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a b s t r a c t

We compare the aggregate profit achieved at a Cournot equilibrium to the maximum possible, which
would be obtained if the suppliers were to collude. We establish a lower bound on the profit of Cournot
equilibria in terms of a scalar parameter that captures qualitative properties of the inverse demand
function and the number of suppliers (or themaximumof the suppliers’market shares). The lower bounds
are tight when the inverse demand function is affine.
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1. Introduction

1.1. Background

It is well known that oligopolists can increase their total profit
by colluding to reduce their total output [1,2]. In this paper, we
focus on the classical Cournot oligopoly model, and explore the
potential gain in profits if the oligopolists were to collude or,
equivalently, the reduction in profits due to competition. More
concretely, we compare the aggregate profit earned at a Cournot
equilibrium to the maximum possible profit, that is, the aggre-
gate profit that would have been achieved if the suppliers were to
collude.

Oligopolist profit loss due to competition has received some
recent attention. Anderson and Renault [3] quantify the profit
loss in Cournot oligopoly models with concave demand functions.
However, most of their results focus on the relation between
consumer surplus, producer surplus, and the aggregate social
welfare achieved at a Cournot equilibrium, rather than on the
relation between the aggregate profit achieved at a Cournot
equilibrium and the maximum possible aggregate profit. Perakis
and Sun [4] study supply chains with partial positive externalities
and show that the profit loss at an equilibrium is at least 25% of the
maximum profit.

Other recent works have reported various bounds on the profit
loss at an equilibrium, for oligopoly models with affine demand
functions. For a differentiated oligopoly model, Farahat and Per-
akis [5] establish lower and upper bounds on the profit loss at an
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equilibrium of price (Bertrand) competition. Closer to the present
paper, Kluberg and Perakis [6] compare the aggregate profit earned
by the suppliers under Cournot competition to the corresponding
maximum possible, for the case where suppliers produce multi-
ple differentiated products and the demand is an affine function of
the price. However, one of their key assumptions (the invertibility
of matrix B in the inverse demand function) does not hold in the
Cournot model studied in this paper, even for the special case of
affine inverse demand functions.

1.2. Our contribution

In this paper, we study the profit loss in a classical Cournot
oligopolymodel, for a broad class of nonincreasing inverse demand
functions that result in concave revenue functions. In Section 3, we
establish a lower bound of the form f P(c/d,N) on the profit ratio of
a Cournot equilibrium (the ratio of the aggregate profit earned at
the equilibrium to the maximum possible). Here, f P is a function
given in closed form, c/d is a scalar that captures a qualitative
property of the inverse demand function, and N is the number of
suppliers. We also derive a profit ratio lower bound, of the form
gP(c/d, r), which does not depend on the number of suppliers,
but on the market share of the largest supplier at equilibrium, r .
For Cournot oligopolies with affine inverse demand functions, we
have c/d = 1, and our lower bounds are tight. More generally,
the scalar c/d can be viewed as a measure of nonlinearity of the
inverse demand function. As the parameter c/d goes to infinity, the
lower bounds converge to zero and arbitrarily high profit losses are
possible.

Our results allow us to lower bound the profit ratio of Cournot
equilibria for a large class of Cournot oligopoly models in terms
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of qualitative properties of the inverse demand function, with-
out having to restrict to the special case of affine demand func-
tions, and without having to calculate the equilibrium and the
profit-maximizing output. In Section 4 we apply the derived
lower bounds to various commonly encountered inverse demand
functions. Our profit ratio lower bounds naturally provide upper
bounds on the profit increase (in percentage terms) resulting from
the formation of a cartel, which is one of the main incentives that
drive oligopolists to collude. Furthermore, our results could be use-
ful for monitoring, detecting, or penalizing collusion (cf. p. 130
of [7]). For instance, if our bounds indicate that the Cournot equilib-
rium profit is already close to the maximum possible, collusion is
not a concern. On the contrary, in the opposite case there would
be good reason for close monitoring and stronger penalties for
collusion.

This paper can be viewed as complementary to [8], which com-
pares the social welfare at a Cournot equilibrium to the maximum
possible social welfare. Although some of the questions and tech-
niques in that paper are similar to those here, the underlying as-
sumptions, technical details, and results are quite different.

2. Formulation and preliminaries

In this section, we first define the Cournot oligopoly model that
we study in this paper, and introduce several main assumptions
that we will be working with. We also show that profit ratio lower
bounds can be obtained by restricting to linear cost functions and
a special class of piecewise linear inverse demand functions. Our
exposition here follows [8].

