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convexity for quartic polynomials. We also prove that deciding strict convexity, strong
convexity, quasiconvexity, and pseudoconvexity of polynomials of even degree four
or higher is strongly NP-hard. By contrast, we show that quasiconvexity and pseudo-
convexity of odd degree polynomials can be decided in polynomial time.
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1 Introduction

The role of convexity in modern day mathematical programming has proven to be
remarkably fundamental, to the point that tractability of an optimization problem is
nowadays assessed, more often than not, by whether or not the problem benefits from
some sort of underlying convexity. In the famous words of Rockafellar [41]:

“In fact the great watershed in optimization isn’t between linearity and nonlin-
earity, but convexity and nonconvexity.”

But how easy is it to distinguish between convexity and nonconvexity? Can we decide
in an efficient manner if a given optimization problem is convex?

A class of optimization problems that allow for a rigorous study of this question
from a computational complexity viewpoint is the class of polynomial optimization
problems. These are optimization problems where the objective is given by a polyno-
mial function and the feasible set is described by polynomial inequalities. Our research
in this direction was motivated by a concrete question of N. Z. Shor that appeared as one
of seven open problems in complexity theory for numerical optimization put together
by Pardalos and Vavasis in 1992 [38]:

“Given a degree-4 polynomial in n variables, what is the complexity of deter-
mining whether this polynomial describes a convex function?”

As we will explain in more detail shortly, the reason why Shor’s question is specifically
about degree 4 polynomials is that deciding convexity of odd degree polynomials is
trivial and deciding convexity of degree 2 (quadratic) polynomials can be reduced to
the simple task of checking whether a constant matrix is positive semidefinite. So,
the first interesting case really occurs for degree 4 (quartic) polynomials. Our main
contribution in this paper (Theorem 2.1 in Sect. 2.3) is to show that deciding convexity
of polynomials is strongly NP-hard already for polynomials of degree 4.

The implication of NP-hardness of this problem is that unless P = NP, there exists
no algorithm that can take as input the (rational) coefficients of a quartic polyno-
mial, have running time bounded by a polynomial in the number of bits needed to
represent the coefficients, and output correctly on every instance whether or not the
polynomial is convex. Furthermore, the fact that our NP-hardness result is in the strong
sense (as opposed to weakly NP-hard problems such as KNAPSACK) implies, roughly
speaking, that the problem remains NP-hard even when the magnitude of the coeffi-
cients of the polynomial are restricted to be “small.” For a strongly NP-hard problem,
even a pseudo-polynomial time algorithm cannot exist unless P = NP. See [19] for
precise definitions and more details.

There are many areas of application where one would like to establish convexity of
polynomials. Perhaps the simplest example is in global minimization of polynomials,
where it could be very useful to decide first whether the polynomial to be optimized
is convex. Once convexity is verified, then every local minimum is global and very
basic techniques (e.g., gradient descent) can find a global minimum—a task that is
in general NP-hard in the absence of convexity [35,39]. As another example, if we
can certify that a homogeneous polynomial is convex, then we define a gauge (or
Minkowski) norm based on its convex sublevel sets, which may be useful in many
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applications. In several other problems of practical relevance, we might not just be
interested in checking whether a given polynomial is convex, but to parameterize a
family of convex polynomials and perhaps search or optimize over them. For exam-
ple we might be interested in approximating the convex envelope of a complicated
nonconvex function with a convex polynomial, or in fitting a convex polynomial to a
set of data points with minimum error [30]. Not surprisingly, if testing membership
to the set of convex polynomials is hard, searching and optimizing over that set also
turns out to be a hard problem.

We also extend our hardness result to some variants of convexity, namely, the
problems of deciding strict convexity, strong convexity, pseudoconvexity, and quas-
iconvexity of polynomials. Strict convexity is a property that is often useful to check
because it guarantees uniqueness of the optimal solution in optimization problems. The
notion of strong convexity is a common assumption in convergence analysis of many
iterative Newton-type algorithms in optimization theory; see, e.g., [9, Chaps. 9–11].
So, in order to ensure the theoretical convergence rates promised by many of these
algorithms, one needs to first make sure that the objective function is strongly convex.
The problem of checking quasiconvexity (convexity of sublevel sets) of polynomials
also arises frequently in practice. For instance, if the feasible set of an optimization
problem is defined by polynomial inequalities, by certifying quasiconvexity of the
defining polynomials we can ensure that the feasible set is convex. In several statistics
and clustering problems, we are interested in finding minimum volume convex sets
that contain a set of data points in space. This problem can be tackled by searching
over the set of quasiconvex polynomials [30]. In economics, quasiconcave functions
are prevalent as desirable utility functions [5,28]. In control and systems theory, it is
useful at times to search for quasiconvex Lyapunov functions whose convex sublevel
sets contain relevant information about the trajectories of a dynamical system [3,11].
Finally, the notion of pseudoconvexity is a natural generalization of convexity that
inherits many of the attractive properties of convex functions. For example, every sta-
tionary point or every local minimum of a pseudoconvex function must be a global
minimum. Because of these nice features, pseudoconvex programs have been studied
extensively in nonlinear programming [13,31].

As an outcome of close to a century of research in convex analysis, numerous
necessary, sufficient, and exact conditions for convexity and all of its variants are
available; see, e.g., [9, Chap. 3], [14,18,28,32,33] and references therein for a by no
means exhaustive list. Our results suggest that none of the exact characterizations of
these notions can be efficiently checked for polynomials. In fact, when turned upside
down, many of these equivalent formulations reveal new NP-hard problems; see, e.g.,
Corollary 2.6 and 2.8.

1.1 Related literature

There are several results in the literature on the complexity of various special cases
of polynomial optimization problems. The interested reader can find many of these
results in the edited volume of Pardalos [37] or in the survey papers of de Klerk [16],
and Blondel and Tsitsiklis [8]. A very general and fundamental concept in certifying
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feasibility of polynomial equations and inequalities is the Tarski–Seidenberg quantifier
elimination theory [42,43], from which it follows that all of the problems that we con-
sider in this paper are algorithmically decidable. This means that there are algorithms
that on all instances of our problems of interest halt in finite time and always output
the correct yes–no answer. Unfortunately, algorithms based on quantifier elimination
or similar decision algebra techniques have running times that are at least exponential
in the number of variables [6], and in practice can only solve problems with very few
parameters.

When we turn to the issue of polynomial time solvability, perhaps the most rele-
vant result for our purposes is the NP-hardness of deciding nonnegativity of quartic
polynomials and biquadratic forms (see Definition 2.2); the reduction that we give in
this paper will in fact be from the latter problem. As we will see in Sect. 2.3, it turns
out that deciding convexity of quartic forms is equivalent to checking nonnegativity
of a special class of biquadratic forms, which are themselves a special class of quartic
forms. The NP-hardness of checking nonnegativity of quartic forms follows, e.g., as
a direct consequence of NP-hardness of testing matrix copositivity, a result proven
by Murty and Kabadi [35]. As for the hardness of checking nonnegativity of biqua-
dratic forms, we know of two different proofs. The first one is due to Gurvits [22],
who proves that the entanglement problem in quantum mechanics (i.e., the problem
of distinguishing separable quantum states from entangled ones) is NP-hard. A dual
reformulation of this result shows directly that checking nonnegativity of biquadratic
forms is NP-hard; see [17]. The second proof is due to Ling et al. [29], who use a
theorem of Motzkin and Straus to give a very short and elegant reduction from the
maximum clique problem in graphs.

The only work in the literature on the hardness of deciding polynomial convexity
that we are aware of is the work of Guo on the complexity of deciding convexity of
quartic polynomials over simplices [21]. Guo discusses some of the difficulties that
arise from this problem, but he does not prove that deciding convexity of polynomials
over simplices is NP-hard. Canny shows in [10] that the existential theory of the real
numbers can be decided in PSPACE. From this, it follows that testing several proper-
ties of polynomials, including nonnegativity and convexity, can be done in polynomial
space. In [36], Nie proves that the related notion of matrix convexity is NP-hard for
polynomial matrices whose entries are quadratic forms.

On the algorithmic side, several techniques have been proposed both for testing
convexity of sets and convexity of functions. Rademacher and Vempala present and
analyze randomized algorithms for testing the relaxed notion of approximate convex-
ity [40]. In [27], Lasserre proposes a semidefinite programming hierarchy for testing
convexity of basic closed semialgebraic sets; a problem that we also prove to be
NP-hard (see Corollary 2.8). As for testing convexity of functions, an approach that
some convex optimization parsers (e.g., CVX [20]) take is to start with some ground
set of convex functions and then check whether the desired function can be obtained
by applying a set of convexity preserving operations to the functions in the ground
set [15], [9, p. 79]. Techniques of this type that are based on the calculus of convex
functions are successful for a large range of applications. However, when applied to
general polynomial functions, they can only detect a subclass of convex polynomials.
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Table 1 Summary of our complexity results

Property versus degree 1 2 Odd ≥ 3 Even ≥ 4

Strong convexity No P No Strongly NP-hard

Strict convexity No P No Strongly NP-hard

Convexity Yes P No Strongly NP-hard

Pseudoconvexity Yes P P Strongly NP-hard

Quasiconvexity Yes P P Strongly NP-hard

A yes (no) entry means that the question is trivial for that particular entry because the answer is always yes
(no) independent of the input. By P, we mean that the problem can be solved in polynomial time

Related to convexity of polynomials, a concept that has attracted recent attention
is the algebraic notion of sos-convexity (see Definition 2.4) [3,11,23,25,26,30]. This
is a powerful sufficient condition for convexity that relies on an appropriately defined
sum of squares decomposition of the Hessian matrix, and can be efficiently checked
by solving a single semidefinite program. However, in [2,4], Ahmadi and Parrilo gave
an explicit counterexample to show that not every convex polynomial is sos-convex.
The NP-hardness result in this work certainly justifies the existence of such a counter-
example and more generally suggests that any polynomial time algorithm attempted
for checking polynomial convexity is doomed to fail on some hard instances.

1.2 Contributions and organization of the paper

The main contribution of this paper is to establish the computational complexity of
deciding convexity, strict convexity, strong convexity, pseudoconvexity, and quasicon-
vexity of polynomials for any given degree. See Table 1 for a quick summary. The
results are mainly divided in three sections, with Sect. 2 covering convexity, Sect. 3
covering strict and strong convexity, and Sect. 4 covering quasiconvexity and pseudo-
convexity. These three sections follow a similar pattern and are each divided into three
parts: first, the definitions and basics, second, the degrees for which the questions can
be answered in polynomial time, and third, the degrees for which the questions are
NP-hard.

Our main reduction, which establishes NP-hardness of checking convexity of quar-
tic forms, is given in Sect. 2.3. This hardness result is extended to strict and strong
convexity in Sect. 3.3, and to quasiconvexity and pseudoconvexity in Sect. 4.3. By
contrast, we show in Sect. 4.2 that quasiconvexity and pseudoconvexity of odd degree
polynomials can be decided in polynomial time. Finally, a summary of our results and
some concluding remarks are presented in Sect. 5.

2 Complexity of deciding convexity

2.1 Definitions and basics

A (multivariate) polynomial p(x) in variables x := (x1, . . . , xn)T is a function from
R

n to R that is a finite linear combination of monomials:
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p(x) =
∑

α

cαxα =
∑

α1,...,αn

cα1,...,αn xα1
1 · · · xαn

n , (1)

where the sum is over n-tuples of nonnegative integers αi . An algorithm for testing
some property of polynomials will have as its input an ordered list of the coefficients
cα . Since our complexity results are based on models of digital computation, where
the input must be represented by a finite number of bits, the coefficients cα for us will
always be rational numbers, which upon clearing the denominators can be taken to be
integers. So, for the remainder of the paper, even when not explicitly stated, we will
always have cα ∈ Z.

The degree of a monomial xα is equal to α1 +· · ·+αn . The degree of a polynomial
p(x) is defined to be the highest degree of its component monomials. A simple counting

argument shows that a polynomial of degree d in n variables has
( n + d

d

)
coefficients.

A homogeneous polynomial (or a form) is a polynomial where all the monomials have
the same degree. A form p(x) of degree d is a homogeneous function of degree d

(since it satisfies p(λx) = λd p(x)), and has
( n + d − 1

d

)
coefficients.

