectures employed in this case study involved the
use of the following �� features�

��� total inventory at stores
��� total inventory to arrive at stores in one time step
��� total inventory to arrive at stores in two time steps
��� inventory at warehouse
��� inventory to arrive at warehouse in one time step
��� inventory to arrive at warehouse in two time steps
��� inventory to arrive at warehouse in three time steps
���	���� the squares of ���	���
���� variance among stores of inventory levels

��

���� variance among stores of inventory levels plus inventory to arrive in one
time step
���� variance among stores of inventory levels plus inventory to arrive within
two time steps
���� the product of ��� and ���
���� the product of ��� and the sum of ��� through ���
���� the sum of ��� through ��� times the sum of ��� through ���
���� the sum of ��� through ��� times the sum of ��� through ���
���� the product of ���� ���� and ���

By variance among stores �as in features ���� through ������ we mean
the average among stores of the square of the di�erence between quantities
associated with each store and the average of such quantities over the stores�

The feature values were normalized using an approach analogous to that
used in the context of the simple problem from the previous section� In
particular� a data set was collected from simulations using the s	type policy�
and this data was used to compute means and standard deviations associated
with each feature� These mean and standard deviation values were then used
as normalization parameters just as in the previous section�

For active exploration� noise terms were added to the decisions generated
using the approximate value function at each step of the temporal	di�erence
algorithm� The way noise terms were added is completely analogous to the
method employed in the previous section� except that this time the noise term
added to the warehouse order involved a normal random variable with a mean
of zero and a standard deviation of
ve� Furthermore� the noise terms added
to the store orders were independent from one another�

We began by using a feature	based linear architecture with the features
described� We experimented with di�erent step sizes to better understand
how the temporal	di�erence method was working with this problem� We
found that the performance tended to diverge with larger step sizes� and
improved at an extremely slow rate when the step sizes were reduced enough
to prevent divergence� Upon investigation of feature values� it was found
that feature ���� was taking on values far larger than those that appeared
when the system was controlled by the s	type policy� Hence� we increased the
standard deviation parameter associated with this feature to scale its values
down signi
cantly� Once this was done� performance improved at a much
faster rate upon execution of the temporal	di�erence algorithm�

Two variations on the initial architecture�algorithm were explored� One
involved replacing the linear function approximator with a multilayer per	

��

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
6

1000

1200

1400

1600

1800

2000

2200

2400

number of steps

av
er

ag
e

co
st

 o
ve

r
pr

ev
io

us
 5

00
0

st
ep

s

Figure �� Evolution of average cost using the on	line temporal	di�erence
method with a linear architecture and a small degree of exploration� a single
hidden layer� �� hidden node� multilayer perceptron and a small degree of
exploration� and a linear architecture with a greater degree of exploration
�all three cases generated very similar plots�� Each point represents cost
averaged over
ve thousand consecutive time steps during the execution of an
algorithm� The
nal average costs associated with the three approximation
schemes after this training were ����� ����� and ����� respectively �versus
���� for the heuristic��

ceptron with a single hidden layer of ten nodes� The other variation used
the original linear architecture� but with an increased degree of exploration�
Here the random noise term added to the warehouse order involved a nor	
mal random variable with a standard deviation of ten� and that added to the
store orders involved a normal random variable with a standard deviation of
two� Figure � charts the evolution of average cost during the execution of
the temporal	di�erence algorithm in all three of these cases� In the two cases
involving linear architectures� the step size was maintained at �t � �������
while with the multilayer perceptron	based architecture� the step size was
�t � ������ during the
rst ��� million steps and �t � ������� thereafter�
These step size schedules were chosen after some trial and error�

All three variants of on	line temporal	di�erencemethods generated policies
superior to the heuristic� In particular� the linear architectures generated
policies with average costs of ���� �less active exploration� and ���� �more

��

0 0.5 1 1.5 2 2.5

x 10
6

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

number of steps

va
lu

es
 o

f c
oe

ffi
ci

en
ts

Figure �� Evolution of coe�cient values during training using the on�line
temporal �di�erence method with a linear architecture and a small degree of
exploration�

active exploration�� while the multilayer perceptron architecture led to an
average cost of ����� Hence� the best policy cut costs by about ten percent
relative to the heuristic� Figure � charts the evolution of parameter values
in the linear feature	based architecture as they were tuned by the on	line
temporal di�erence method with the lesser degree of exploration�

	�� Case Study �

We tested the on�line temporal di�erence algorithm on an additional problem
of even greater complexity than the previous one� The parameters for this
new problem are given in the table below�

��

0
20

40
60

80
100

0

200

400

600

800

1000

1000

2000

3000

4000

5000

store level

warehouse level

av
er

ag
e

co
st

Figure �� Performance of the heuristic as a function of order	up	to levels�
The optimum levels were ��� for the warehouse and �� for each of the store�
With these levels� the average cost was �����

number of stores ��

delay to stores �

delay to warehouse �

production capacity ���

warehouse capacity ����

store capacity ���

probability of customer waiting ���

cost of special delivery �

warehouse storage cost �

store storage cost �

mean demand �true mean� � �����

demand stdev �true stdev� �� ������

shortage cost ��

Once again� an s�type heuristic policy was developed by optimizing over
order	up	to levels� Figure � shows how the average cost of the system varies
with the two order	up	to levels� Each value in the graph was computed from a
lengthy simulation� The optimal order	up	to levels were ��� for the warehouse
and �� for each store� The corresponding average cost was �����

��

As in the previous section� decisions were represented in terms of two
variables� a warehouse order and a store order	up	to level� This time� the
decision space was limited to warehouse orders ranging from �� to ��� in in	
crements of �� and store order	up	to levels ranging from � to �� in increments
of �� for a total of �� possible decisions considered at each time step�

The approximation architectures employed in this case study involved the
use of the following �� features�

��� total inventory at stores
��� total inventory to arrive at stores in one time step
��� total inventory to arrive at stores in two time steps
��� total inventory to arrive at stores in three time steps
��� inventory at warehouse
��� inventory to arrive at warehouse in one time step
��� inventory to arrive at warehouse in two time steps
��� inventory to arrive at warehouse in three time steps
��� inventory to arrive at warehouse in four time steps
���� inventory to arrive at warehouse in
ve time steps
����	���� the squares of ���	����
���� variance among stores of inventory levels
���� variance among stores of inventory levels plus inventory to arrive in one
time step
���� variance among stores of inventory levels plus inventory to arrive within
two time steps
���� variance among stores of inventory levels plus inventory to arrive within
three time steps
���� the product of ��� and ���
���� the product of ��� and the sum of ��� through ���
���� the sum of ��� through ���� times the sum of ��� through ���
���� the sum of ��� through ��� times the sum of ��� through ���
���� the product of ���� ���� and ����

The feature values were normalized using the same approach as in the
previous case study� except that this time� the scaling parameter associated
with feature ��� was the one that needed to be increased�

Noise terms were once again added to the orders during execution of the
temporal	di�erence algorithm� The noise terms used here were exactly the
same as the smaller noise terms of the two tried in the previous section�

��

0 0.5 1 1.5 2 2.5

x 10
6

1200

1300

1400

1500

1600

1700

1800

1900

number of steps

av
er

ag
e

co
st

 o
ve

r
pr

ev
io

us
 5

00
0

st
ep

s

Figure ��� Evolution of average cost using the on	line temporal	di�erence
method with a linear architecture and a small degree of exploration� Each
point represents cost averaged over
ve thousand consecutive time steps dur	
ing the execution of an algorithm� The
nal average cost associated with
the approximation scheme after this training �without exploration� was ����
�versus ���� for the heuristic��

We used a feature	based linear architecture with the features we have
described� Figure �� charts the evolution of average cost during the execution
of the temporal	di�erence algorithm� The step size was �t � ������ during
the
rst million steps and �t � ������� thereafter�

Once again� the on	line temporal	di�erence method generated a policy
superior to the heuristic� The average cost was ����� a savings of almost ten
percent relative to the heuristic�s average cost of �����

	 Conclusions

Through this study� we have demonstrated that NDP can provide a viable
approach to advancing the state	of	the	art in retailer inventory management�
The method we have developed outperformed a well	accepted heuristic ap	
proach in two case studies�

Though the problems we solved in this research were truly complex from
a technical standpoint� not much e�ort was directed at ensuring that the
models re�ected all the practical issues inherent in real	world retailer invent	

��

ory systems� Further research is required to translate the methods we have
developed into those that could be truly bene
cial in a real	world application�

Finally� it may be possible to improve the results obtained in this research�
Alternative choices of architectures and algorithms may lead to further re	
ductions in inventory costs� Also� since performance is measured in terms
of average cost� formulating the problem in terms of average�cost �rather
than discounted cost� dynamic programming and employing NDP algorithms
that directly address such formulations may enhance performance� Such al	
gorithms are discussed in �Bertsekas and Tsitsiklis� ����� and analyzed in
�Abounadi et al�� ����� and �Tsitsiklis and Van Roy� ������

Acknowledgments

We would like to thank colleagues at Unica and the Laboratory for Inform	
ation and Decision Systems for useful discussions� feedback� proof�reading�
and help with various other matters� In particular� special thanks go to Ruby
Kennedy� Bob Crites� and Steve Patek�

A State Equations

In this appendix� we formalize the retailer inventory system model by provid	
ing explicit state equations� The purpose here is to make our description
precise using mathematical notation� We do not intend to generate a bet	
ter intuitive understanding of the model dynamics� which have already been
discussed at length in Section ��

Recall that� for each time t� there are associated pre�decision and post�
decision states� denoted by xt and yt� respectively� Each post�decision state
is given by yt � f��xt� ut�� for some function f�� where ut is a decision
representing orders placed at time t� On the other hand� each pre�decision
state is given by xt�� � f��yt� wt�� for some function f�� where wt is a random
variable representing demands that arise at time t� To formally de
ne the
dynamics of the model� we will describe the structure of the state vectors xt
and yt� the decisions ut� the random variables wt� and the system functions
f� and f��

A�� State Vectors

Both pre�decision and post�decision states represent quantities of inventory
contained in bu�ers of the system �see Figure ��� Suppose we have K stores

��

indexed by i � �� � � � � K� Let q��T be the quantity of inventory that is currently
being transported and will arrive at the warehouse in T days� Similarly� let
qi�T be the quantity to arrive at the ith store in T days� We use q��� and
q���� � � � � qK�� here to represent the current levels of inventory at the warehouse
and the stores� Let Dw and Ds be the delays for transportation of goods to
the warehouse and from the warehouse to the stores� Then� a vector

x �
�
q���� � � � � q��Dw � q���� � � � � q��Ds� � � � � qK��� qK�Ds

�
captures all relevant information concerning current inventory levels� The
vectors xt and yt take on this general structure�

A�� Decisions

We represent decisions by vectors of the form

ut �
�
a�� a�� � � � � aK

�
�

where a� denotes a warehouse order and a�� � � � � ak denote the store orders� In
order to enforce that orders and inventory levels are positive and that storage
and production capacities are not exceeded� several constraints are placed on
the decision space� Given a current pre�decision state

xt �
�
q���� � � � � q��Dw � q���� � � � � q��Ds� � � � � qK��� qK�Ds

�
�

the constraints on ut are captured by the following inequalities�

ai � �� 	i � f�� � � � � Kg�

a�
 Cp�

KX
i��

ai
 q����

a�
 Cw �
DwX
T��

q��T �
KX
i��

ai�

ai
 Cs �
DsX
T��

qi�T � 	i � f�� � � � � Kg�

whereCp denotes the production capacity�Cw denotes the warehouse capacity�
and Cs denotes the store capacity�

��

A�� Random Variables

The vectors wt re�ect all random factors that can in�uence the system during
the given time period� This includes the demands that arise at each store as
well as the willingness of each customer to place a special order in the event
of a shortage� We employ a representation of the form

w �
�
d�� � � � � dK� b

�
�

where each di is the demand that arises at the ith store on a given day and
b is a scalar in ��� �� that we will interpret as a string of bits by taking the
binary representation� Each di is generated according to

di �

�
zi �

�

�

��
�

where each zi is independently sampled and normally distributed with

zi � N��� ���

where � and � are the mean and standard deviation parameters used in
de
ning the model�

The bit string b � �b�� b�� � � �� provides information about the willingness
of individual customers to wait for special deliveries� Each bit bj is an in	
dependent Bernoulli sample that is equal to � with probability Pw � where
Pw is the probability that a customer is willing to wait� We denote by H a
hashing function that associates to each of the

PK
i�� di units of demand an

index H�i� j�� where i is the index of a particular store and j is the index
of a customer arriving at that store on the given day� We associate with
bH�i�j� � � the fact that the customer would be willing to wait for a special
delivery� We do not elaborate the details of this hashing function since they
are inconsequential so long as the function is one�to�one �i�e�� each customer
gets mapped to a di�erent index��

A�� System Functions

To complete our model description� we must de
ne the two system functions
f� and f�� Let us start by de
ning the transformation yt � f��xt� ut� from
pre�decision to post�decision states� Suppose that a vector xt is given by

xt �
�
q���� � � � � q��Dw � q���� � � � � q��Ds� � � � � qK��� qK�Ds

�
�

��

In terms of the bu�er inventory levels� the decisions bear immediate con	
sequences upon the the quantities q��Dw � q���� and q��Ds � � � � � qK�Ds� In partic	
ular� given a decision

ut �
�
a�� a�� � � � � aK

�
�

the new quantities are given by

�q��Dw � q��Dw � a��

�q��� � q��� �
KX
i��

ai�

�qi�Ds � qi�Ds � ai� 	i � f�� � � � � Kg�

where the post�decision state is

yt �
�
�q���� � � � � �q��Dw � �q���� � � � � �q��Ds� � � � � �qK��� �qK�Ds

�
�

Now let

yt �
�
q���� � � � � q��Dw � q���� � � � � q��Ds� � � � � qK��� qK�Ds

�
�

wt �
�
d�� � � � � dK� b

�
�

xt�� �
�
�q���� � � � � �q��Dw � �q���� � � � � �q��Ds� � � � � �qK��� �qK�Ds

�
�

In order to simplify the equations involved� we break our de
nition of the
transformation xt�� � f��yt� wt� into three steps� using qi��� i � f�� � � � � Kg�
as intermediate variables� First� demands are
lled by stores according to

 qi�� � �qi�� � di!
�� 	i � f�� � � � � Kg�

Second� special orders are
lled by the warehouse according to

 q��� �

	

qi�� � KX

i��

	di�qi��
�X
j��

bH�i�j�

�
�
�

�

Finally� transportation of goods progresses according to

�q��� � q��� � q����

�q��T � q��T��� 	T � f�� � � � � Dw � �g�

�q��Dw � ��

�qi�� � qi�� � qi��� 	i � f�� � � � � Kg�

�qi�T � qi�T��� 	i � f�� � � � � Kg� T � f�� � � � � Ds � �g�

�qi�Ds � ��

��

References

Abounadi� J�� Bertsekas� D�P�� and Borkar� V�S� ������ ODE Analysis for
Q�Learning Algorithms�� Lab for Information and Decision Systems
Draft Report� Massachusetts Institute of Technology� Cambridge� MA�

Bertsekas� D� P� ������Dynamic Programming and Optimal Control� Athena
Scienti
c� Bellmont� MA�

Bertsekas� D� P�� and Tsitsiklis� J� N� ������ Neuro�Dynamic Programming�
Athena Scienti
c� Bellmont� MA�

Crites� R� H�� and Barto� A� G ������ Improving Elevator Performance
Using Reinforcement Learning�� Advances in Neural Information Pro�

cessing Systems �� Touretzky� D� S�� Mozer� M� C�� and Hasselmo� M�
E�� eds�� MIT Press� Cambridge� MA�

Lee� H� L�� and Billington� C� ������ Material Management in Decentral	
ized Supply Chains�� Operations Research� vol� ��� no� �� pp� ���	����

Nahmias� S�� and Smith� S� A� ������ Mathematical Models of Inventory
Retailer Systems� A Review�� Perspectives on Operations Management�

Essays in Honor of Elwood S� Bu�a� Sarin� R�� editor� Kluwer Academic
Publishers� Boston� MA� pp� ���	����

Nahmias� S�� and Smith� S� A� ������ Optimizing Inventory Levels in a
Two Echelon Retailer System with Partial Lost Sales�� Management

Science� Vol� ��� pp� ���	����

Sutton� R� S� ������ Learning to Predict by the Methods of Temporal
Di�erences�� Machine Learning� vol� ��

Tesauro� G� J� ������ Practical Issues in Temporal�Di�erence Learning��
Machine Learning� vol� ��

Tsitsiklis� J� N�� and Van Roy� B� ������ An Analysis of Temporal�Di�erence
Learning with Function Approximation�� to appear in IEEE Transac�

tions on Automatic Control�

Tsitsiklis� J� N�� and Van Roy� B� ������ AverageCost Temporal�Di�erence
Learning�� working paper�

Zhang� W�� and Dietterich� T� G� ������ A Reinforcement Learning Ap	
proach to Job Shop Scheduling�� Proceedings of the IJCAI�

��

