
2626 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 58, NO. 10, OCTOBER 2013

[3] X. Jiang, Q.-L. Han, S. Liu, and A. Xue, “A new stabilization
criterion for networked control systems,” IEEE Trans. Autom. Control,
vol. 53, no. 4, pp. 1025–1032, May 2008.

[4] X.-M. Zhang and Q.-L. Han, “A delay decomposition approach to
control of networked control systems,” Eur. J. Control, vol. 15, no. 5,
pp. 523–533, Sep.–Oct. 2009.

[5] M. Lemmon, T. Chantem, X. Hu, and M. Zyskowski, “On self-trig-
gered full-information controllers,” in Proc. Hybrid Syst.: Com-
putat. Control Conf., 2007, pp. 371–384.

[6] A. Anta and P. Tabuada, “Self-triggered stabilization of homogeneous
control systems,” in Proc. Amer. Control Conf., 2008, pp.
4129–4134.

[7] X. Wang and M. Lemmon, “Event-triggering in distributed networked
control systems,” IEEE Trans. Autom. Control, vol. 56, no. 3, pp.
586–601, Mar. 2011.

[8] D. Hristu-Varsakelis and P. Kumar, “Interrupt-based feedback control
over a shared communication medium,” in Proc. 41th IEEE Conf. De-
cision Control, 2002, pp. 3223–3228.

[9] W. Heemels, J. Sandee, and P. Bosch, “ Analysis of event-driven con-
trollers for linear systems,” Int. J. Control, vol. 81, no. 4, pp. 571–590,
Apr. 2008.

[10] M. Velasco, J. Fuertes, and P. Marti, “The self triggered task model for
real-time control systems,” in Proc. 24th IEEE Real-Time Syst. Symp.,
2003, pp. 67–70.

[11] X. Wang and M. Lemmon, “Self-triggered feedback control systems
with finite-gain stability,” IEEE Trans. Autom. Control, vol. 54, no.
3, pp. 452–467, Mar. 2009.

[12] A. Anta and P. Tabuada, “To sample or not to sample: Self-triggered
control for nonlinear systems,” IEEE Trans. Autom. Control, vol. 55,
no. 9, pp. 2030–2042, Sep. 2010.

[13] X. Wang and M. Lemmon, “Self-triggering under state-indepen-
dent disturbances,” IEEE Trans. Autom. Control, vol. 55, no. 6, pp.
1494–1500, Jun. 2010.

[14] J. Yook, D. Tilbury, and N. Soparkar, “Trading computation for band-
width: Reducing communication in distributed control systems using
state estimators,” IEEE Trans. Control Syst. Technol., vol. 10, no. 4,
pp. 503–518, Jul. 2002.

[15] Y. Xu and J. Hespanha, “Optimal communication logics in networked
control systems,” in Proc. 43rd IEEE Conf. Decision Control, 2004,
vol. 4, pp. 3527–3532.

[16] Y. Xu and J. Hespanha, “Communication logic design and analysis
for networked control systems,” in Current Trends in Nonlinear Sys-
tems and Control, L. Menini, L. Zaccarian, and C. T. Abdallah, Eds.
Boston, MA: Birksäusker, 2006.

[17] L. Zhang and D. Hristu-Varsakelis, “Communication and control
co-design for networked control systems,” Automatica, vol. 42, no. 6,
pp. 953–958, Jun. 2006.

[18] L. E. Ghaoui, F. Oustry, and M. AitRami, “A cone complementarity
linearization algorithm for static output-feedback and related prob-
lems,” IEEE Trans. Autom. Control, vol. 42, no. 8, pp. 1171–1176,
Aug. 1997.

[19] C. Peng, Y.-C. Tian, and D. Yue, “Output feedback control of discrete-
time systems in networked environments,” IEEE Trans. Syst., Man,
Cybern. A, Syst. Humans, vol. 41, no. 1, pp. 185–190, Jan. 2011.

[20] M. C. F. Donkers and W. P. M. H. Heemels, “Output-based event-
triggered control with guaranteed gain and improved and decen-
tralised event-triggering,” IEEE Trans. Autom. Control, vol. 57, no. 6,
pp. 1362–1376, Jun. 2012.

[21] M. C. F. Donkers, W. P. M. H. Heemels, N. van de Wouw, and
L. Hetel, “Stability analysis of networked control systems using a
switched linear systems approach,” IEEE Trans. Autom. Control, vol.
56, no. 9, pp. 2101–2115, Sep. 2011.

