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Abstract. We consider a blind identification problem in which we aim to recover a statistical model of a network
without knowledge of the network’s edges, but based solely on nodal observations of a certain process.
More concretely, we focus on observations that consist of snapshots of a diffusive process that evolves
over the unknown network. We model the network as generated from an independent draw from
a latent stochastic block model (SBM), and our goal is to infer both the partition of the nodes
into blocks, as well as the parameters of this SBM. We present simple spectral algorithms that
provably solve the partition recovery and parameter estimation problems with high accuracy. Our
analysis relies on recent results in random matrix theory and covariance estimation, and associated
concentration inequalities. We illustrate our results with several numerical experiments.
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1. Introduction. We consider the problem of inferring a statistical model of a network
with unknown adjacency matrix A ∈ {0, 1}n×n, based on several snapshots of a dynamical
process that evolves over the network. Specifically, we are interested in the following setup (a
more detailed description will be provided in Section 3): We observe s independent samples

x
(1)
T , . . . ,x

(s)
T of a dynamical process at a fixed time T . Each sample is generated by the

discrete-time system

(1.1) x
(i)
t+1 = f(A)x

(i)
t , i = 1, . . . , s,

initialized at some unknown x
(i)
0 , modeled as a random vector with unit covariance matrix

(E[x
(i)
0 [x

(i)
0 ]>] = I) drawn from some sub-Gaussian distribution (e.g., a standard multivariate

Gaussian), and independently for each i. Furthermore, we assume that the function f describing
the dynamical network process is known. Finally, A is assumed to be drawn independently
according to a stochastic block model (SBM), so that A is the same, albeit unknown, for each

sample x
(i)
T . Based on such data, our task is to identify the generative model underpinning the

network: we wish to infer the parameters and the latent node partition of the SBM, without

observing the network edges, by relying solely on the observations {x(i)
T }si=1 at the nodes.

1.1. Motivation. In many applications we are confronted with the following scenario: we
observe snapshots of the state of a system at particular times, and based on these observations
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we wish to infer the nature of the (dynamical) interactions between the entities that we observe.
Examples abound and can be found across different fields [17,18,37].

Consider, e.g., measuring some node activities such as the expression of opinions at s
different, sufficiently separated instances of time in a social network. While the underlying social
connections are typically not observable, the latent (unobserved) network will be essentially
static, and may be assumed to have emerged according to some homophilic interactions
describable by an SBM. The measured opinion profiles will be shaped by both some (random)
initial personal opinions of the individuals as well as certain network effects. Similar examples
may arise when measuring (structurally stable) biological systems responding to different
stimuli. For instance, we might have access to a set of measurements from certain regions of
the brain, and would like to infer the coupling between these regions.

The above are canonical examples of problems where the system of interest is composed
of a large number of different entities and can be conveniently conceptualized as a network.
In this abstraction, nodes represent the individual entities and the couplings between these
nodes take place along the edges of the network. In many settings, we may have reason to
believe that an observed dynamical process emerges from the interaction between nodes over
such a network. While we may have some knowledge about the dynamics of each individual
agent, the edges of the network – which enable the interactions between nodes – are often
unknown or only partially known. In such cases it is often desirable to learn the structure of
the network based on observational data. This is a general class of network inference problems,
which is a fundamental constituent of network analysis, but has received limited attention.

On the other hand, there are many situations where inferring exactly the couplings in the
network e.g., identifying all edges, is out of reach, for a number of reasons. First, we may
not have access to sufficiently many samples. Second, the data and the network itself may be
subject to some fluctuations with associated uncertainties. Finally, we may only be able to
partially observe the dynamical system, so that the full model is non-identifiable.

In such cases, it is then reasonable to aim at an approximate description of the system at
hand, in terms of a statistical model that captures the coarse-grained features of the underlying
network. This is precisely the type of problem addressed in this paper, for the special case
where the dynamics are of a linear, diffusive type, and the network model to be inferred is an
SBM.

1.2. Contributions. We present a rigorous study of blind model identification for random
networks. Our main contributions are as follows:

First, we present general algorithmic ideas on how to solve a blind identification problem
using spectral methods, and introduce simple algorithms to solve the concrete problems
considered in this paper (see Sections 4 and 5, and Algorithms 4.1 and 5.1).

Second, we establish a concentration inequality about the covariance matrix of the observed
samples (see Theorem 4.1), which ultimately enables us to quantify the estimation error.

Finally, we discuss how this concentration result translates into bounds on the estimation
errors for the parameters of the SBM, and provide explicit bounds for the recovery error of the
latent partitions (see Theorems 4.2 and 5.2).

1.3. Related work. Many different network inference notions have featured in the literature,
ranging from estimating “functional” couplings, based on statistical association measures such
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as correlation or mutual information [12,25], all the way to causal inference [36]. The notion of
inference that we consider here is what may be called “topological” inference: given a system
of dynamical units, we want to infer their direct “physical” interactions [37]. More specifically,
for an evolving dynamical process we would like to infer the underlying adjacency matrix. This
may be viewed as a system identification problem, as considered in Control Theory [17,18].
However, in the system identification literature, one can usually control the inputs to the
system and observe the full system response. This is different from our setting, where there is
no control, and we only observe a limited number of snapshots.

Problems of network identification that are somewhat similar to ours have received wide
interest in the literature recently, using techniques from optimization, spectral analysis, and
statistics [4, 8, 9, 15, 21–23,30,32, 33,35,40,45]. In particular, the case of diffusive dynamics,
similar to ours, is considered in [34] and [35], which aim at inferring the network topology
based on the (cross-) power spectral density of a consensus process driven by noise, and a node
knockout strategy. Methods combining spectral identification with optimization techniques
are studied in [9, 10,32,45].

In all of the above works, however, the focus is on inferring the exact network topology,
i.e., the complete specification of the network in terms of its adjacency or Laplacian matrices.
In contrast, our target is not to infer a specific network coupling, but rather to identify a
statistical model thereof. Stated differently, our goal is to infer a distribution over networks
that is compatible with the available observations. This scenario is particularly relevant if our
ability to reconstruct the network is limited by the amount of samples that we can obtain.
Closest to our approach here is the conference paper [29], in which a related observational
model is discussed with a new adjacency matrix drawn for each sample in (1.1), and which
provides results about the asymptotic consistency of partition recovery. In contrast, we provide
non-asymptotic results in the number of samples and, in addition, we discuss the problem
of parameter estimation. The works [41, 42] focus on recovering the network partition for
low-rank excitation signals, but do not aim to infer a generative model. The work by Hoffmann
et al. [11] discusses related ideas; it presents a factor model and a Bayesian inference scheme,
but does not provide any theoretical analysis.

Finally, the mathematical machinery that we use has connections to ideas from spectral
methods for clustering on graphs and SBM recovery [26, 27, 39], and is related to the statistics
literature on so-called “spiked” random matrices, with a low-rank signal component. In
particular, our development relies on recent results regarding the efficiency of estimating
low-rank covariance matrices [3].

1.4. Outline. The rest of the paper is structured as follows. After briefly reviewing
relevant preliminaries and notation in Section 2, in Section 3 we formally introduce the
identification problem that we will study. We then present our main results and algorithmic
ideas on recovering the latent partitions of the SBM in Section 4. Building on those insights,
in Section 5 we discuss procedures for learning the parameters of the SBM. Section 6 contains
the proofs of our main technical results, and in Section 7 we present computational experiments
to numerically assess the performance of our methods. We conclude with a brief discussion,
and outline possible avenues for future work.
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2. Preliminaries.