We consider a market for a single homogeneous good with
inverse demand function p : [0, ∞) → [0, ∞) and N suppliers.
Supplier n ∈ {1, 2, . . . ,N} has a cost function Cn : [0, ∞) →

[0, ∞). Each supplier n chooses a nonnegative real number xn,
which is the amount of the good to be supplied by her. The strategy
profile x = (x1, x2, . . . , xN) results in a total supply denoted by
X =

N
n=1 xn, and a corresponding market price p(X). Supplier n’s

payoff is

πn(xn, x−n) = xnp(X) − Cn(xn),

where we have used the standard notation x−n to indicate the
vector x with the component xn omitted. A Cournot equilibrium is
defined as a Nash equilibrium associated with the above defined
payoff functions. For a function defined on a domain [0,Q ], the
derivatives at the endpoints 0 and Q are defined as right and left
derivatives, respectively.

Assumption 1. For each n, the cost function Cn : [0, ∞) →

[0, ∞) is convex, continuous, nondecreasing, and continuously
differentiable. Furthermore, Cn(0) = 0.

Assumption 2. The inverse demand function p : [0, ∞) →

[0, ∞) is continuous, nonnegative, and nonincreasing,with p(0) >
0. Its right derivative at 0 exists and at every q > 0, its left and right
derivatives also exist.

Note that some parts of our assumptions are redundant, but
are included for easy reference. For example, if Cn(·) is convex and
nonnegative, with Cn(0) = 0, then it is automatically continuous
and nondecreasing.

The maximum possible profit earned by all suppliers (if they
collude) is an optimal solution to the optimization problem,

maximize p (X) · X −

N
n=1

Cn(xn)

subject to xn ≥ 0, n = 1, . . . ,N,

(1)
where X =
N

n=1 xn. We use xP = (xP1, . . . , x
P
N) to denote an

optimal solution to (1), and let XP
=

N
n=1 x

P
n . We will refer

to an optimal solution to (1) as a monopoly output. For a
model with a nonincreasing continuous inverse demand function
and continuous convex cost functions, the following assumption
guarantees the existence of an optimal solution to (1), because it
essentially restricts the optimization to a compact set of vectors x
for which xn ≤ R, for all n.

Assumption 3. There exists some R > 0 such that p(R) ≤ minn
{C ′

n(0)}.

Under Assumptions 1–3, theremust exist an optimal solution to
(1). Note however that there may exist multiple optimal solutions
to (1), associated with different prices. We define P as the set of
prices resulting frommonopoly outputs. The following assumption
guarantees that the objective function in (1) is concave on the
interval where it is positive.

Assumption 4. On the interval where p(·) is positive, the function
p(q)q is concave in q.

Assumption 4 is fairly common (cf. Section 4.1 of [9]), and
implies that the best reply of each supplier is decreasing in the
aggregate output of the other suppliers. Note that since p(·) is non-
increasing, any concave inverse demand function satisfies Assump-
tion 4. Furthermore, many convex inverse demand functions, e.g.,
those of the form [10,11],

p(q) = max{α − βqδ, 0}, α, β, δ > 0, (2)

satisfy Assumption 4.
Under Assumptions 1, 2 and 4, the objective function in (1) is

concave on the interval where it is positive. Hence, we have the
following necessary and sufficient conditions for a vector xP with
p(XP) > 0 to maximize the aggregate profit:
C ′

n(x
P
n) ≤ p


XP

+ ∂−p

XP

· XP , if xn > 0,

C ′

n(x
P
n) ≥ p


XP

+ ∂+p

XP

· XP ,
(3)

wherewe use the notation ∂+p and ∂−p to denote the right and left
directional derivative of p, respectively.

Similarly, under Assumptions 1 and 2, if x is a Cournot equilib-
rium, then

C ′

n(xn) ≤ p (X) + xn · ∂−p (X) , if xn > 0, (4)

C ′

n(xn) ≥ p (X) + xn · ∂+p (X) , (5)

where again X =
N

n=1 xn. Note, however, that in the absence of
further assumptions, the payoff of supplier n need not be a con-
cave function of xn and these conditions are, in general, not suffi-
cient.We say that a nonnegative vector x is a Cournot candidate if it
satisfies the necessary conditions (4)–(5). Thus, the set of Cournot
equilibria is always a subset of the set of Cournot candidates.