A polynomial p(x) is said to be nonnegative or positive semidefinite (psd)
if p(x) ≥ 0 for all x ∈ R

n . Clearly, a necessary condition for a polynomial to be
psd is for its degree to be even. We say that p(x) is a sum of squares (sos), if there
exist polynomials q1(x), . . . , qm(x) such that p(x) = ∑m

i=1 q2
i (x). Every sos polyno-

mial is obviously psd. A polynomial matrix P(x) is a matrix with polynomial entries.
We say that a polynomial matrix P(x) is PSD (denoted P(x) � 0) if it is positive
semidefinite in the matrix sense for every value of the indeterminates x . (Note the
upper case convention for matrices.) It is easy to see that P(x) is PSD if and only if
the scalar polynomial yT P(x)y in variables (x; y) is psd.

We recall that a polynomial p(x) is convex if and only if its Hessian matrix, which
will be generally denoted by H(x), is PSD.

2.2 Degrees that are easy

The question of deciding convexity is trivial for odd degree polynomials. Indeed, it is
easy to check that linear polynomials (d = 1) are always convex and that polynomials
of odd degree d ≥ 3 can never be convex. The case of quadratic polynomials (d = 2)
is also straightforward. A quadratic polynomial p(x) = 1

2 xT Qx + qT x + c is con-
vex if and only if the constant matrix Q is positive semidefinite. This can be decided
in polynomial time for example by performing Gaussian pivot steps along the main
diagonal of Q [35] or by computing the characteristic polynomial of Q exactly and
then checking that the signs of its coefficients alternate [24, p. 403].

Unfortunately, the results that come next suggest that the case of quadratic polyno-
mials is essentially the only nontrivial case where convexity can be efficiently decided.

2.3 Degrees that are hard

The main hardness result of the paper is the following theorem.
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Theorem 2.1 Deciding convexity of degree four polynomials is strongly NP-hard.
This is true even when the polynomials are restricted to be homogeneous.

We will give a reduction from the problem of deciding nonnegativity of biquadratic
forms. We start by recalling some basic facts about biquadratic forms and sketching
the idea of the proof.

Definition 2.2 A biquadratic form b(x; y) is a form in the variables x = (x1, . . . , xn)T

and y = (y1, . . . , ym)T that can be written as

b(x; y) =
∑

i≤ j, k≤l

αi jkl xi x j yk yl . (2)

Note that for fixed x, b(x; y) becomes a quadratic form in y, and for fixed y, it
becomes a quadratic form in x . Every biquadratic form is a quartic form, but the con-
verse is of course not true. It follows from a result of Ling et al. [29] that deciding
nonnegativity of biquadratic forms is strongly NP-hard. For the benefit of the reader,
let us briefly summarize the proof from [29] before we proceed, as this result underlies
everything that follows.

The argument in [29] is based on a reduction from CLIQUE (given a graph G(V, E)

and a positive integer k ≤ |V |, decide whether G contains a clique of size k or more)
whose (strong) NP-hardness is well-known [19]. For a given graph G(V, E) on n
nodes, if we define the biquadratic form bG(x; y) in the variables x = (x1, . . . , xn)T

and y = (y1, . . . , yn)T by

bG(x; y) = −2
∑

(i, j)∈E

xi x j yi y j ,

then Ling et al. [29] use a theorem of Motzkin and Straus [34] to show

min||x ||=||y||=1
bG(x; y) = −1 + 1

ω(G)
. (3)

Here, ω(G) denotes the clique number of the graph G, i.e., the size of a maximal
clique.1 From this, we see that for any value of k, ω(G) ≤ k if and only if

min||x ||=||y||=1
bG(x; y) ≥ 1 − k

k
,

which by homogenization holds if and only if the biquadratic form

b̂G(x; y) = −2k
∑

(i, j)∈E

xi x j yi y j − (1 − k)

(
n∑

i=1

x2
i

)(
n∑

i=1

y2
i

)

1 Equation (3) above is stated in [29] with the stability number α(G) in place of the clique number ω(G).
This seems to be a minor typo.
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is nonnegative. Hence, by checking nonnegativity of b̂G(x; y) for all values of
k ∈ {1, . . . , n − 1}, we can find the exact value of ω(G). It follows that deciding
nonnegativity of biquadratic forms is NP-hard, and in view of the fact that the coeffi-
cients of b̂G(x; y) are all integers with absolute value at most 2n −2, the NP-hardness
claim is in the strong sense. Note also that the result holds even when n = m in
Definition 2.2. In the sequel, we will always have n = m.

It is not difficult to see that any biquadratic form b(x; y) can be written in the form

b(x; y) = yT A(x)y (4)

(or of course as xT B(y)x) for some symmetric polynomial matrix A(x) whose entries
are quadratic forms. Therefore, it is strongly NP-hard to decide whether a symmetric
polynomial matrix with quadratic form entries is PSD. One might hope that this would
lead to a quick proof of NP-hardness of testing convexity of quartic forms, because
the Hessian of a quartic form is exactly a symmetric polynomial matrix with quadratic
form entries. However, the major problem that stands in the way is that not every
polynomial matrix is a valid Hessian. Indeed, if any of the partial derivatives between
the entries of A(x) do not commute (e.g., if ∂ A11(x)

∂x2
�= ∂ A12(x)

∂x1
), then A(x) cannot be

the matrix of second derivatives of some polynomial. This is because all mixed third
partial derivatives of polynomials must commute.

Our task is therefore to prove that even with these additional constraints on the
entries of A(x), the problem of deciding positive semidefiniteness of such matrices
remains NP-hard. We will show that any given symmetric n × n matrix A(x), whose
entries are quadratic forms, can be embedded in a 2n×2n polynomial matrix H(x, y),
again with quadratic form entries, so that H(x, y) is a valid Hessian and A(x) is PSD
if and only if H(x, y) is. In fact, we will directly construct the polynomial f (x, y)

whose Hessian is the matrix H(x, y). This is done in the next theorem, which estab-
lishes the correctness of our main reduction. Once this theorem is proven, the proof
of Theorem 2.1 will become immediate.