2.1. Networks. An undirected network G consists of a node set V of known cardinality
n, an edge set E of unordered pairs of elements of V, and edge weights Aij ∈ {0, 1}n×n such
that Aij = Aji = 1 if and only if (i, j) ∈ E . The edge weights Aij can be conveniently
collected as entries of a symmetric adjacency matrix A. We define the diagonal degree matrix
D = diag (A1), and then define the normalized adjacency matrix as L = D−1/2AD−1/2. Note
that L is a shifted version of the normalized Laplacian matrix of the graph, and is sometimes
referred to in the literature simply as the “normalized Laplacian” [26,27].

2.2. The stochastic block model. The SBM is a latent variable model that defines a
probability measure over the set of undirected networks of fixed size n, represented by an
adjacency matrix A ∈ {0, 1}n×n. In an SBM, the network is assumed to be partitioned into
k groups of nodes, so that each node i is endowed with a latent group label gi ∈ {1, . . . , k}.
Given these latent group labels, each link Aij is an independent Bernoulli random variable
that takes value 1 with probability Ωgi,gj and value 0 otherwise; that is, the probability of a
link between two nodes depends only on their group labels:

Aij |gi, gj ∼ Ber(Ωgi,gj ).

To compactly describe the model, we collect link probabilities between the different groups
in a symmetric affinity matrix Ω = [Ωij ] ∈ [0, 1]k×k. Furthermore we define a partition indicator
matrix G ∈ {0, 1}n×k, with entries Gij = 1 if node i is in class j and Gij = 0 otherwise. Based
on these definitions, we can write the expected adjacency matrix under the SBM, given the
partition and the class labels as1

(2.1) A := E[A |G] = GΩG>.

As A encodes all the parameters of an SBM, we will in the sequel refer to such a stochastic
block model as M(A).

Equation (2.1) shows that, in expectation, the SBM leads to a network that has an
adjacency matrix with a low-rank block structure. Due to this special structure, there exists
a simple relationship between the partition indicator matrix G and the eigenvectors of the
normalized version of the expected adjacency matrix

L := E[D]−1/2E[A]E[D]−1/2,

which is given in Lemma 2.1 below, and proved in the Appendix. We denote the eigenvalues
of L by µi, and assume that they are sorted in order of decreasing magnitude, so that
|µ1| ≥ |µ2| ≥ · · · ≥ |µk| > |µk+1| = · · · = |µn| = 0.

Lemma 2.1. Consider the matrix V = [v1, . . . ,vk] of eigenvectors of L corresponding to
the k nonzero eigenvalues. Then, there exists an orthogonal matrix U such that

(2.2) V = G(G>G)−1/2U .

1Note the slight abuse of notation here with respect to the conditional expectation. We treat the partition
indicator matrix G as a degenerate random variable with a deterministic, but unknown value.
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Moreover, if we define the row-normalized eigenvector matrix Ṽ = diag(V V >)−1/2V , then

(2.3) Ṽ = GU .

Given an SBM with an expected adjacency matrix A as described above, let us denote
the expected degree of node i by δi := E[Dii] = [A1]i, and let δmin be the smallest expected
degree. We define the following class of SBMs with n nodes.

Definition 2.2 (SBMs with concentration property). Consider an SBM M(A) with n nodes
and minimal expected degree δmin. We define the following set of SBMs:

Mn(ε) :=

{
M (A) | δmin > 3

(
1 + ln

(
4

ε

))
ln(n)

}
The condition on the minimal degree essentially restricts Mn(ε) to correspond to models that
generate connected graphs with high probability. Indeed, if we were to consider an Erdős-Rényi
graph, it is well known that if δmin > cln(n), with c > 1, a random graph is connected with
high probability, as n → ∞. If we were to observe the graph sampled from an SBM, the
exact recovery of the partition with high-probability is indeed only possible under this type of
condition [1].

For the above class of models the following concentration result can be established.

Lemma 2.3 (Concentration for normalized adjacency matrix). Fix an arbitrary ε > 0.
Consider a normalized adjacency matrix L := D−1/2AD−1/2 computed from an adjacency
matrix A generated according to an SBM model M(A). Then, if M(A) ∈Mn(ε) the following
bound holds with probability at least 1− ε:

‖L−L‖ ≤ 3

√
3 log(4n/ε)

δmin
,

where we recall that L := E[D]−1/2E[A]E[D]−1/2.

Lemma 2.3 follows from a result by Chung and Radcliffe [5]. The proof, which parallels [5], is
given in the Appendix for completeness.

2.3. Sub-Gaussian random vectors. For convenience, we recall here the definition of
sub-Gaussian random variables and vectors.

Definition 2.4 (Sub-Gaussian random variables and vectors). A zero-mean random variable
x ∈ R is sub-Gaussian if there exists a constant σ > 0 such that E[exp(tx)] ≤ exp(t2σ2/2), for
all t ∈ R. A zero-mean random vector x ∈ Rn is sub-Gaussian if for any non-random u ∈ Rn,
the random variable z = u>x is sub-Gaussian.

Note that any Gaussian random variable or vector is sub-Gaussian. We also define the
sub-Gaussian norm as follows.

Definition 2.5 (Sub-Gaussian norm [3]). The sub-Gaussian norm of a sub-Gaussian random
variable x is ‖x‖Ψ2 := supk≥1 k

−1/2(E|x|k)1/k. For a sub-Gaussian random vector x, the
sub-Gaussian norm ‖x‖Ψ2 is defined as ‖x‖Ψ2 := supu∈Rn\{0} ‖u>x‖Ψ2/‖u‖.



6 M. T. SCHAUB, S. SEGARRA, AND J. TSITSIKLIS

3. The blind identification Problem. We now introduce the specific inference problem
that we will study. We consider the dynamical model described in (1.1), for a specific choice
of the mapping f , although most of our algorithmic ideas can be extended to more general
functions f , e.g., those describing a low-pass graph filter, as considered in [29, 42]. The details
are as follows.

1. We have a discrete-time dynamical system with state vector xt ∈ Rn, which evolves
according to

(3.1) xt+1 = Lxt,

where L is the (unknown) normalized adjacency matrix of the (unobserved) underlying
graph. This corresponds to (1.1) for the specific case f : A 7→ L = D−1/2AD−1/2.

2. We assume that the normalized adjacency matrix L is generated by first drawing a
graph from an SBM with k blocks, and some (unknown) affinity matrix Ω, and then
normalizing its adjacency matrix A to obtain L.

3. We obtain s samples x
(i)
T , i = 1, . . . , s, at a known time T .

4. The (unobserved) initial vectors x
(i)
0 for the different samples are i.i.d., drawn from a

zero-mean sub-Gaussian vector distribution, where the components of the vector are

uncorrelated, i.e., E[x
(i)
0 [x

(i)
0 ]>] = I.

The discrete-time dynamics in (3.1) are closely related to diffusion processes on networks [20,
31]. Indeed, L is related via a similarity transformation to the transition matrix AD−1 of an
unbiased random walk on the network. Such random walks have been used to model a variety
of processes, such as the spreading of rumors and opinions, and have found applications in
other areas of network analysis such as ranking nodes or detecting communities [20]. Another
interpretation of the model is in terms of (discrete-time) consensus processes, which have been
considered extensively in the Control Theory literature [14,24,38].

Note that if the number of available samples becomes large (s→∞), we could in principle
try to infer the exact adjacency matrix A. However, we are interested in a situation where s is
comparatively small (s� n), and our goal is to infer the SBM model that generated A (and
thus L), that is, the latent partition and the affinity matrix Ω.

We specifically consider the following two problems, which we refer to as the partition
recovery and the parameter estimation problems.

Problem 3.1. (SBM partition recovery from dynamics). Given s independent samples, each
one drawn at a fixed time T according to the above described model, recover the latent partition
of the nodes into blocks.

Problem 3.2. (SBM parameter estimation from dynamics). Given s independent samples,
each one drawn at a fixed time T according to the above described model, recover the affinity
matrix Ω describing the link probabilities in the underlying SBM.

Note that, as the assignment of labels to groups is arbitrary, we can only hope to recover the
block structure and the affinity matrix Ω up to a permutation of the group labels. Moreover,
it should be apparent that the difficulty of the above problems will depend on the specific

realization of the initial conditions x
(i)
0 and of the adjacency matrix A. Thus, we cannot expect

accurate inference for every possible realization. Instead we look for algorithms and results



BLIND IDENTIFICATION OF STOCHASTIC BLOCK MODELS FROM DYNAMICAL OBSERVATIONS 7

Algorithm 4.1 Partition recovery

Input: Samples {x(i)
T }si=1, Number of groups k

Output: Partition P
1: Compute sample covariance Σ̂(T ) := 1

s

∑s
i=1[x

(i)
T − x̄T ][x

(i)
T − x̄T ]>

2: Compute top k eigenpairs |λ1| ≥ |λ2| ≥ . . . : {(λi,wi)}ki=1 ← eig(Σ̂(T ))
3: Form the matrix W = [w1, . . . ,wk] ∈ Rn×k and normalize its rows to have unit norm

W̃ = diag(WW>)−1/2W

4: Perform k-means clustering on the rows of W̃ : P ← k-means(W̃>)

that, under certain assumptions, guarantee accurate inference with high probability.
We make the following technical assumption about the data generation process.

Assumption 3.3 (Bounded moments assumption). We assume that there exists an absolute

constant c0 > 0 such that E[(u>x
(i)
0 )2] ≥ c0‖u>x(i)

0 ‖2Ψ2
, for all u.

As discussed in [3], Assumption 3.3 effectively bounds the moments of x
(i)
0 as a function of the

second moment of x
(i)
0 . As a special case, this assumption is satisfied by a standard Gaussian

vector, with c0 = π/2 [3]. Assumption 3.3 will enable us to invoke (via Lemma 6.2) the results
of [3] on the estimation of low-rank covariance matrices, thereby facilitating our analysis.

4. Partition recovery. In this section we first present our main results and an algorithm
for solving the partition recovery problem (Problem 1) and then provide a broader discussion
of the underlying algorithmic ideas.

4.1. Main results. Our algorithm for partition recovery relies on spectral clustering, and
is displayed as Algorithm 4.1. It builds upon the idea that the sample covariance matrix Σ̂(T )
at time T , defined by

(4.1) Σ̂(T ) :=
1

s

s∑
i=1

[x
(i)
T − x̄T ][x

(i)
T − x̄T ]>,

where x̄T = 1
s

∑s
i=1 x

(i)
T is the sample mean, can serve as a proxy for what we call the

“population covariance matrix” S(T ) := L2T .
Because the initial vector has identity covariance, it is seen that S(T ) would be the

true covariance matrix at time T if the dynamics were evolving according to the matrix L.
Intuitively, the matrix L encodes the partition structure of the SBM, and since S(T ) is simply
a matrix power of L it has the same dominant eigenspace. Being able to compute a close
proxy for S(T ) enables us to gain information about the partition structure. Thus, as long as
the sample covariance matrix Σ̂(T ) is close to the population covariance matrix S(T ), we can
expect good recovery performance. Theorem 4.1 below adresses the relation between these
two covariance matrices.

Theorem 4.1. Let L be the normalized adjacency matrix constructed from a graph drawn

from an SBM M(A) ∈Mn(ε) with n nodes and minimal degree δmin. Let x
(i)
0 i = 1, . . . , s, be

i.i.d. zero-mean sub-Gaussian vectors that satisfy Assumption 3.3, with covariance matrix I.
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Then, with probability at least 1− 5s−1 − ε, we have

(4.2)
∥∥∥Σ̂(T )− S(T )

∥∥∥ ≤ 2TM +B(T ),

where Σ̂(T ) is defined in (4.1),

M := 3

√
3 log(4n/ε)

δmin
, B(T ) := C

(
1+

k∑
i=2

(|µi|+M)2T + (n−k)M2T

)√
ln s

s
,

C is some absolute constant, and where µi are the eigenvalues of L ordered by decreasing
magnitude.

The proof of Theorem 4.1 is given in Subsection 6.1.
For some interpretation, note that the term 2TM in (4.2) is independent of the number

of samples. As we will see below, this term arises because the graph on which the dynamics
takes place is only a proxy for the expected graph under the SBM and is drawn only once. We
may think of this error term as a ‘baseline’ insurmountable error that we will incur no matter
how many samples we can obtain from our system. While for a large enough δmin the error M
can be small (cf. Lemma 2.3), the error bound increases (linearly) with time. Hence, the later
we make our observations (larger T ), the worse our bound from this first term becomes. From
the perspective of our model (3.1) this is intuitive: as λi(L) ≤ 1 for all i, the relevant signal
that we observe will be attenuated over time, making it more difficult to extract information
about the embedded partition from our observations.

In contrast to the first term, the second term B(T ) in (4.2) depends both on the time T
and the number of samples s. The sample dependence is related to the convergence rate of
the sample covariance matrix Σ̂(T ) to the true covariance. The time-dependence of B(T ) is
again related to M , but in a non-linear fashion. Since |µi| < 1 for i = 2, . . . , k, we see that for
a small M � 1 the error term B(T ) decreases with time.

This leads to a trade-off: for later sampling times, we require fewer samples to achieve
a good bound. More precisely, for M � 1, if the number of samples s and the time T are
comparably small, then 2TM � (n− k)M2T and thus B(T ) dominates in (4.2). However,
the exponential dependence on T will reduce the terms in B(T ) very fast, and accordingly
2TM will become the dominant factor in the bound for larger T . This error reduction scales
much faster than that obtained by collecting more samples (larger s).

Based on the concentration result in Theorem 4.1, we can establish the following guarantee
for the partition recovery problem. This result is phrased in terms of the misclassification
rate q := |M|/n, where M is the set of misclassified nodes (see Subsection 6.2 for a formal
definition).

Theorem 4.2. Let ξ1 ≥ · · · ≥ ξk be the k positive eigenvalues of the population covariance
matrix S(T ) = L2T . Let W and V denote the matrices formed by the top k eigenvectors of

Σ̂(T ) and S(T ), respectively, and denote their row-normalized versions by W̃ and Ṽ . Define
τ to be the minimum 2-norm of any row of W and V . Then, with probability 1− 5s−1 − ε the
following bound for the misclassification rate q holds:

(4.3) q ≤ 64k

nτ2ξ2
k

(2TM +B(T ))2,
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where B(T ) is as defined in Theorem 4.1.

Theorems 4.1 and 4.2 provide performance guarantees that show the interplay between
the number of groups k, the network size n, and the spectral properties of the network, as
encapsulated in µk and ‖Σ̂(T )− S(T )‖. The proof is given in Subsection 6.2.2.

Before continuing, let us make a few more remarks on some noteworthy aspects of these
results.

1. The time T at which the samples are obtained is not a required input to the algorithm
(cf. Algorithm 4.1). However, as is apparent from Theorems 4.1 and 4.2, the partition
recovery performance is influenced by the sampling time.

2. In Algorithm 4.1, we require the number of blocks k to be an input to our algorithm.
In principle, we can try to infer this parameter from the data, e.g., by looking at
some appropriate statistics of the eigenvalue gaps; see for example [28,39,43], or the
discussion in [3] on the detection of eigenvalue jumps in covariance matrix estimation.
However, we will not carry out this line of analysis in this paper.