As shown in [12], if p(0) > minn{C ′
n(0)}, then the aggregate

supply at a Cournot equilibrium is positive; see Proposition 4 in [8]
for a slight generalization to Cournot candidates. If on the other
hand p(0) ≤ minn{C ′

n(0)}, then themodel is uninteresting, because
no supplier has an incentive to produce and the optimal social
welfare is zero. This motivates the assumption that follows.

Assumption 5. The price at zero supply is larger than the mini-
mummarginal cost of the suppliers, i.e.,

p(0) > min
n

{C ′

n(0)}.
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Given a nonnegative vector x, we define its profit ratio η(x), by

η(x) =

Xp(X) −

N
n=1

Cn(xn)

XPp(XP) −

N
n=1

Cn(xPn)
, (6)

where (xP1, . . . , x
P
N) is an optimal solution to the optimization

problem (1). Under Assumptions 1–5, the ratio is well defined,
because the denominator is positive. It is easy to see that a Cournot
candidate yields a nonnegative profit, and therefore its profit ratio
is nonnegative. Due to space limitations, the proofs of the next four
propositions are omitted, and can be found in Appendix A of [13].

Proposition 1. Suppose that Assumptions 1–5 hold. Let x be a
Cournot candidate that is not an optimal solution to (1), and let
αn = C ′

n(xn). Consider a modified model in which we replace the cost
function of each supplier n by a new function Cn(·), defined by

Cn(x) = αnx, ∀x ≥ 0.

Then, for the modified model, Assumptions 1–5 still hold, the vector x
is a Cournot candidate and its profit ratio, denoted by η(x), satisfies
0 ≤ η(x) ≤ η(x).

Note that Proposition 1 applies to all Cournot equilibria that do
not maximize the aggregate profit.

Proposition 2. Suppose that Assumptions 1–5 hold. Let x be a
Cournot candidate. If p(X) ∉ P , then for any optimal solution xP
to (1), we have X > XP .

Proposition 3. Suppose that Assumptions 1–5 hold. Let x be a
Cournot candidate. If p(X) ∈ P and p′(X) exists, then η(x) = 1.

It can be shown that if the inverse demand function is convex,
then p′(X) exists for any Cournot candidate x (cf. Proposition 3
in [8]). On the other hand, for a model satisfying Assumptions 1–
5, if the inverse demand function is not differentiable at X , then a
Cournot equilibrium x may yield arbitrarily large profit loss, even
if X = XP , and N is held fixed (cf. Example 6 in [13]).

Proposition 4. Let x and xP be a Cournot candidate and a monopoly
output, respectively. Suppose that Assumptions 1–5 hold, p′(X) exists,
and that p(X) ∉ P . Let c = |(p(XP)−p(X))/(XP

−X)|, d = |p′(X)|.
Now consider a modified model in which the inverse demand function
is replaced by the piecewise linear function p0(·) defined by

p0(q) =


−c(q − X) + p(X), 0 ≤ q ≤ X,
max {0, −d(q − X) + p(X)} , X < q. (7)

Let η0(x) be the profit ratio of the vector x in the modified model.
Then,

η0(x) ≤ η(x).

According to Proposition 2, we have XP < X , and therefore the
constant c and the function p0(q) in (7) is well defined. Note that
the function p0(q) is nonincreasing in q. The first segment of the
piecewise linear function p0(·) agrees with the inverse demand
function p(·) at the two points (XP , p(XP)) and (X, p(X)); the
second segment is tangent to the inverse demand curve p(·) at the
point (X, p(X)).

Proof. Since p0(X) = p(X), the aggregate profit earned at x is

Xp(X) −

N
n=1

Cn(xn),
in both the original and the modified model. Hence, we have

η0(x) ≤

Xp(X) −

N
n=1

Cn(xn)

XPp0(XP) −

N
n=1

Cn(xPn)

=

Xp(X) −

N
n=1

Cn(xn)

XPp(XP) −

N
n=1

Cn(xPn)
= η(x),

where the inequality holds because the maximum total profit in
the modified model is at least XPp0(XP) −

N
n=1 Cn(xPn), and the

next equality holds because p0(XP) = p(XP). �

3. Profit ratio lower bounds

In this section, we establish a lower bound on the profit ratio
of a Cournot candidate as a function of the scalar parameter c/d
and themaximumof the suppliers’market shares at an equilibrium
(Theorem 1). Through a similar approach, we also provide a lower
bound in terms of the scalar parameter c/d, and the number of
suppliers (Theorem 2).