Theorem 2.3 Given a biquadratic form b(x; y), define the the n×n polynomial matrix
C(x, y) by setting

[C(x, y)]i j := ∂b(x; y)

∂xi∂ y j
, (5)

and let γ be the largest coefficient, in absolute value, of any monomial present in some
entry of the matrix C(x, y). Let f be the form given by

f (x, y) := b(x; y) + n2γ

2

⎛

⎜⎜⎝
n∑

i=1

x4
i +

n∑

i=1

y4
i +

∑

i, j=1,...,n
i< j

x2
i x2

j +
∑

i, j=1,...,n
i< j

y2
i y2

j

⎞

⎟⎟⎠ .

(6)

Then, b(x; y) is psd if and only if f (x, y) is convex.
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Proof Before we prove the claim, let us make a few observations and try to shed light
on the intuition behind this construction. We will use H(x, y) to denote the Hessian
of f . This is a 2n × 2n polynomial matrix whose entries are quadratic forms. The
polynomial f is convex if and only if zT H(x, y)z is psd. For bookkeeping purposes,
let us split the variables z as z := (zx , zy)

T , where zx and zy each belong to R
n . It

will also be helpful to give a name to the second group of terms in the definition of
f (x, y) in (6). So, let

g(x, y) := n2γ

2

⎛

⎜⎜⎝
n∑

i=1

x4
i +

n∑

i=1

y4
i +

∑

i, j=1,...,n
i< j

x2
i x2

j +
∑

i, j=1,...,n
i< j

y2
i y2

j

⎞

⎟⎟⎠. (7)

We denote the Hessian matrices of b(x, y) and g(x, y) with Hb(x, y) and Hg(x, y)

respectively. Thus, H(x, y) = Hb(x, y)+ Hg(x, y). Let us first focus on the structure
of Hb(x, y). Observe that if we define

[A(x)]i j = ∂b(x; y)

∂ yi∂ y j
,

then A(x) depends only on x , and

1

2
yT A(x)y = b(x; y). (8)

Similarly, if we let

[B(y)]i j = ∂b(x; y)

∂xi∂x j
,

then B(y) depends only on y, and

1

2
xT B(y)x = b(x; y). (9)

From Eq. (8), we have that b(x; y) is psd if and only if A(x) is PSD; from Eq. (9),
we see that b(x; y) is psd if and only if B(y) is PSD.

Putting the blocks together, we have

Hb(x, y) =
[

B(y) C(x, y)

CT (x, y) A(x)

]
. (10)

The matrix C(x, y) is not in general symmetric. The entries of C(x, y) consist of
square-free monomials that are each a multiple of xi y j for some i, j , with 1 ≤ i, j ≤ n;
(see (2) and (5)).
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The Hessian Hg(x, y) of the polynomial g(x, y) in (7) is given by

Hg(x, y) = n2γ

2

[
H11

g (x) 0
0 H22

g (y)

]
, (11)

where

H11
g (x) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12x2
1 + 2

∑

i=1,...,n
i �=1

x2
i 4x1x2 · · · 4x1xn

4x1x2 12x2
2 + 2

∑

i=1,...,n
i �=2

x2
i · · · 4x2xn

...
...

. . .
...

4x1xn · · · 4xn−1xn 12x2
n + 2

∑

i=1,...,n
i �=n

x2
i

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(12)

and

H22
g (y) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12y2
1 + 2

∑

i=1,...,n
i �=1

y2
i 4y1 y2 · · · 4y1 yn

4y1 y2 12y2
2 + 2

∑

i=1,...,n
i �=2

y2
i · · · 4y2 yn

...
...

. . .
...

4y1 yn · · · 4yn−1 yn 12y2
n + 2

∑

i=1,...,n
i �=n

y2
i

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(13)

Note that all diagonal elements of H11
g (x) and H22

g (y) contain the square of every
variable x1, . . . , xn and y1, . . . , yn respectively.

We fist give an intuitive summary of the rest of the proof. If b(x; y) is not psd,
then B(y) and A(x) are not PSD and hence Hb(x, y) is not PSD. Moreover, adding
Hg(x, y) to Hb(x, y) cannot help make H(x, y) PSD because the dependence of the
diagonal blocks of Hb(x, y) and Hg(x, y) on x and y runs backwards. On the other
hand, if b(x; y) is psd, then Hb(x, y) will have PSD diagonal blocks. In principle,
Hb(x, y) might still not be PSD because of the off-diagonal block C(x, y). How-
ever, the squares in the diagonal elements of Hg(x, y) will be shown to dominate the
monomials of C(x, y) and make H(x, y) PSD.
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Let us now prove the theorem formally. One direction is easy: if b(x; y) is not psd,
then f (x, y) is not convex. Indeed, if there exist x̄ and ȳ in R

n such that b(x̄; ȳ) < 0,
then

zT H(x, y)z
∣∣∣
zx =0,x=x̄,y=0,zy=ȳ

= ȳT A(x̄)ȳ = 2b(x̄; ȳ) < 0.

For the converse, suppose that b(x; y) is psd; we will prove that zT H(x, y)z is psd
and hence f (x, y) is convex. We have

zT H(x, y)z = zT
y A(x)zy + zT

x B(y)zx + 2zT
x C(x, y)zy

+n2γ

2
zT

x H11
g (x)zx + n2γ

2
zT

y H22
g (y)zy . (14)

Because zT
y A(x)zy and zT

x B(y)zx are psd by assumption (see (8) and (9)), it suffices
to show that zT H(x, y)z − zT

y A(x)zy − zT
x B(y)zx is psd. In fact, we will show that

zT H(x, y)z − zT
y A(x)zy − zT

x B(y)zx is a sum of squares.
After some regrouping of terms we can write

zT H(x, y)z − zT
y A(x)zy − zT

x B(y)zx = p1(x, y, z) + p2(x, zx ) + p3(y, zy),

(15)

where

p1(x, y, z) = 2zT
x C(x, y)zy +n2γ

(
n∑

i=1

z2
x,i

)(
n∑

i=1

x2
i

)
+n2γ

(
n∑

i=1

z2
y,i

)(
n∑

i=1

y2
i

)
,

(16)

p2(x, zx ) = n2γ zT
x

⎡

⎢⎢⎢⎣

5x2
1 2x1x2 · · · 2x1xn

2x1x2 5x2
2 · · · 2x2xn

...
...