3. The same approach can be used with other types of (linear) operators derived from a
low-rank statistical network model such as the SBM. For instance one may consider
inference for other latent graph models, such as the degree-corrected SBM [6,16].

4.2. Algorithm and proof ideas. We now provide a more detailed discussion of the
proposed algorithm for partition recovery from a high-level perspective. The proofs in Section 6
will make these ideas mathematically precise.

The intuition underpinning our algorithm is that while we cannot observe the edges of the
network, the network structure affects the second moments of the observed samples in ways
that we can exploit.

To this end, we first need to establish that the empirical covariance Σ̂(T ) serves as
a good estimator of these moments. By leveraging that the effective rank re(Σ(T )) =
trace(Σ(T ))/‖Σ(T )‖ of the covariance matrix Σ(T ) is low, it can be shown that Σ̂(T ) indeed
concentrates around Σ(T ) even for relatively small number of samples (Lemma 6.1).

Second, since we assume the initial conditions x
(i)
0 to be zero-mean sub-Gaussian with

E[x0x
>
0 ] = I, the covariance matrix of our samples reflects the network structure as follows:

Σ(T ) := Ex0 [xTx
>
T ]− Ex0 [xT ]Ex0 [x>T ] = [LT ][LT ]> = L2T ,(4.4)

where the last equality follows from the fact that the network is symmetric. Clearly, the
eigenvectors of Σ(T ) are the same as the eigenvectors of L, although they correspond now to
the scaled eigenvalues λi(Σ(T )) = λ2T

i (L). This transformation does not change the ordering
of the eigenvalues in terms of their absolute value and thus the dominant subspaces of Σ(T )
and L are the same.

Finally, we need to show that the eigenspace of the covariance matrix Σ(T ) contains the
relevant information to recover the partition structure. To this end, we need to establish that
L concentrates around L and thus the corresponding eigenspaces are close. Indeed, this is
implied by Lemma 2.3 for the considered model class.

From the above discussion we note that Algorithm 4.1 is subject to two sources of
randomness: not only is the normalized adjacency matrix L of the network an approximation of
its population version L, but also the sample covariance matrix Σ̂(T ) is only an approximation
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of the true covariance matrix Σ(T ). Theorem 4.1 allows us to bound both of these effects,
which we then leverage in Theorem 4.2 to derive performance guarantees.

5. Parameter estimation. To estimate the parameters of the underlying SBM we can use
a similar strategy as for the recovery of the partitions. The population covariance matrix
S(T ) = L2T is a transformation of the normalized adjacency matrix. Hence, it does not only
contain relevant information about the partitions, but also about the model parameters. In
principle, we can then use the sample covariance matrix Σ̂(T ) as an approximation of S(T )
and leverage the functional dependency of S(T ) on the latent parameters to estimate them. In
particular, we can express the eigenvalues of S(T ) as a function of the model parameters, in
order to obtain a set of equations λ(S(T )) = Fλ(Ω) for the parameters Ω. Notice that these
equations are independent of the group labels of the nodes. The reason is that a permutation
of the nodes defines a similarity transformation of L, and hence the eigenvalues of L – and
accordingly those of S(T ) – are not affected by the ordering of the rows and columns of the
matrix.

To make these ideas concrete let us consider the following example.

Example 5.1. Consider a special case of the SBM, known as the planted partition model.
Conditional on the class labels, the planted partition model with n nodes is described by
probabilities a/n and b/n of linking to a node in the same class or a different class, respectively.2

The affinity matrix for such a model, with k blocks, is of the form Ω = (a−b)
n Ik + b

n1k1
>
k , where

Ik and 1k denote the k-dimensional identity matrix and the vector of all ones, respectively.
This leads to an expected matrix L with entries

[L]ij =

{
a
n ·

k
a+(k−1)b , if gi = gj ,

b
n ·

k
a+(k−1)b , if gi 6= gj ,

where, we recall, gi represents the latent group label of node i.
Based on these calculations we can find expressions for S(T ) = L2T as follows

(5.1) [L2T ]ij =


k−1
n

(
a−b

a+(k−1)b

)2T
+ 1

n if gi = gj ,

− 1
n

(
a−b

a+(k−1)b

)2T
+ 1

n if gi 6= gj .

In terms of spectral analysis, the nonzero eigenvalues of S(T ) are:

(5.2) λi =

1, if i = 1,(
a−b

a+(k−1)b

)2T
, if i = 2, . . . , k.

Notice that the equations in (5.2) do not enable us to identify the model parameters a
and b. However, this is an artifact of the symmetry properties of the normalized adjacency
matrix L and not of the parameter estimation strategy. In particular, this degeneracy arises

2In Theorem 5.2 below, we will assume that a, b and n are such that M(A) ∈Mn(ε). In the context of this
example this means a and b are assumed to be of order log(n).
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from an invariance in the dynamical model (3.1). Indeed, if in Example 5.1 we replace (a, b)
by (γa, γb), where γ is a positive constant, the expected matrix L remains the same. Thus
the model parameters are not recoverable in our example, even if we had access to the full
matrix L. In the context of our specific model (3.1), we thus have to make some additional
assumptions in order to estimate all the model parameters, as discussed next.

5.1. Algorithm for parameter estimation. Despite the difficulties identified in Exam-
ple 5.1, we can still obtain a viable parameter estimation approach if we assume some
additional information on the model parameters. More concretely, suppose that we know of
some additional constraints on Ω (or alternatively A), of the form h(Ω) = 0, for some known
function h.3 Such constraints could be, e.g., on the average density of the network.

As discussed earlier, based on our dynamical model we can obtain relations of the form
λ(S(T )) = Fλ(Ω). Taking these equations and the constraints together, we obtain a system of
(possibly redundant) equations of the form

λ(S(T )) = Fλ(Ω) subject to h(Ω) = 0.(5.3)

Our approach is to solve this system of equations, where we replace S(T ) by its estimate
Σ̂(T ). We note that this system will generally have more equations than unknowns and, in the
presence of noise, it will be inconsistent. There are many ways of obtaining an approximate
solution in such cases. Which approach would have better statistical properties in the face
of the noise present in Σ̂(T ) is an interesting question. We do not go into such details, but
provide instead a generic “meta”-algorithm.

In the description of Algorithm 5.1, the word “solve” is to be understood as some not fully
specified approach to obtain an approximate solution of the system (5.3). Finally, observe that
the sampling time T enters explicitly in the functional relations that we exploit, and therefore,
unlike the partition recovery problem (cf. Algorithm 4.1), T must be known.

Algorithm 5.1 Model parameter estimation

Input: Samples {x(i)
T }si=1, Number of groups k, Time T

Output: Model Parameters Ω

1: Compute the sample covariance Σ̂(T ) := 1
s

∑s
i=1[x

(i)
T − x̄T ][x

(i)
T − x̄T ]>

2: Compute top k eigenvalues (according to magnitude): {λi}ki=1 ← eig(Σ̂(T ))
3: “Solve” the set of equations (5.3) to estimate model parameters Ω

5.2. Theoretical guarantees. We can leverage our concentration result in Theorem 4.1 to
provide a bound between the estimated eigenvalues λi(Σ̂(T )) and their population counterparts
µi(S(T )). These bounds then translate immediately into (T -dependent) error-bounds on the
parameter recovery.

We illustrate this idea here by deriving a result for the planted partition model considered
in Example 5.1 subject to a density contraint on the network and the assumption that a > b.

3We remark that for other dynamical models such additional assumptions may not be necessary.
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Recall from Example 5.1 that, for the second eigenvalue of L2T , the relation

(λ2(L2T ))1/2T =
a− b

a+ (k − 1)b

holds. Given ρ = a+(k−1)b
nk we can compute the parameter a for k = 2 as

(5.4) a = (λ2(L2T ))1/2Tρn+ ρn.