[22] P. Naghshtabrizi, J. Hespanha, and A. Teel, “ Exponential stability
of impulsive systems with application to uncertain sampled-data sys-
tems,” Sys. Contr. Lett., vol. 57, no. 5, pp. 378–385, May 2008.

[23] E. Fridman, “A refined input delay approach to sampled-data control,”
Automatica, vol. 46, pp. 421–427, Feb. 2010.

[24] J. C. Geromel, P. L. D. Peres, and S. R. Souza, “Convex
analysis of output feedback control problems: Robust stability
and performance,” IEEE Trans. Autom. Control, vol. 41, no.
7, pp. 997–1003, Jul. 1996.

Degree Fluctuations and the Convergence
Time of Consensus Algorithms

Alex Olshevsky and John N. Tsitsiklis, Fellow, IEEE

Abstract—We consider a consensus algorithm in which every node in a
sequence of undirected, -connected graphs assigns equal weight to each
of its neighbors. Under the assumption that the degree of each node is fixed
(except for times when the node has no connections to other nodes), we
show that consensus is achieved within a given accuracy on nodes
in time . Because there is a direct relation be-
tween consensus algorithms in time-varying environments and in homo-
geneous random walks, our result also translates into a general statement
on such random walks. Moreover, we give a simple proof of a result of Cao,
Spielman, and Morse that the worst case convergence time becomes ex-
ponentially large in the number of nodes under slight relaxation of the
degree constancy assumption.

Index Terms—Consensus protocols, distributed control, Markov chains.

I. INTRODUCTION

Consensus algorithms are a class of iterative update schemes that
are commonly used as building blocks for the design of distributed
control laws. Their main advantage is robustness in the presence of
time-varying environments and unexpected communication link fail-
ures. Consensus algorithms have attracted significant interest in a va-
riety of contexts such as distributed optimization [19], [22] coverage
control [13], andmany other contexts involving networks in which cen-
tral control is absent and communication capabilities are time-varying.
While the convergence properties of consensus algorithms in time-

varying environments are well understood, much less is known about
the corresponding convergence times. An inspection of the classical
convergence proofs ([4], [14]) leads to convergence time upper bounds
that grow exponentially with the number of nodes. It is then natural
to look for conditions under which the convergence time only grows
polynomially, and this is the subject of this technical note.
In our main result, we show that a consensus algorithm in which

every node assigns equal weight to each of its neighbors in a sequence
of undirected graphs has polynomial convergence time if the degree of
any given node is constant in time (except possibly during the times
when the node has no connections to other nodes).

A. Model, Notation, and Background

In this subsection, we define our notation, the model of interest, and
some background on consensus algorithms.
We will consider only undirected graphs in this technical note;

this will often be stated explicitly, but when unstated every graph
should be understood to be undirected by default. Given a graph
, we will use to denote the set of neighbors of node ,

and to denote the cardinality of . Given a sequence of
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graphs , we will use the simpler notation
in place of , , and we will make a

similar simplification for other variables of interest.
We are interested in analyzing a consensus algorithm inwhich a node

assigns equal weight to each one of its neighbors. We consider nodes
and assume that at each discrete time , node stores a real number

. We let . For any given sequence of
graphs , all on the node set , and any
initial vector , the algorithm is described by the update equation

(1)

which can also be written in the form

(2)

for a suitably defined sequence of matrices .
The graphs , which appear in the above update rule through
and , correspond to information flow among the agents; the edge

is present in if and only if agent uses the value of
agent in its update at time . To reflect the fact that every agent always
has access to its own information, we assume that every graph
contains all the self-loops ; as a consequence, for all
. Note that we have if and only if is an edge in
.

We will say that the graph sequence is -connected if, for
every , the graph obtained by taking the union of the edge
sets of is connected. It
is well known ([14], [22]) that if the graph sequence is -connected
for some positive integer , then every component of converges
to a common value. In this technical note, we focus on the conver-
gence rate of this process in some natural settings. To quantify the
progress of the algorithm towards consensus, we will use the function

. For any , a sequence of stochastic
matrices results in -consensus if

for all initial vectors ; alternatively, a sequence of graphs
achieves -consensus if the sequence of matrices

defined by (1) and (2) achieves -consensus.
As mentioned previously, we will focus on graph sequences in which

every graph is undirected. There are a number of reasons to be
especially interested in undirected graphs within the context of con-
sensus. For example, is undirected if: (i) contains all the
edges between agents that are physically within some distance of each
other; (ii) contains all the edges between agents that have line-of-
sight views of each other; (iii) contains the edges corresponding
to pairs of agents that can send messages to each other using a protocol
that relies on acknowledgments.
It is an immediate consequence of existing convergence proofs ([4],

[14]) that any sequence of undirected -connected
graphs, with self-loops at every node, results in -consensus. Here,
is a constant that does not depend on the problem parameters , ,
and . We are interested in simple conditions on the graph sequence
under which the undesirable scaling becomes polynomial in
and .