We first introduce some notation that will be useful in
Theorem 1. Let c = |(p(XP) − p(X))/(XP

− X)| and d = |p′(X)|.
Whenever d > 0, we let c = c/d. Let r denote the maximum of
the suppliers’ market shares, i.e., r = maxn{xn/X}. We define a
function of c and r:

gP(c, r) =


r, if 0 < c ≤ r < 1,
4cr2

(c + r)2
, if 0 < r < c.

(8)

Theorem 1. Let x and xP be a Cournot candidate and a monopoly
output, respectively. Suppose that Assumptions 1–5 hold, p′(X) exists,
and that p(X) > 0.

(a) If p(X) ∈ P , then η(x) = 1;
(b) If p(X) ∉ P , then N ≥ 2 and p′(X) < 0. We have η(x) ≥

gP(c, r), where gP(c, r) is defined in (8).
(c) If c = 1 (in particular, if p(·) is affine), then η(x) ≥ gP(1,N) =

4r2/(1 + r)2. Furthermore, the bound is tight. That is, for every
r ∈ (0, 1) and for every ε > 0, there exists a model with c = 1
and a Cournot equilibrium whose profit ratio is no more than
4r2/(1 + r)2 + ε.

Theorem 1 is proved in Appendix A. The lower bounds are
illustrated in Figs. 1 and 2. For a given r , the lower bound is
nonincreasing in c = c/d, and for a given c , the lower bound
increases with r . For affine inverse demand functions, we have
c = 1 and the bound is tight (the red curve in Fig. 2).

Theorem 2. Suppose that the conditions in Theorem 1 hold, and that
p(X) ∉ P . We have N ≥ 2, and the following:

(a) η(x) ≥ f P(c,N), where c = c/d and

f P(c,N)

=


N − 1 + (

√
N − 1)2

√
N(N − 1)

, if 0 < c ≤

1/N,

4c3(N − 1) + 4c(c + 1)2

(c2N + 2c + 1)2
, if c >


1/N.

(9)
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Fig. 1. A lower bound on the profit ratio of a Cournot equilibrium as a function of
the parameter c/d, for different values of the largest market share r .

Fig. 2. A lower bound on the profit ratio of a Cournot equilibrium as a function
of the largest market share r , for different values of the parameter c/d. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

(b) If c = 1 (in particular, if p(·) is affine), then η(x) ≥ f P(1,N) =

4/(N + 3). Furthermore, the bound is tight, i.e., for any given
N ≥ 2, there exists a model with c = 1 and a Cournot equilibrium
whose profit ratio is 4/(N + 3).

The proof of Theorem 2 can be found in Appendix B of [13].
It is straightforward to check that the function f P(c,N) is strictly
decreasing in N , as shown in Fig. 3. For any given c > 0, the
lower bound, f P(c,N), decreases to zero as the number of
suppliers increases to infinity. Also, for any given N , the profit
ratio lower bound is strictly decreasing in c , over the interval
[
√
1/N, ∞).

4. Corollaries and applications

Given the largestmarket share at an equilibrium (or the number
of suppliers) and the inverse demand function p(·), the lower
bounds derived in Theorem 1 (Theorem 2, respectively) require
additional knowledge on the aggregate supply at the Cournot
equilibrium and on the monopoly output, i.e., X and XP . In this
section, we first establish profit ratio lower bounds that do not
require the knowledge of X and XP , and then apply our results
to calculate nontrivial quantitative profit ratio bounds for a class
of inverse demand functions that have been considered in the
economics literature.
Fig. 3. A lower bound on the profit ratio of a Cournot equilibrium as a function of
the parameter c/d, for different values of N .

Corollary 1. Suppose that Assumptions 1–5 hold, and that p(·) is
concave and differentiable on the interval where it is positive. For
every Cournot candidate x with p(X) > 0, we have η(x) ≥ max
{f P(1,N), gP(1, r)}.
Proof. If p(X) ∈ P , then η(x) = 1 and the desired result trivially
holds. Otherwise, we have that XP < X and c ≤ 1. The desired
result then follows from Theorems 1 and 2, and the fact that both
f P(·,N) and gP(·, r) are nonincreasing. �

Corollary 2. Suppose that Assumptions 1–5 hold, and that p(·) is
convex. Let

s = inf

q | p(q) = min

n
C ′

n(0)


,

t = inf

q | min

n
C ′

n(q) ≥ p(q) + q∂+p(q)


.
(10)

If ∂−p(s) < 0, then the profit ratio of a Cournot candidate x with
p(X) > 0 is at least

max

f P (∂+p(t)/∂−p(s),N) , gP (∂+p(t)/∂−p(s), r)


.