To estimate a, we can thus replace L2T in (5.4) by the sample covariance matrix Σ̂(T ). For
this estimation strategy we can derive the following error bound.

Theorem 5.2. Consider an SBM M(A) ∈ Mn(ε) with two equally sized blocks, and a

parameter matrix of the form Ω = (a−b)
n I2 + b

n121
>
2 with a > b. Assume ρ = (a + b)/2n is

given. Define the estimator of a given by

(5.5) â = (λ2(Σ̂(T )))1/2Tρn+ ρn.

Then, using the notation of Theorem 4.1, with probability 1− 5s−1 − ε the estimation error
η := |â− a|/a is upper bounded as:

(5.6) η ≤ (2TM +B(T ))1/2T

λ2(L) + 1
.

The proof of Theorem 5.2 is given in Section 6.3. From the numerator in (5.6) it can be seen
that the sampling time T plays a fundamental role in the estimation accuracy of â. Moreover,
this dependency is similar to the one encountered in Theorem 4.2 for the partition recovery.
In particular, there is a term that increases linearly with T , i.e. 2TM , and another term that
may decrease with T , i.e., B(T ) (cf. the discussion after Theorem 4.1). The denominator in
(5.6) can also be explained intuitively. A larger λ2(L) is associated with a marked difference
between a and b [cf. (5.2)], which translates into better delineated blocks within our SBM. In
this scenario, estimating a should be easier, and this is captured in (5.6).

Before moving to a detailed description of our theoretical analysis in Section 6, we share
the following remark about an alternative avenue to estimate the SBM parameters.

Remark 5.3 (Parameter estimation based on partition recovery). In the context of Example 5.1,
based on (5.1) we could estimate the parameters a and b directly from the entries of S(T )
– or rather its estimated version Σ̂(T ) – instead of using its eigenvalues. However, a main
obstacle that we need to address in this setting is that the relation between Ω and the entries
of S(T ) depends on the group labels. This implies that we would have to first recover the
latent partition before we can estimate the parameters based on these relations. Although this
is a reasonable procedure in practice, the recovery performance will depend strongly on how
good the partition recovery is in the first place.

6. Theoretical analysis. In the following we provide the theoretical analysis for the
spectral inference algorithms (Algorithms 4.1 and 5.1) discussed above. We first prove the
concentration result in Theorem 4.1, which underlies the success of our spectral algorithms.
The proof of this result follows from a series of lemmas that we establish in Subsections 6.1.1
and 6.1.2. Afterwards we show in Subsection 6.2 how Theorem 4.1 implies the partition recovery
performance guarantees stated in Theorem 4.2, and prove Theorem 5.2 in Subsection 6.3.



BLIND IDENTIFICATION OF STOCHASTIC BLOCK MODELS FROM DYNAMICAL OBSERVATIONS13

6.1. Proof of Theorem 4.1: Concentration of the sample covariance matrix. In the
next two subsections we prove Theorem 4.1 through a series of lemmas. The proof uses the
triangle inequality

(6.1) ‖Σ̂(T )− S(T )‖ ≤ ‖Σ̂(T )−Σ(T )‖+ ‖Σ(T )− S(T )‖,

and separate bounds for the two terms on the right-hand side. Then, using the matrix
concentration results in Lemma 2.3, the proof of Theorem 4.1 follows. More specifically, the
result follows from Corollary 6.5 in Subsection 6.1.2 and Lemma 6.1 in Subsection 6.1.1.

6.1.1. Bounding the first term in (6.1). We now establish a bound for the distance
‖Σ̂(T )−Σ(T )‖ between the true and the sample covariances.

Lemma 6.1. Under the conditions in Theorem 4.1, the following bound holds with probability
1− 5s−1 − ε:

(6.2)
∥∥∥Σ̂(T )−Σ(T )

∥∥∥ ≤ B(T ),

where B(T ) is as defined in Theorem 4.1.

For the proof of Lemma 6.1 we make use of the following result established in [3].

Lemma 6.2. [3, Theorem 2.1] Let x ∈ Rn be a zero-mean sub-Gaussian vector satisfying As-
sumption 3.3, with covariance matrix Σ. Let x(1), . . . ,x(i) be i.i.d samples drawn from x. Con-
sider the sample covariance matrix Σ̂ := 1

s

∑s
i=1[x(i) − x̄][x(i) − x̄]>, where x̄ := 1

s

∑s
i=1 x

(i)

is the sample mean. Then, with probability at least 1− 5s−1 we have

(6.3) ‖Σ̂−Σ‖F ≤ c · ‖Σ‖ · re(Σ) ·
√

ln s

s
,

where re(Σ) =
∑

i λi(Σ)
‖Σ‖ is the effective rank of Σ, c is a constant that depends on c0 in

Assumption 3.3, and ‖ · ‖F denotes the Frobenius norm.

Notice that we always have ‖Σ̂ − Σ‖ ≤ ‖Σ̂ − Σ‖F and, for the scenario considered here,
‖Σ(T )‖ = 1, as by construction the dominant eigenvalue of L equals 1. Lemma 6.2 thus
provides a useful tool to prove Lemma 6.1, provided that we can find an upper bound on the
effective rank re(Σ(T )).

Lemma 6.3 (Bound on the effective rank). Under the conditions stated in Theorem 4.1,
with probability 1− ε the effective rank satisfies the bound

(6.4) re(Σ(T )) ≤ 1 +

k∑
i=2

(|µi|+M)2T + (n− k)M2T .

Proof. Recall that we denote the eigenvalues of L by λi and the eigenvalues of L by µi.
We assume, without loss of generality, that the eigenvalues have been sorted in descending
order according to their magnitude, i.e., |λ1| ≥ |λ2| ≥ . . . ≥ |λn| and |µ1| ≥ |µ2| ≥ . . . ≥ |µn|,
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respectively. From the definition of the effective rank and the fact that ‖Σ(T )‖ = 1 it follows
that

re(Σ(T )) =

n∑
i=1

λi(Σ(T )) =

n∑
i=1

λ2T
i =

n∑
i=1

|λi|2T .

We can decompose this sum into three parts as follows

re(Σ(T )) = 1 +

k∑
i=2

|λi|2T +

n∑
j=k+1

|λj |2T .

In order to relate the (random) eigenvalues λi to quantities that can be expressed in terms of
the model parameters, we make use of the triangle inequality |λi| ≤ |µi|+ |λi − µi|. Using the
fact that µi = 0 for i > k, we obtain the following bound with probability at least 1− ε,

re(Σ(T )) ≤ 1 +

k∑
i=2

(|µi|+M)2T +

n∑
j=k+1

M2T = 1 +

k∑
i=2

(|µi|+M)2T + (n− k)M2T ,

where the inequality follows from Weyl’s Theorem (see e.g., [13]), which states that |µi − λi| ≤
‖L−L‖ for all i, and Lemma 2.3 implies that ‖L−L‖ ≤M with probability 1− ε.

Proof of Lemma 6.1. By combining the results from Lemmas 6.2 and 6.3, Lemma 6.1
follows.

6.1.2. Bounding the second term in (6.1). We derive a bound for the term ‖Σ(T )−S(T )‖,
limiting the difference between the true and the population covariances. We start by establishing
the following lemma.

Lemma 6.4. Let L be the normalized adjacency matrix corresponding to a graph drawn
from an SBM. Then for any integer t > 0, we have that

(6.5) ‖Lt −Lt‖ ≤ t‖L−L‖.

Proof. We will show that for any integer t > 0

(6.6) ‖Lt −Lt‖ ≤ ‖L−L‖+ ‖Lt−1 −Lt−1‖.