B. Our Results

Our contributions are as follows. First, in Section II, we prove our
main result.

Theorem 1: Consider a sequence of
-connected undirected graphs with self-loops at each node. Suppose

that for each there exists some such that for all
(note that means node has no links to any other node).
If the length of the graph sequence is at least ,
then -consensus is achieved.
In Section III, we give an interpretation of our results in terms of

Markov chains. Theorem 1 can be interpreted as providing a sufficient
condition for a randomwalk on a time-varying graph to forget its initial
distribution in polynomial time.
In Section IV, we capitalize on the Markov chain interpretation and

provide a simple proof that relaxing the assumptions of Theorem 1
even slightly can lead to a convergence time which is exponential in .
Specifically, if we replace the assumption that each is independent
of with the weaker assumption that the sorted degree sequence (say,
in non-increasing order) is independent of (thus allowing nodes to
“swap” degrees), exponential convergence time is possible. This was
proved earlier by Cao, Spielman, and Morse (although unpublished)
[5] and our contribution is to provide a simple proof.
In summary: for undirected -connected graphs with self-loops, un-

changing degrees is a sufficient condition for polynomial time conver-
gence, but relaxing it even slightly by allowing the nodes to “swap”
degrees leads to the possibility of exponential convergence time.

C. Previous Work

There is considerable and growing literature on the convergence time
of consensus algorithms. The recent paper [14] amplified the interest in
consensus algorithms and spawned a vast subsequent literature, which
is impossible to survey here. We only mention papers that are closest to
our own work, omitting references to the literature on various aspects
of consensus convergence times that we do not address here.
Worst-case upper bounds on the convergence times of consensus al-

gorithms have been established in [1], [2], [6]–[8], [10]. The papers
[6]–[8] considered a setting slightly more general than ours, and estab-
lished exponential upper bounds. The papers [1], [2] addressed the con-
vergence times of consensus algorithms in terms of spanning trees that
capture the information flow between the nodes. It was observed that in
several cases this approach produces tight estimates of the convergence
times. We mention also [17] which derives a polynomial-time upper
bound on the time and total communication complexity required by a
network of robotic agents to implement various deployment and coor-
dination schemes. Reference [10] takes a geometric approach, and con-
siders the convergence time in a somewhat different model, involving
interactions between geographically nearest neighbors. It finds that the
convergence time is quite high (either singly exponential or iterated
exponential, depending on the model). Random walks on undirected
graphs such as considered here are special cases of reversible agree-
ment systems considered in the related work [11] (see also [9]). Our
proof techniques are heavily influenced by the classic paper [15] and
share some similarities with those used in the recent work [21], which
used similar ideas to bound the convergence time of some inhomogen-
uous Markov chains. There are also similarities with the recent work
[3] on the cover time of time-varying graphs.
Our work differs from these papers in that it studies time-varying,
-connected graphs and establishes convergence time bounds that are

polynomial in and . To the best of our knowledge, polynomial
bounds on the particular consensus algorithm considered in this
technical note had previously been derived earlier only in the papers
[15] (under the assumption that the graph is fixed, undirected, with
self-loops at every node), [18] (in the case when the matrix is doubly
stochastic, which in our setting corresponds to a sequence of regular
graphs ). For the special case of graphs that are connected at
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every time step , the result has been apparently discovered
independently by Chazelle [12] and the authors [20]. Our added gen-
erality allows for both disconnected graphs in which the degrees are
kept constant, as well as the case where nodes temporarily disconnect
from the network, setting their degree to one.

II. PROOF OF THEOREM 1

As in the statement of Theorem 1, we assume that we are given a
sequence of undirected -connected graphs , with self-
loops at each node, such that equals either or 1. Observe that

for all , since else the sequence of graphs
could not be -connected. We will use the notation to refer to the
class of undirected graphs with self-loops at every node such that the
degree of node either 1 or . Note that the definition of depends
on the values .
Given an undirected graph , we define the update matrix by

,
.