Note that under Assumption 3, the existence of the real
numbers defined in (10) is guaranteed, and t ≤ s. The proof of
Corollary 2 is given in Appendix D of [13].We also note that if there
exists a ‘‘best’’ supplier n such that C ′

n(x) ≤ C ′
m(x), for any other

supplierm and any x > 0, then the parameters s and t depend only
on p(·) and C ′

n(·). In the following example, we apply Corollary 2
to a class of convex inverse demand functions that appear in the
economics literature.

Example 1. Suppose that Assumptions 1, 3 and 5 hold. There are
N ≥ 2 suppliers. There exists a best supplier, the cost function
of which is linear with a slope χ ≥ 0. Consider inverse demand
functions of the form in Eq. (2), as in [10,11],

p(q) = max{α − βqδ, 0}, α, β, δ > 0.

It is not hard to see that Assumption 2 holds. Assumption 5 implies
that α > χ . Since

d2(qp(q))
dq2

≤ p′(q) + qp′′(q) = −βδqδ−1
− βδ(δ − 1)qδ−1

= −βδ2qδ−1
≤ 0,

we see that Assumption 4 holds. Through a simple calculation we
have

s =


α − χ

β

1/δ

, t =


α − χ

β(δ + 1)

1/δ

.
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We also have

p′(t)
p′(s)

=
−βδtδ−1

−βδsδ−1
= (δ + 1)

1−δ
δ .

From Corollary 2 we know that for every Cournot equilibrium x
with p(X) > 0,

η(x) ≥ max

f P


(δ + 1)

1−δ
δ ,N


, gP


(δ + 1)

1−δ
δ , r


. (11)

We now argue that the preceding lower bound holds even
without the assumption that there is a best supplier associated
with a linear cost function. From Proposition 1, the profit ratio of
any Cournot equilibrium x will not increase if the cost function of
each supplier n is replaced by

Cn(x) = C ′

n(xn)x, ∀x ≥ 0.

Let c = minn{C ′
n(xn)}. Since the profit ratio lower bound in (11)

holds for the modified model with linear cost functions, it applies
whenever the inverse demand function is of the form (2). �

5. Conclusion

For Cournot oligopoly models with concave revenue functions,
results such as those provided in Theorem 1 (or Theorem 2) show
that the profit ratio at a Cournot equilibrium can be lower bounded
by a function of the largest market share at the equilibrium r (or
the number of suppliers N), and a scalar parameter that captures
quantitative properties of the inverse demand function. For the
important special class of Cournot models with affine inverse
demand functions, our profit ratio lower bounds, 4r2/(1+ r)2 and
4/(N + 3), are tight.
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Appendix. Proof of Theorem 1

According to Proposition 3, if p(X) ∈ P , then the Cournot can-
didate’s profit ratio must equal one.

To prove part (b), we assume that p(X) ∉ P . Note that wemust
have N ≥ 2. This is because otherwise, a Cournot candidate x in
a model with N = 1 would satisfy the conditions (3). Since also
p(X) > 0, it would follow that the Cournot candidate maximizes
the aggregate profit and p(X) ∈ P , a contradiction. We also note
that since X > 0, r is well defined. If r = 1, then the Cournot
candidate satisfies conditions (3), and therefore maximizes the
aggregate profit. Hence, we have r ∈ (0, 1).

If p′(X) = 0, the necessary conditions (4)–(5) imply the condi-
tions in (3). Since p(X) > 0, the conditions in (3) are sufficient for x
to maximize the aggregate profit. But since p(X) ∉ P , this cannot
be the case and we must have p′(X) < 0 and d > 0.

Without loss of generality, let supplier 1 have the largest
market share, i.e., x1 = maxn{xn} and r = x1/X . According to
Proposition 1, the vector x remains a Cournot candidate in the
modified model with linear cost functions, and Assumptions 1–
5 still hold. Therefore, to lower bound the worst case profit ratio
for Cournot candidates, we only need to derive a lower bound for
the profit ratio of Cournot candidates for the case of linear cost
functions. We therefore assume that Cn(xn) = αnxn for each n.
From the conditions in (4)–(5), it is straightforward to see that
α1 = minn{αn}.