Equation (6.5) then directly follows from repeated application of (6.6). To show (6.6), notice
that ∥∥Lt −Lt

∥∥ =
∥∥(L−L)Lt−1 + L

(
Lt−1 −Lt−1

)∥∥
≤ ‖L−L‖ ‖Lt−1‖+ ‖L‖

∥∥Lt−1 −Lt−1
∥∥ = ‖L−L‖+

∥∥Lt−1 −Lt−1
∥∥ ,

where the last equality follows from the fact that ‖L‖ = ‖L‖ = 1.

Lemma 6.4 directly provides us with the following corollary, which establishes the desired
bound for ‖Σ(T )− S(T )‖ needed in Theorem 4.1.

Corollary 6.5. The following bound holds between the covariances Σ(T ) and S(T ):

(6.7) ‖Σ(T )− S(T )‖ ≤ 2T‖L−L‖ ≤ 2TM,

where the last inequality holds with probability 1− ε.
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6.2. Implications for partition recovery. In the following we explain how the above con-
centration results translate into guarantees for the partition recovery problem. Subsection 6.2.1
provides intermediate results on the spectral geometry of the problem and discusses the precise
definition of misclassified nodes. The proof of Theorem 4.2 is then given in Subsection 6.2.2.

6.2.1. Partition recovery problem. In order to characterize the recovery performance,
we first clarify what we mean by a node being clustered correctly. To do this we follow the
literature on SBMs [26,27]. Recall that within our partition recovery algorithm, we perform

a k-means clustering procedure on the rows of the matrix W̃ of (row-normalized) dominant
eigenvectors associated with the estimated covariance Σ̂(T ). This procedure assigns each row
i to a centroid vector ki corresponding to a cluster.

Let us denote the ‘true’ centroid vector that a node i is assigned to according to the
expected population covariance S(T ) by κi, where i = 1, . . . , n. From the definition of S(T )
it follows that each κ>i corresponds to a row of the matrix Ṽ of the (row-normalized) top k
eigenvectors of L. Moreover, we know that there are exactly k different centroids. However,
if some of the eigenvalues of S(T ) are not unique, the eigenvector matrix Ṽ will not be
uniquely defined, even though the subspace spanned by these vectors will be unique. As we
are interested in the distance between the vectors Ṽ and their approximation via W̃ , our
definition of misclassification has to include an orthogonal matrix Q ∈ Rk×k that minimizes the
orthogonal Procrustes distance ‖W̃ − ṼQ‖F (see also [26, 27]). In particular, this minimality
property of Q will be essential for Lemma 6.9.

Definition 6.6 (Set of misclassified nodes). The set of misclassified nodes M is defined as

(6.8) M := {i : ‖k>i − κ>i Q‖ > ‖k>i − κ>j Q‖ for some j 6= i}.

In words, this means that we call a node i misclassified if the centroid ki to which it has been
assigned is closer to some other population centroid κj than it is to its true population centroid
κi.

By accounting for the special geometry of the eigenvectors Ṽ , we can establish the following
necessary condition for a node to be misclassified.

Lemma 6.7. If a node i is misclassified, then ‖k>i − κ>i Q‖ ≥ 1/
√

2.

Proof. First, we know from Lemma 2.1 that Ṽ = GU for some orthogonal matrix U .
Hence, all population centroids κi are of unit length and orthogonal to each other. In particular,
for all j and i belonging to different blocks, we have

(6.9) ‖κ>i − κ>j ‖ = ‖(g>i − g>j )U‖ =
√

2,

where gi is the true population cluster indicator vector corresponding to node i (see Lemma 2.1).
Second, by the triangle inequality and the orthogonality of Q, we know that for all j and i

in different blocks, we have

(6.10) ‖κ>i − κ>j ‖ ≤ ‖κ>i Q− k>i ‖+ ‖k>i − κ>j Q‖.

Plugging in the result from (6.9) into (6.10), we obtain that ‖k>i − κ>j Q‖ ≥
√

2− ‖k>i −
κ>i Q‖. From Definition 6.6, for a misclassified node i there exists some j such that

‖k>i − κ>i Q‖ > ‖k>i − κ>j Q‖ ≥
√

2− ‖k>i − κiQ‖,
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where the last inequality is true by our argument above. The result follows after some simple
algebraic manipulations.

To arrive at our result for the misclassification rate in Theorem 4.2, we further follow the
literature of SBMs [1,26,27], and establish the following two lemmas (Lemmas 6.8 and 6.9).
The first lemma provides us with a relationship between the difference of the cluster centroids
obtained from the k-means clustering and the true population cluster on the one side, and the
difference between the eigenvectors of Σ̂(T ) and S(T ) on the other side.

Lemma 6.8. Denote the matrix of cluster centroids obtained by performing k-means on the
rows of W̃ as K := [k1, . . . ,kn]> ∈ Rn×k. Then,

(6.11) ‖K − ṼQ‖F ≤ 2‖W̃ − ṼQ‖F .

Proof. By the triangle inequality,

‖K − ṼQ‖F ≤ ‖K − W̃ ‖F + ‖W̃ − ṼQ‖F .

From the definition of k-means, however, we know that ‖W̃ −K‖F ≤ ‖W̃ − ṼQ‖F as K is
chosen in order to minimize the distances of the centroids to the individual rows. Hence, the
claim follows.

The second lemma builds on the Davis-Kahan theorem [7,44], and bounds the difference
between the row-normalized eigenvectors of Σ̂(T ) and S(T ).

Lemma 6.9 (Davis-Kahan). Following the definitions in Theorem 4.2, we have

(6.12) ‖W̃ − ṼQ‖F ≤
√

8k‖Σ̂(T )− S(T )‖
τξk

.

Proof. The fact that

‖W − VQ‖F ≤
√

8k‖Σ̂(T )− S(T )‖
ξk

,

holds for the unnormalized versions of W and V is a restatement of the Davis-Kahan Theorem
as can be found in, e.g., [44, Theorem 2].

By definition, we have Ṽ = diag(V V >)−1/2V and W̃ = diag(WW>)−1/2W . Let us

define τi := min{[V V >]
1/2
ii , [WW>]

1/2
ii }, which is the smaller of the 2-norms of the i-th rows

of V and W , respectively. Based on these definitions we see that τ = mini τi. Now, as
row-normalization corresponds to diagonal scaling we obtain

‖W̃ − ṼQ‖F ≤
1

τ
‖W − VQ‖F ≤

√
8k‖Σ̂(T )− S(T )‖

τξk
.
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Figure 1. Partition recovery performance for SBM inference. A-D. The recovery performance
of Algorithm 4.1 is plotted against the observation time at which the samples are drawn. Each point in the
plot corresponds to an average over 30 experiments, the error bars denote the standard error of the mean.
Within Algorithm 4.1 we run k-means 10 times and pick the best result in terms of the k-means objective function
as our final partition. A. Recovery performance for varying number of samples for the SBM discussed in the text.
B. Recovery performance in a k = 2 group planted partition model (see Example 5.1) for varying group sizes
(SNR = 5, s = 50, ρ = 30/n). C. Recovery performance in a k-group planted partition model (see Example 5.1)
for varying number of groups (n = 5000,SNR = 5, s = 50, ρ = 30/n). D. Recovery performance in a k = 5
group planted partition model (see Example 5.1) for different SNR (n = 2000, s = 50, ρ = 30/n).

6.2.2. Proof of Theorem 4.2. Based on the results established thus far, we can provide
a proof of the bound of the misclassification rate q := |M|/n as stated in Theorem 4.2.