. . .
...

2x1xn · · · 2xn−1xn 5x2
n

⎤

⎥⎥⎥⎦ zx , (17)

and

p3(y, zy) = n2γ zT
y

⎡

⎢⎢⎢⎣

5y2
1 2y1 y2 · · · 2y1 yn

2y1 y2 5y2
2 · · · 2y2 yn

...
...

. . .
...

2y1 yn · · · 2yn−1 yn 5y2
n

⎤

⎥⎥⎥⎦ zy . (18)
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We show that (15) is sos by showing that p1, p2, and p3 are each individually sos.
To see that p2 is sos, simply note that we can rewrite it as

p2(x, zx ) = n2γ

⎡

⎣3
n∑

k=1

z2
x,k x2

k + 2

(
n∑

k=1

zx,k xk

)2
⎤

⎦ .

The argument for p3 is of course identical. To show that p1 is sos, we argue as fol-
lows. If we multiply out the first term 2zT

x C(x, y)zy , we obtain a polynomial with
monomials of the form

± 2βi, j,k,l zx,k xi y j zy,l , (19)

where 0 ≤ βi, j,k,l ≤ γ , by the definition of γ . Since

± 2βi, j,k,l zx,k xi y j zy,l + βi, j,k,l z
2
x,k x2

i + βi, j,k,l y2
j z2

y,l = βi, j,k,l(zx,k xi ± y j zy,l)
2,

(20)

by pairing up the terms of 2zT
x C(x, y)zy with fractions of the squared terms z2

x,k x2
i and

z2
y,l y2

j , we get a sum of squares. Observe that there are more than enough squares for

each monomial of 2zT
x C(x, y)zy because each such monomial ±2βi, j,k,l zx,k xi y j zy,l

occurs at most once, so that each of the terms z2
x,k x2

i and z2
y,l y2

j will be needed at

most n2 times, each time with a coefficient of at most γ . Therefore, p1 is sos, and this
completes the proof. ��
We can now complete the proof of strong NP-hardness of deciding convexity of quartic
forms.

Proof of Theorem 2.1 As we remarked earlier, deciding nonnegativity of biquadratic
forms is known to be strongly NP-hard [29]. Given such a biquadratic form b(x; y), we
can construct the polynomial f (x, y) as in (6). Note that f (x, y) has degree four and
is homogeneous. Moreover, the reduction from b(x; y) to f (x, y) runs in polynomial

time as we are adding to b(x; y) only 2n + 2
( n

2

)
new monomials with coefficient

n2γ
2 , and the size of γ is by definition only polynomially larger than the size of any

coefficient of b(x; y). Since by Theorem 2.3 convexity of f (x, y) is equivalent to non-
negativity of b(x; y), we conclude that deciding convexity of quartic forms is strongly
NP-hard. ��

An algebraic version of the reduction. Before we proceed further with our results,
we make a slight detour and present an algebraic analogue of this reduction, which
relates sum of squares biquadratic forms to sos-convex polynomials. Both of these
concepts are well-studied in the literature, in particular in regards to their connection
to semidefinite programming; see, e.g., [4,29], and references therein.
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Definition 2.4 A polynomial p(x), with its Hessian denoted by H(x), is sos-convex
if the polynomial yT H(x)y is a sum of squares in variables (x;y).2

Theorem 2.5 Given a biquadratic form b(x; y), let f (x, y) be the quartic form
defined as in (6). Then b(x; y) is a sum of squares if and only if f (x, y) is sos-convex.

Proof The proof is very similar to the proof of Theorem 2.3 and is left to the reader.
��

Perhaps of independent interest, Theorems 2.3 and 2.5 imply that our reduction
gives an explicit way of constructing convex but not sos-convex quartic forms (see [4]),
starting from any example of a psd but not sos biquadratic form (see [12]).

Some NP-hardness results, obtained as corollaries. NP-hardness of checking con-
vexity of quartic forms directly establishes NP-hardness3 of several problems of inter-
est. Here, we mention a few examples.

Corollary 2.6 It is NP-hard to decide nonnegativity of a homogeneous polynomial q
of degree four, of the form

q(x, y) = 1

2
p(x) + 1

2
p(y) − p

( x+y
2

)
,

for some homogeneous quartic polynomial p.

Proof Nonnegativity of q is equivalent to convexity of p, and the result follows directly
from Theorem 2.1. ��
Definition 2.7 A set S ⊂ R

n is basic closed semialgebraic if it can be written as

S = {x ∈ R
n| fi (x) ≥ 0, i = 1, . . . , m}, (21)

for some positive integer m and some polynomials fi (x).

Corollary 2.8 Given a basic closed semialgebraic set S as in (21), where at least one
of the defining polynomials fi (x) has degree four, it is NP-hard to decide whether S
is a convex set.

Proof Given a quartic polynomial p(x), consider the basic closed semialgebraic set

Ep = {(x, t) ∈ R
n+1| t − p(x) ≥ 0},

describing the epigraph of p(x). Since p(x) is convex if and only if its epigraph is a
convex set, the result follows.4 ��

2 See [3] for three other equivalent definitions of sos-convexity.
3 All of our NP-hardness results in this paper are in the strong sense. For the sake of brevity, from now on
we refer to strongly NP-hard problems simply as NP-hard problems.
4 Another proof of this corollary is given by the NP-hardness of checking convexity of sublevel sets of
quartic polynomials (Theorem 4.10 in Sect. 4.3).
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Convexity of polynomials of even degree larger than four. We end this section by
extending our hardness result to polynomials of higher degree.

Corollary 2.9 It is NP-hard to check convexity of polynomials of any fixed even degree
d ≥ 4.