We use as a shorthand for , so that (1) can be written as

(3)

Conversely, given an update matrix of the above form, we will use
to denote the graph whose update matrix is . We use to

denote the set of update matrices associated with graphs .
We define to be the vector ; a simple calcula-
tion shows that for all . Finally, we use to denote
the matrix whose th diagonal element is .
We begin by identifying a weighted average that is preserved by the

iteration . For any vector , we let

where is the vector with entries equal to 1. Observe that for any

Consequently, if evolves according to (3), then ,
which we will from now on denote simply by .
With these preliminaries in place, we now proceed to the main part

of our analysis, which is based on the pair of Lyapunov functions

We will adopt the more convenient notation for and sim-
ilarly for .
Our first lemma provides a convenient identity for matrices in .
Lemma 2: For any such that is connected (and in

particular, every node has degree )

where is the -th entry of .
Remark 3: This was proven in [23] and is a generalized version of a

decomposition from [18], [24]. It may be quickly verified by checking

that both sides of the equation are symmetric, have identical row sums,
and whenever , the -th element of both sides is . The
equality of the two sides then immediately follows.
Our next lemma quantifies the decrease of when a vector is

multiplied by some matrix associated with a connected graph
.

Lemma 4: Fix and let be a
permutation such that . For any
such that is connected

Proof: We may suppose without loss of generality that
. Using Lemma 2

From the definitions of , , and , we have that

and so

(4)

Observe that if , then

Applying this to each term of (4), we have that

where

(5)

We finish the proof by arguing that for all .
Indeed, by the connectivity of , there is some node in
such that is connected to a node in . Let be the
number of neighbors of node in and be the number
of neighbors of node in ; naturally, and both

are at least 1: the former by the definition of , and the latter
because node has a self-loop. Observe that the contribution to
in (5), by running over all the neighbors of in and
running over all neighbors of in , is at least

where the final inequality is justified because the connectivity of
implies that . This concludes the proof.
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Remark 5: We note that , even if is not con-
nected; this follows by applying (4) to each connected component of

.
Lemma 6: Suppose that evolves according to (3), where

is a sequence of -connected graphs from . Let
be a permutation such that

. Then

Proof: It suffices to prove this under the assumption that
; the general case then follows

by a continuity argument. We apply the bound of Lemma 4 at each
time to each connected component of

. This yields that

(6)

Here, contains all the pairs such that there is some compo-
nent of containing both and , and immediately follows

when the nodes in that component are ordered according to in-
creasing values of .
We then observe that for every there is a first time
between and when there is a link between a node in

and a node in . Note that because there have
been no links between and from time to
time , we have that

Moreover, at time , the sum on the right-hand side of (6) will contain
the term where and

. We conclude that it is possible to associate
with every some triplet such that ,

and .
To complete the proof, we argue that distinct are asso-

ciated with distinct triplets . Indeed, we associate
with only if and there
have been no links between and
from time to time . Consequently if two indices

are associated with the same triplet, it follows that
which cannot

be: at time , and
no link between a node in and a node
occured from time to time .
The following lemma may be verified through a direct calculation.
Lemma 7: Suppose and are numbers satis-

fying

Then

is a constant independent of the number .

Corollary 8: Suppose evolves according to (3) where
is a sequence of -connected graphs from . Let

be a permutation such that
. Then

Proof: Lemma 6 may be restated as

But since , we can apply Lemma 7 to
obtain

which is a restatement of the current corollary.
Remark 9: An additional consequence of Lemma 7 is that

for all . Remark 5 had established this
property for and Lemma 7 implies now the same property holds
for .
Lemma 10: For any

where is the largest of the degrees .
Proof: We employ a variation of an argument first used in [15].

We first argue that we can make three assumptions without loss of gen-
erality: 1) that the components of are sorted in nondecreasing order,
i.e., ; 2) , since both the numerator
and denominator on the left-hand side are invariant under the addition
of a constant to each component of , and in particular, ;
3) , since the expression on the left-hand side
remains invariant under multiplication of each component of by a
nonzero constant.
Let be such that . Without loss of generality,

we can assume that ; else, we replace by . The condi-
tion that implies that while the con-
dition that implies . Consequently,

.We can write this as

Applying the Cauchy-Schwarz inequality, we get

We then use the fact that to complete the proof.
We can now complete the proof of Theorem 1.
Proof of Theorem 1: From Corollary 8 and Lemma 10, we have that

for all integer
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Because the definition of -consensus is in terms of rather than
, we need to relate these two quantities. On the one hand, for

every , we have

On the other hand, for every , we have

Suppose that . Then at least
time periods1 of length have passed, and therefore

(We have used here the inequality , for as
well as the fact that is nonincreasing.)