Proof. We define the set M2 := {i : ‖k>i − κ>i Q‖ ≥ 1/
√

2} ⊃ M, which includes all
misclassified nodes according to Lemma 6.7. From Lemmas 6.8 and 6.9, and Theorem 4.1, it
follows that

q =
|M|
n
≤ |M2|

n
=

1

n

∑
i∈M2

1 ≤ 2

n

∑
i∈M2

‖k>i − κ>i Q‖2 =
2

n
‖K − ṼQ‖2F

≤ 8

n
‖W̃ − ṼQ‖2F ≤

8

n

(√
8k‖Σ̂(T )− S(T )‖

τξk

)2

.

6.3. Implications for parameter estimation. Here we show how our concentration results
allow us to prove Theorem 5.2.

Proof. Note that we can write the relative estimation error as:

|â− a|
a

=
|λ2(Σ̂(T ))1/2Tρn− λ2(S(T ))1/2Tρn|

λ2(S(T ))1/2Tρn+ ρn
=
|λ2(Σ̂(T ))1/2T − λ2(S(T ))1/2T |

λ2(S(T ))1/2T + 1

≤ |λ2(Σ̂(T ))− λ2(S(T ))|1/2T

λ2(L) + 1
≤ ‖Σ(T )− S(T )‖1/2T

λ2(L) + 1
.

The first inequality follows from Jensen’s inequality since the function f(x) = x1/2T is concave.
The second inequality is a direct application of Weyl’s inequality. Hence, using Theorem 4.1 it
follows that with probability 1− 5s−1 − ε,

η ≤ (2TM +B(T ))1/2T

λ2(L) + 1
.
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7. Numerical experiments. We present some computational experiments using our algo-
rithms for partition recovery and parameter estimation to demonstrate their performance in
practice.

7.1. Partition recovery. To gain intuition about the qualitative features of the recovery
problem, we first consider the following example SBM consisting of 5 groups with varying sizes
ng = [200, 300, 200, 300, 280]>, and affinity matrix

Ω =


0.5 0.3 0.2 0.1 0.2
0.3 0.5 0.2 0.2 0.2
0.2 0.2 0.4 0.2 0.1
0.1 0.2 0.2 0.4 0.2
0.2 0.2 0.1 0.2 0.4

 .

The partition recovery performance is shown in Figure 1A for a varying number of samples s,
as a function of the observation time T . Here, the recovery performance is measured via the
overlap score Z defined as:

(7.1) Z =
zactual − zchance

1− zchance
,

where zchance is the probability of guessing the group assignments correctly and zactual is
the fraction of nodes that are correctly classified. The guessing probability is computed as
zchance = n/max(ng), where max(ng) is the size of the largest group. Note that zchance is
simply 1

#groups for groups of equal size. The actual overlap zactual is computed by solving an
optimal assignment problem between the inferred group labels and the planted partition.

Overall, we can infer the partitions remarkably well using our simple spectral inference
strategy, even though we never observe the actual network. The results in Figure 1A display a
couple of noteworthy features consistent with our technical results, which are worth examining.
Specifically, we see that there is a pronounced effect of the observation time: both for small as
well as very large T , the performance is markedly worse than for intermediate times. Thus,
if we have a fixed number of samples at our disposal, choosing the ‘right’ observation time
can yield an improved recovery performance. Obtaining more samples from our dynamics, in
contrast, has a more moderate effect and is most beneficial for small times.

At an intuitive level these results can be explained by the role that the network plays in
terms of a linear filter. On the one hand, for short observation times, the original white noise
input is only filtered weakly and thus contains still a large noise component, which is detrimental
to recovery performance. On the other hand, as the output approaches its stationary state,
the information that the signal carries about the network structure is completely washed
out. For intermediate times, however, there is a trade-off between attenuating the noise
within the observed signal, and not losing too much information about the partition structure.
Theorems 4.1 and 4.2 quantify precisely how this trade-off is governed by the spectral features
of the network.

Using a planted partition model with an affinity matrix of the form Ω = (a−b)
n Ik + b

n1k1
>
k

(see Example 5.1), we further investigate numerically how the partition recovery performance
is affected by the group sizes, the number of groups and the signal-to-noise ratio (SNR) within
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Figure 2. Parameter recovery performance for SBM inference. A-C. The recovery performance
of Algorithm 5.1 in terms of the relative error η = |a− â|/a is plotted against the observation time at which the
samples are drawn. Each point corresponds to an average over 30 experiments and the error bars denote the
standard error of the mean. A. Parameter recovery performance for varying number of samples for the SBM with
k = 2 groups as discussed in the text (n = 2000,SNR = 7, s = 50, ρ = 30/n). B. Parameter recovery performance
in a k = 2 group planted partition model (see Example 5.1) for varying group sizes (SNR = 7, s = 50, ρ = 30/n).
C. Parameter recovery performance in a k = 2 group planted partition model (see Example 5.1) for different
SNR (n = 2000, s = 50, ρ = 30/n).

the underlying stochastic block model (see Figure 1B-D). Here the SNR is defined as [1],

(7.2) SNR =
(a− b)2

ka+ k(k − 1)b
,

so that SNR = 1 corresponds to the well-known detectability limit in the sparse regime of the
SBM, for asymptotically large networks with n→∞ (see [1] for a detailed review).

Figure 1B shows that for a fixed number of groups (here k = 2) increasing the group sizes
results in a shift of the recovery performance in terms of the observation time. However, if
we fix the number of nodes and let the number of groups vary (Figure 1C) no such effect is
observed. This hints at the fact that the number of nodes n (and thus the number of nodes
per group) is one of the driving factors determining the difficulty in the detection of the SBM
partition. Finally, in Figure 1D we plot the influence of the SNR inherent to the latent SBM on
the detection performance. As expected, a reduced SNR results in a dramatically decreasing
detection performance. Remarkably, for SNR = 4, using only s = 50 samples an almost perfect
partition recovery is possible for a suitable observation time. We remark that we can reach
here a nonzero recovery performance for larger times T even for SNR = 1 due to finite size
effects.

7.2. Model parameter estimation. We now demonstrate numerically that we can infer
the model parameters of the SBM using only the observed outputs. For simplicity, we focus on
the case of the planted partition model with k = 2 groups of equal size, and assume that the
average expected network density ρ, or equivalently the average expected mean degree dav = ρn,
is known a priori (see also the discussion in the context of Example 5.1 and Subsection 5.2).
We focus on the eigenvalue-based parameter estimation strategy using the estimator for the
parameter a as discussed in Subsection 5.2.

Figure 2 shows the results of applying this parameter estimation scheme in numerical
experiments. To quantify the parameter recovery performance we compute the relative recovery
error η = |a− â|/a. Similar to the partition recovery, we see in Figure 2A that the observation
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time has a strong effect on the recovery performance and we see a marked decrease in the error
from more than 10% initially, to around 3% for longer observation times.

Figure 2B-C demonstrates the effect of the group size and the SNR on the recovery
performance. Similar to the partition recovery problem, we observe that smaller group sizes (a
smaller network) and a larger SNR lead to better performance.

8. Discussion. Graph-based tools have become prevalent for the analysis of a range
of different systems across the sciences. Network inference, the problem of determining the
topology of a network based on a set of nodal observations, has accordingly become a paramount
tool to enable this type of analysis. In this work we have advocated a fresh look onto this
problem for applications in which exact inference is impossible, e.g., due to sampling constraints.
Instead of inferring the exact network in terms of its adjacency matrix, we infer a generative
model of the network structure, thereby learning a probability distribution over networks.
Importantly, for a low-dimensional statistical model such as the SBM discussed here, this
procedure can be implemented using far fewer samples than would be required to infer the
exact network structure.