Proof We have already established the result for polynomials of degree four. Given
such a degree four polynomial p(x) := p(x1, . . . , xn) and an even degree d ≥ 6,
consider the polynomial

q(x, xn+1) = p(x) + xd
n+1

in n + 1 variables. It is clear (e.g., from the block diagonal structure of the Hessian of
q) that p(x) is convex if and only if q(x) is convex. The result follows. ��
Remark 2.1 Corollary 2.9 does not establish NP-hardness of checking convexity for
forms of fixed even degree d ≥ 6. If needed, such a refinement is possible. One
approach, which we just sketch, is to give a reduction from the problem of deciding
nonnegativity of forms of fixed even degree d ≥ 4. Given such a form p(x), one
can construct a form q(x) of degree d + 2 in such a way that p(x) is a diagonal
element of the Hessian of q(x), and p(x) is nonnegative if and only if q(x) is convex.
A construction of this type, although for a different purpose, is given in [1, Theorem
3.18].

3 Complexity of deciding strict convexity and strong convexity

3.1 Definitions and basics

Definition 3.1 A function f : R
n → R is strictly convex if for all x �= y and all

λ ∈ (0, 1), we have

f (λx + (1 − λ)y) < λ f (x) + (1 − λ) f (y). (22)

Definition 3.2 A twice differentiable function f : R
n → R is strongly convex if its

Hessian H(x) satisfies

H(x) � m I, (23)

for a scalar m > 0 and for all x .

We have the standard implications

strong convexity �⇒ strict convexity �⇒ convexity, (24)

but none of the converse implications is true.
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3.2 Degrees that are easy

From the implications in (24) and our previous discussion, it is clear that odd degree
polynomials can never be strictly convex or strongly convex. We cover the case of
quadratic polynomials in the following straightforward proposition.

Proposition 3.3 For a quadratic polynomial p(x) = 1
2 xT Qx+qT x+c, the notions of

strict convexity and strong convexity are equivalent, and can be decided in polynomial
time.

Proof Strong convexity always implies strict convexity. For the reverse direction,
assume that p(x) is not strongly convex. In view of (23), this means that the matrix Q
is not positive definite. If Q has a negative eigenvalue, p(x) is not convex, let alone
strictly convex. If Q has a zero eigenvalue, let x̄ �= 0 be the corresponding eigenvector.
Then p(x) restricted to the line from the origin to x̄ is linear and hence not strictly
convex.

To see that these properties can be checked in polynomial time, note that p(x) is
strongly convex if and only if the symmetric matrix Q is positive definite. By Syl-
vester’s criterion, positive definiteness of an n × n symmetric matrix is equivalent
to positivity of its n leading principal minors, each of which can be computed in
polynomial time. ��

3.3 Degrees that are hard

With little effort, we can extend our NP-hardness result in the previous section to
address strict convexity and strong convexity.

Proposition 3.4 It is NP-hard to decide strong convexity of polynomials of any fixed
even degree d ≥ 4.

Proof We give a reduction from the problem of deciding convexity of quartic forms.
Given a homogenous quartic polynomial p(x) := p(x1, . . . , xn) and an even degree
d ≥ 4, consider the polynomial

q(x, xn+1) := p(x) + xd
n+1 + 1

2 (x2
1 + · · · + x2

n + x2
n+1) (25)

in n + 1 variables. We claim that p is convex if and only if q is strongly convex. The
only if direction should be obvious. For the converse, suppose p(x) is not convex. Let
us denote the Hessians of p and q respectively by Hp and Hq . If p is not convex, then
there exists a point x̄ ∈ R

n such that

λmin(Hp(x̄)) < 0,

where λmin here denotes the minimum eigenvalue. Because p(x) is homogenous of
degree four, we have

λmin(Hp(cx̄)) = c2λmin(Hp(x̄)),

123



468 A. A. Ahmadi et al.

for any scalar c ∈ R. Pick c large enough such that λmin(Hp(cx̄)) < 1. Then it is easy
to see that Hq(cx̄, 0) has a negative eigenvalue and hence q is not convex, let alone
strongly convex. ��
Remark 3.1 It is worth noting that homogeneous polynomials of degree d > 2 can
never be strongly convex (because their Hessians vanish at the origin). Not surpris-
ingly, the polynomial q in the proof of Proposition 3.4 is not homogeneous.

Proposition 3.5 It is NP-hard to decide strict convexity of polynomials of any fixed
even degree d ≥ 4.

Proof The proof is almost identical to the proof of Proposition 3.4. Let q be defined
as in (25). If p is convex, then we established that q is strongly convex and hence also
strictly convex. If p is not convex, we showed that q is not convex and hence also not
strictly convex. ��

4 Complexity of deciding quasiconvexity and pseudoconvexity

4.1 Definitions and basics

Definition 4.1 A function f : R
n → R is quasiconvex if its sublevel sets

S(α) := {x ∈ R
n | f (x) ≤ α}, (26)

for all α ∈ R, are convex.

Definition 4.2 A differentiable function f : R
n → R is pseudoconvex if the impli-

cation

∇ f (x)T (y − x) ≥ 0 �⇒ f (y) ≥ f (x) (27)

holds for all x and y in R
n .

The following implications are well-known (see e.g. [7, p. 143]):

convexity �⇒ pseudoconvexity �⇒ quasiconvexity, (28)

but the converse of neither implication is true in general.

4.2 Degrees that are easy

As we remarked earlier, linear polynomials are always convex and hence also pseudo-
convex and quasiconvex. Unlike convexity, however, it is possible for polynomials of
odd degree d ≥ 3 to be pseudoconvex or quasiconvex. We will show in this section
that somewhat surprisingly, quasiconvexity and pseudoconvexity of polynomials of
any fixed odd degree can be decided in polynomial time. Before we present these
results, we will cover the easy case of quadratic polynomials.

123
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Proposition 4.3 For a quadratic polynomial p(x) = 1
2 xT Qx + qT x + c, the notions

of convexity, pseudoconvexity, and quasiconvexity are equivalent, and can be decided
in polynomial time.

Proof We argue that the quadratic polynomial p(x) is convex if and only if it is quasi-
convex. Indeed, if p(x) is not convex, then Q has a negative eigenvalue; letting x̄
be a corresponding eigenvector, we have that p(t x̄) is a quadratic polynomial in t ,
with negative leading coefficient, so p(t x̄) is not quasiconvex, as a function of t . This,
however, implies that p(x) is not quasiconvex.