Since p(X) ≠ p(XP), we have that c > 0. For notational conve-
nience, we let y = p(X) throughout the proof. We will prove the
theorem by considering separately the cases where α1 = 0 and
α1 > 0.
The case α1 = 0.

Let x be a Cournot candidate in the original model, with linear
cost functions and the inverse demand function p(·). Since p′(X) <
0, the conditions in (4) and (5) yield y > 0, x1 = y/d and r = y/dX .
We therefore have

0 ≤

N
n=2

xn = X −
y
d
. (A.1)

From Proposition 4, the profit ratio of the vector x in the
modified model (with a piecewise linear inverse demand function
of the form in (7)), η0(x), cannot be more than its profit ratio in
the original model, η(x). Hence, to prove part (b), it suffices to
show that η0(x) ≥ gP(c, r). For themodifiedmodel, themaximum
aggregate profit is the optimal value of the following optimization
problem,
maximize qp0(q)
subject to q ≥ 0.
Through a simple calculation we have:
(i) If cX ≥ y, then themaximumaggregate profit is (cX+y)2/(4c),

achieved at q = (cX + y)/(2c).
(ii) If cX ≤ y, then the maximum aggregate profit is Xy, achieved

at q = X .
Note that for n = 1 we have αnxn = 0. For n ≥ 2, whenever

xn > 0, from conditions (4) and (5) we have αn = y − xnd and
αnxn = (y−xnd)xn. Therefore, in themodifiedmodel, the aggregate
profit achieved at x is

Xp(X) −

N
n=1

αnxn = Xy −

N
n=2

(y − xnd)xn

≥ Xy − y
N

n=2

xn +
(Xd − y)2

(N − 1)d

= Xy − y(X − y/d) +
(Xd − y)2

(N − 1)d

=
y2

d
+

(Xd − y)2

(N − 1)d
, (A.2)

where the inequality is true because
N

n=2 x
2
n is minimized when

x2 = x3 = · · · = xN , subject to the constraint in (A.1). For the case
cX ≥ y, since the maximum aggregate profit is (cX + y)2/4c , we
have

η0(x) ≥
y2/d + (Xd − y)2/((N − 1)d)

(cX + y)2/4c
. (A.3)

Note that c, d and y are positive. Substituting r = y/dX and
c = c/d in (A.3), we have

η0(x) ≥
4c2r2 +

4(c−cr)2

N−1

c(c + r)2
≥

4c2r2

c(c + r)2

=
4cr2

(c + r)2
, 0 ≤ r ≤ min{c, 1}, (A.4)

where the constraint r ≤ c follows from cX ≥ y.
For the case cX ≤ y, we have r ≥ c , and the maximum

aggregate profit is Xy. From (A.2), we have

η0(x) ≥

y2

d +
(Xd−y)2

(N−1)d

Xy
=

c2r2(N − 1) + (c − cr)2

c2r(N − 1)
≥ r,

0 < c ≤ r < 1. (A.5)
Tightness.

Given some r ∈ (0, 1), consider a model with N ≥ ⌈1/r⌉ + 1,
and an affine inverse demand function p0(·) of the form in (7),
where c/d = 1 and rdX = y. The cost of supplier 1 is identically
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zero and

Cn(x) =


y −

d
N − 1

(X − rX)


x, n = 2, . . . ,N.

It is not hard to see that the vector with components

x1 = rX, xn =
1

N − 1
(X − rX) , n = 2, . . . ,N,

satisfies the conditions (4)–(5). It is straightforward to check that
x is a Cournot equilibrium. The maximum total profit is (cX +

y)2/4c , and is achieved at the monopoly output xP = ((cX +

y)/2c, 0, . . . , 0). On the other hand, the aggregate profit achieved
at x is given on the right-hand side of (A.2). We have

η0(x) =
y2/d + (Xd − y)2/((N − 1)d)

(cX + y)2/4c

=
4r2 + 4(1 − r)2/(N − 1)

(1 + r)2
,

and as the number of suppliers increases to infinity, the profit ratio
of the Cournot equilibrium converges to 4r2/(1 + r)2.
The case α1 > 0.

By rescaling the cost coefficients and permuting the supplier in-
dices, we can assume that minn{αn} = α1 = 1. It is straightfor-
ward to check (from the conditions in Eqs. (4)–(5)) that y ≥ 1 and
x1 = (y − 1)/d, i.e., r = (y − 1)/dX . The desired results in (8) can
be proved through an approach similar to the case that α1 = 0, by
replacing y with y − 1.
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