III. MARKOV CHAIN INTERPRETATION

In this section, we give an alternative interpretation of the con-
vergence time of a consensus algorithm in terms of inhomogeneous
Markov chains; this interpretation will be used in the next section.
We refer the reader to the recent monograph [16] for the requisite
background on Markov chains and random walks.
We consider an inhomogeneous Markov chain whose transition

probability matrix at time is . We fix and define

This is the associated -step transition probability matrix: the -th
entry of , denoted by , is the probability that the state at time
is , given that the initial state is . Let be the vector whose th
component is ; thus is the th row of .
We address a question which is generic in the study of Markov

chains, namely, whether the chain eventually “forgets” its initial state,
i.e., whether for all , converges to zero as increases,
and if so, at what rate. We will say that the sequence of matrices

is -forgetful if for all , we have

The above quantity, is known as the coeffi-
cient of ergodicity of the matrix , and appears often in the study of
consensus algorithms (see, for example, [8]). The result that follows
relates the times to achieve -consensus or -forgetfulness, and is es-
sentially the same as Proposition 4.5 of [16].
Proposition 11: The sequence of matrices

is -forgetful if and only if the sequence of matrices
results in -consensus (i.e., , for every

vector .
Proof: Suppose that the matrix sequence

is -forgetful, i.e., that , for all and .

1The notation means the smallest integer which is at least .

Given a vector , let . Note that
. We then have

Since this is true for every and , we obtain , and the
sequence results in -consensus.
Conversely, suppose that the sequence of matrices

results in -consensus. Fix some and . Let be a vector
whose th component is 1/2 if and 1/2 otherwise. Note
that . We have

where the last inequality made use of the -consensus assumption.
Thus, the sequence of matrices is -for-
getful.
We will use Proposition 11 for the special case of Markov chains

that are random walks. Given an undirected graph sequence sequence
, we consider the random walk on the state-space

which, at time , jumps to a uniformly chosen random
neighbor of its current state in . Proposition 11 allows us to
reinterpret Theorem 1 as follows: random walks on time-varying
undirected -connected graphs with self-loops and degree constancy
forget their initial distribution in a polynomial number of steps.

IV. A COUNTEREXAMPLE

In this subsection, we show that it is impossible to omit the con-
dition of unchanging degrees in Theorem 1. In particular, if we only
impose the slightly weaker condition that the sorted degree sequence
(the non-increasing list of node degrees) does not change with time, the
time to achieve -consensus can grow exponentially with . This is an
unpublished result of Cao, Spielman, and Morse [5]; we provide here
a simple proof. We note that the graph sequence used in the proof (see
Fig. 1) is similar to the sequence used in [3] to prove an exponential
lower bound on the cover time of time-varying graphs.
Proposition 12: Let be even and let be an integer multiple of
. Consider the graph sequence of length , consisting

of periodic repetitions of the reversal2 of the length- sequence de-
scribed in Fig. 1. For this graph sequence to result in (1/4)-consensus,
we must have .

Proof: Suppose that this graph sequence of length results in
(1/4)-consensus. Then Proposition 11 implies that the sequence of
length consisting of periodic repetitions3 of the length sequence
described in Fig. 1 is (1/4)-forgetful. Let be the associated -step
transition probabilities.
Let be the time that it takes for a random walk that starts at state
at time 0 to cross into the right-hand side of the graph, let be the

probability that is less than or equal to , and define to be the set of
nodes on the right side of the graph, i.e., . Clearly

2That is, we are considering the sequence

.
3That is, is the sequence

.
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Fig. 1. The top-left figure shows graph ; top-right shows ; bottom-left shows ; bottom-right shows . As these
figures illustrate, is obtained by applying a circular shift to each half of . Every node has a self-loop which is not shown. For aesthetic reasons,
instead of labeling the nodes as , we label them with and .

since a walk located in at time has obviously transitioned
to the right-hand side of the graph by . Next, symmetry yields

. Using the fact that the graph sequence is
(1/4)-forgetful in the first inequality below, we have

which yields that . By viewing periods of length as a single
attempt to get to the right half of the graph, with each attempt having
probability at least 1/4 to succeed, we obtain .
Next, let us say that node has emerged at time if node was the

center of the left-star in ; for example, node 1 has emerged
at time 1, node 2 has emerged at time 2, and so on. By symmetry,
is the expected time until a random walk starting at an emerged node
crosses to the right-hand side of the graph. Observe that, starting from
an emerged node, the randomwalk will transition to the right-hand side
of the graph if it takes the self-loop consecutive times and then,
once it is at the center, takes the link across; however, if it fails to take
the self-loop during the first times, it then transitions to a newly
emerged node. This implies that the expected time to transition to the
right hand side from an emerged node is at least the expected time until
the walk takes self-loops consecutively: .
Putting this together with the previous inequality , we

immediately have the desired result.
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