We have already argued in Sect. 2.2 that convexity of quadratic polynomials can
be decided in polynomial time. ��

4.2.1 Quasiconvexity of polynomials of odd degree

In this subsection, we provide a polynomial time algorithm for checking whether an
odd-degree polynomial is quasiconvex. Towards this goal, we will first show that quasi-
convex polynomials of odd degree have a very particular structure (Proposition 4.6).

Our first lemma concerns quasiconvex polynomials of odd degree in one vari-
able. The proof is easy and left to the reader. A version of this lemma is provided in
[9, p. 99], though there also without proof.

Lemma 4.4 Suppose that p(t) is a quasiconvex univariate polynomial of odd degree.
Then, p(t) is monotonic.

Next, we use the preceding lemma to characterize the complements of sublevel sets
of quasiconvex polynomials of odd degree.

Lemma 4.5 Suppose that p(x) is a quasiconvex polynomial of odd degree d. Then
the set {x | p(x) ≥ α} is convex.

Proof Suppose not. In that case, there exist x, y, z such that z is on the line seg-
ment connecting x and y, and such that p(x), p(y) ≥ α but p(z) < α. Consider the
polynomial

q(t) = p(x + t (y − x)).

This is, of course, a quasiconvex polynomial with q(0) = p(x), q(1) = p(y), and
q(t ′) = p(z), for some t ′ ∈ (0, 1). If q(t) has degree d, then, by Lemma 4.4, it must
be monotonic, which immediately provides a contradiction.

Suppose now that q(t) has degree less than d. Let us attempt to perturb x to x + x ′,
and y to y + y′, so that the new polynomial

q̂(t) = p
(
x + x ′ + t (y + y′ − x − x ′)

)

has the following two properties: (i) q̂(t) is a polynomial of degree d, and (ii) q̂(0) >

q̂(t ′), q̂(1) > q̂(t ′). If such perturbation vectors x ′, y′ can be found, then we obtain a
contradiction as in the previous paragraph.
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To satisfy condition (ii), it suffices (by continuity) to take x ′, y′ with ‖x ′‖, ‖y′‖
small enough. Thus, we only need to argue that we can find arbitrarily small x ′, y′
that satisfy condition (i). Observe that the coefficient of td in the polynomial q̂(t) is a
nonzero polynomial in x + x ′, y + y′; let us denote that coefficient as r(x + x ′, y + y′).
Since r is a nonzero polynomial, it cannot vanish at all points of any given ball. There-
fore, even when considering a small ball around (x, y) (to satisfy condition (ii)), we
can find (x + x ′, y + y′) in that ball, with r(x + x ′, y + y′) �= 0, thus establishing that
the degree of q̂ is indeed d. This completes the proof. ��

We now proceed to a characterization of quasiconvex polynomials of odd degree.

Proposition 4.6 Let p(x) be a polynomial of odd degree d. Then, p(x) is quasiconvex
if and only if it can be written as

p(x) = h(ξ T x), (29)

for some nonzero ξ ∈ R
n, and for some monotonic univariate polynomial h(t) of

degree d. If, in addition, we require the nonzero component of ξ with the smallest
index to be equal to unity, then ξ and h(t) are uniquely determined by p(x).

Proof It is easy to see that any polynomial that can be written in the above form is
quasiconvex. In order to prove the converse, let us assume that p(x) is quasiconvex.
By the definition of quasiconvexity, the closed set S(α) = {x | p(x) ≤ α} is convex.
On the other hand, Lemma 4.5 states that the closure of the complement of S(α) is also
convex. It is not hard to verify that, as a consequence of these two properties, the set
S(α) must be a halfspace. Thus, for any given α, the sublevel set S(α) can be written
as {x | ξ(α)T x ≤ c(α)} for some ξ(α) ∈ R

n and c(α) ∈ R. This of course implies
that the level sets {x | p(x) = α} are hyperplanes of the form {x | ξ(α)T x = c(α)}.

We note that the sublevel sets are necessarily nested: if α < β, then S(α) ⊆ S(β).
An elementary consequence of this property is that the hyperplanes must be collinear,
i.e., that the vectors ξ(α) must be positive multiples of each other. Thus, by suitably
scaling the coefficients c(α), we can assume, without loss of generality, that ξ(α) = ξ ,
for some ξ ∈ R

n , and for all α. We then have that {x | p(x) = α} = {x | ξ T x = c(α)}.
Clearly, there is a one-to-one correspondence between α and c(α), and therefore the
value of p(x) is completely determined by ξ T x . In particular, there exists a function
h(t) such that p(x) = h(qT x). Since p(x) is a polynomial of degree d, it follows
that h(t) is a univariate polynomial of degree d. Finally, we observe that if h(t) is
not monotonic, then p(x) is not quasiconvex. This proves that a representation of the
desired form exists. Note that by suitably scaling ξ , we can also impose the condition
that the nonzero component of ξ with the smallest index is equal to one.

Suppose that now that p(x) can also be represented in the form p(x) = h̄(ξ̄ T x)

for some other polynomial h̄(t) and vector ξ̄ . Then, the gradient vector of p(x) must
be proportional to both ξ and ξ̄ . The vectors ξ and ξ̄ are therefore collinear. Once we
impose the requirement that the nonzero component of ξ with the smallest index is
equal to one, we obtain that ξ = ξ̄ and, consequently, h = h̄. This establishes the
claimed uniqueness of the representation. ��
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Remark It is not hard to see that if p(x) is homogeneous and quasiconvex, then one
can additionally conclude that h(t) can be taken to be h(t) = td , where d is the degree
of p(x).

Theorem 4.7 For any fixed odd degree d, the quasiconvexity of polynomials of degree
d can be checked in polynomial time.

Proof The algorithm consists of attempting to build a representation of p(x) of the
form given in Proposition 4.6. The polynomial p(x) is quasiconvex if and only if the
attempt is successful.

Let us proceed under the assumption that p(x) is quasiconvex. We differentiate
p(x) symbolically to obtain its gradient vector. Since a representation of the form
given in Proposition 4.6 exists, the gradient is of the form ∇ p(x) = ξh′(ξ T x), where
h′(t) is the derivative of h(t). In particular, the different components of the gradient
are polynomials that are proportional to each other. (If they are not proportional, we
conclude that p(x) is not quasiconvex, and the algorithm terminates.) By considering
the ratios between different components, we can identify the vector ξ , up to a scaling
factor. By imposing the additional requirement that the nonzero component of ξ with
the smallest index is equal to one, we can identify ξ uniquely.