The proposed method is especially relevant for scenarios in which we aim to analyze the
network further from a statistical perspective, e.g., if our ultimate goal is to perform community
detection on the network. An added benefit of having fitted a generative model is that we can
employ the model for further tasks afterwards, e.g., to generate surrogate network data.

Our work opens up several interesting avenues for future research. This includes the
analysis of the inference of more realistic network models based on a setup as discussed here,
ranging from degree-corrected SBMs [16] all the way to graphons [2, 19]. Likewise, it will
be interesting to extend the above results to more general dynamical processes, including
nonlinear dynamics. Another appealing line of future work would be to consider scenarios in
which only a part of the network is observed [23], or additional (control) inputs are possible.

Appendix A. Omitted proofs.

A.1. Proof of Lemma 2.1. In order to prove Lemma 2.1, we provide a slightly more
general discussion about the relationship between the eigenvectors of L and the partition
indicator matrix G. Lemma 2.1 then follows directly from Corollary A.4 below.

Definition A.1. (Normalized affinity matrix) Consider an SBM with affinity matrix Ω and
partition indicator matrix G. Let us denote the vector of group sizes by ng = G>1 and define
Ng := diag(ng) = G>G. We then define the normalized affinity matrix as

Γ = N1/2
g diag(Ωng)

−1/2Ω diag(Ωng)
−1/2N1/2

g .

Note that L can be written as

(A.1) L = GN−1/2
g ΓN−1/2

g G>.

Lemma A.2. Let L be the expected normalized adjacency matrix of an SBM with a corre-
sponding normalized affinity matrix Γ with eigenvalues λi and corresponding eigenvectors ui.

Then, any eigenvector vi of Γ will give rise to an eigenvector vi = GN
−1/2
g ui of L with the

same eigenvalue.
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Proof. A simple computation shows that

LGN−1/2
g ui = GN−1/2

g ΓN−1/2
g G>GN−1/2

g ui = GN−1/2
g Γui = λiGN

−1/2
g ui = λivi

Corollary A.3. The partition indicator matrix G can be written as a linear combination of
the eigenvectors v1, . . . ,vk corresponding to the k nonzero eigenvectors of L.

Proof. From the previous lemma we know that the eigenvectors of L can be written as

vi = GN
−1/2
g ui, where ui are the eigenvectors of Γ. Assembling these relationships into

matrices we obtain

(A.2) V = GN−1/2
g U .

Since U is an orthogonal matrix and N
1/2
g is diagonal, both matrices are invertible. It then

follows that

(A.3) G = V U>N1/2
g .

Corollary A.4. Consider the row-normalized eigenvector matrix Ṽ = diag(V V >)−1/2V .
There exists an orthogonal transformation U such that Ṽ = GU .

Proof. Note that

diag(V V >) = diag(GN−1/2
g UU>N−1/2

g G>) = diag(GN−1
g G>).

Combining this equation with (A.2) and the fact that G is an indicator matrix it follows that

Ṽ = diag(GN−1
g G>)−1/2V = diag(GN−1

g G>)−1/2GN−1/2
g U = GN1/2

g N−1/2
g U = GU .

Since U corresponds to the eigenvector basis of the symmetric normalized affinity matrix Γ,
we know that U is orthogonal.

A.2. Proof of Lemma 2.3.

Proof. For notational convenience we define the matrices D := E[D] andH := D−1/2AD−1/2.
From the triangle inequality we have

(A.4) ‖L−L‖ ≤ ‖L−H‖+ ‖H −L‖.

To obtain our desired concentration inequality, we bound the two terms on the right-hand side
of (A.4) separately.

For the first term we note that since ‖L‖ ≤ 1,

‖L−H‖ = ‖D−1/2AD−1/2 −D−1/2AD−1/2‖ = ‖L−D−1/2D1/2LD1/2D−1/2‖

=
∥∥∥(I −D−1/2D1/2)LD1/2D−1/2 +L(I −D1/2D−1/2)

∥∥∥
≤ ‖I −D−1/2D1/2‖‖D1/2D−1/2‖+ ‖I −D−1/2D1/2‖.(A.5)
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We can now analyze the term ‖I −D−1/2D1/2‖ as follows:

‖I −D−1/2D1/2‖ = max
i

∣∣∣1−√Dii/Dii
∣∣∣ ≤ max

i
|1−Dii/Dii| ,

where we have used the fact that the spectral norm of a diagonal matrix is its maximal diagonal
entry. To make use of the above result, we need to obtain a concentration result for the degrees.
Recalling that δi = E(di) = Dii, we can use Chernoff’s inequality to obtain a bound of the
form:

P(|di − δi| ≥ tδi) ≤
ε

2n
for t ≥

√
log 4n/ε

δi
.

If we chose t0 =
√

log(4n/ε)/δmin, the above bound holds for all i, and by a simple
transformation we obtain P(|di/δi − 1| ≥ t0) ≤ ε/2n for all i. Using the union bound, we thus
have with probability at least 1− ε/2:

‖I −D−1/2D1/2‖ = max
i

∣∣∣∣∣1−
√
Dii

Dii

∣∣∣∣∣ ≤
√

log(4n/ε)

δmin
.

Therefore, plugging this result into (A.5), with probability 1− ε/2 it holds that

‖L−H‖ ≤ t0(t0 + 1) + t0.(A.6)

For the second term ‖H −L‖, we can use the following matrix concentration inequality.

Lemma A.5 (Bernstein Matrix inequality [5]). Let Xi be independent n × n dimensional
random Hermitian matrices such that ‖Xi − E[Xi]‖ ≤M ∀i, and X =

∑
iXi. Then for any

a > 0:

P(‖X − E[X]‖ > a) ≤ 2n exp

(
−a2

2v2 + 2Ma/3

)
,

where v2 = ‖
∑

i var(Xi)‖ = ‖
∑

i E[X2
i ]− E[Xi]

2‖.
To apply this result, note that we can decompose [H −L] =

∑
i≤jXij , where Xij are the

Hermitian matrices:

Xij =


Aij−pij√

δiδj
(Eij +Eij), for i 6= j,

Aii−pii
δi

Eii, for i = j.

Here, Eij is the canonical basis matrix with entries [Eij ]ij = 1 and 0 otherwise. As E[Xij ] = 0
we compute var(Xij) = E[X2

ij ] as follows:

var(Xij) =

{
1
δiδj

(pij − p2
ij)(E

ii +Ejj), for i 6= j,
1
δ2i

(pii − p2
ii)E

ii, for i = j.
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From this we can bound v2 as

v2 =

∥∥∥∥∥∥
n∑
i=1

n∑
j=1

1

δiδj
(pij − p2

ij)E
ii

∥∥∥∥∥∥ = max
i

 n∑
j=1

1

δiδj
pij −

n∑
j=1

1

δiδj
p2
ij


≤ max

i

 1

δmin

n∑
j=1

1

δi
pij

 =
1

δmin
,

where we have used the bound 1/δmin ≥ 1/δj .
Based on the above calculations, we select a =

√
3 log(4n/ε)/δmin =

√
3t0, which leads to

our desired bound for the second term

P(‖H −L‖ > a) ≤ 2n exp

(
−a2

2/δmin + 2a/(3δmin)

)
≤ 2n exp

(
−3 log(4n/ε)

3

)
≤ ε/2,(A.7)

where the first inequality follows from the fact that M ≤ 1/δmin (cf. Lemma A.5), and for the
second inequality we used the fact that M(A) ∈Mn(ε) to determine a lower bound on δmin.
Finally, by combining the results in (A.6) and (A.7) we obtain that with probability 1− ε,

‖L−L‖ ≤ ‖L−H‖+ ‖H −L‖ ≤ a+ t20 + 2t0 ≤ 3a.
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