We now proceed to identify the polynomial h(t). For k = 1, . . . , d +1, we evaluate
p(kξ), which must be equal to h(ξ T ξk). We thus obtain the values of h(t) at d + 1
distinct points, from which h(t) is completely determined. We then verify that h(ξ T x)

is indeed equal to p(x). This is easily done, in polynomial time, by writing out the
O(nd) coefficients of these two polynomials in x and verifying that they are equal. (If
they are not all equal, we conclude that p(x) is not quasiconvex, and the algorithm
terminates.)

Finally, we test whether the above constructed univariate polynomial h is mono-
tonic, i.e., whether its derivative h′(t) is either nonnegative or nonpositive. This can
be accomplished, e.g., by quantifier elimination or by other well-known algebraic
techniques for counting the number and the multiplicity of real roots of univariate
polynomials; see [6]. Note that this requires only a constant number of arithmetic
operations since the degree d is fixed. If h fails this test, then p(x) is not quasicon-
vex. Otherwise, our attempt has been successful and we decide that p(x) is indeed
quasiconvex. ��

4.2.2 Pseudoconvexity of polynomials of odd degree

In analogy to Proposition 4.6, we present next a characterization of odd degree pseudo-
convex polynomials, which gives rise to a polynomial time algorithm for checking
this property.

Corollary 4.8 Let p(x) be a polynomial of odd degree d. Then, p(x) is pseudoconvex
if and only if p(x) can be written in the form

p(x) = h(ξ T x), (30)

for some ξ ∈ R
n and some univariate polynomial h of degree d such that its derivative

h′(t) has no real roots.
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Remark Observe that polynomials h with h′ having no real roots comprise a subset
of the set of monotonic polynomials.

Proof Suppose that p(x) is pseudoconvex. Since a pseudoconvex polynomial is quasi-
convex, it admits a representation h(ξ T x) where h is monotonic. If h′(t) = 0 for some
t , then picking a = t · ξ/‖ξ‖2

2, we have that ∇ p(a) = 0, so that by pseudoconvexity,
p(x) is minimized at a. This, however, is impossible since an odd degree polyno-
mial is never bounded below. Conversely, suppose p(x) can be represented as in
Eq. (30). Fix some x, y, and define the polynomial u(t) = p(x + t (y − x)). Since
u(t) = h(ξ T x + tξ T (y − x)), we have that either (i) u(t) is constant, or (ii) u′(t) has
no real roots. Now if ∇ p(x)(y − x) ≥ 0, then u′(0) ≥ 0. Regardless of whether (i) or
(ii) holds, this implies that u′(t) ≥ 0 everywhere, so that u(1) ≥ u(0) or p(y) ≥ p(x).

��
Corollary 4.9 For any fixed odd degree d, the pseudoconvexity of polynomials of
degree d can be checked in polynomial time.

Proof This is a simple modification of our algorithm for testing quasiconvexity (The-
orem 4.7). The first step of the algorithm is in fact identical: once we impose the addi-
tional requirement that the nonzero component of ξ with the smallest index should
be equal to one, we can uniquely determine the vector ξ and the coefficients of the
univariate polynomial h(t) that satisfy Eq. (30). (If we fail, p(x) is not quasiconvex
and hence also not pseudoconvex.) Once we have h(t), we can check whether h′(t)
has no real roots e.g. by computing the signature of the Hermite form of h′(t); see [6].

��
Remark 4.1 Homogeneous polynomials of odd degree d ≥ 3 are never pseudocon-
vex. The reason is that the gradient of these polynomials vanishes at the origin, but
yet the origin is not a global minimum since odd degree polynomials are unbounded
below.

4.3 Degrees that are hard

The main result of this section is the following theorem.

Theorem 4.10 It is NP-hard to check quasiconvexity/pseudoconvexity of degree four
polynomials. This is true even when the polynomials are restricted to be homogeneous.

In view of Theorem 2.1, which established NP-hardness of deciding convexity
of homogeneous quartic polynomials, Theorem 4.10 follows immediately from the
following result.5

Theorem 4.11 For a homogeneous polynomial p(x) of even degree d, the notions of
convexity, pseudoconvexity, and quasiconvexity are all equivalent.6

5 A slight variant of Theorem 4.11 has appeared in [3].
6 The result is more generally true for differentiable functions that are homogeneous of even degree. Also,
the requirements of homogeneity and having an even degree both need to be present. Indeed, x3 and
x4 − 8x3 + 18x2 are both quasiconvex but not convex, the first being homogeneous of odd degree and the
second being nonhomogeneous of even degree.
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We start the proof of this theorem by first proving an easy lemma.

Lemma 4.12 Let p(x) be a quasiconvex homogeneous polynomial of even degree
d ≥ 2. Then p(x) is nonnegative.

Proof Suppose, to derive a contradiction, that there exist some ε > 0 and x̄ ∈ R
n

such that p(x̄) = −ε. Then by homogeneity of even degree we must have p(−x̄) =
p(x̄) = −ε. On the other hand, homogeneity of p implies that p(0) = 0. Since the
origin is on the line between x̄ and −x̄ , this shows that the sublevel set S(−ε) is not
convex, contradicting the quasiconvexity of p. ��
Proof of Theorem 4.11 We show that a quasiconvex homogeneous polynomial of even
degree is convex. In view of implication (28), this proves the theorem.

Suppose that p(x) is a quasiconvex polynomial. Define S = {x ∈ R
n | p(x) ≤ 1}.

By homogeneity, for any a ∈ R
n with p(a) > 0, we have that

a

p(a)1/d
∈ S.

By quasiconvexity, this implies that for any a, b with p(a), p(b) > 0, any point on
the line connecting a/p(a)1/d and b/p(b)1/d is in S. In particular, consider

c = a + b

p(a)1/d + p(b)1/d
.

Because c can be written as

c =
(

p(a)1/d

p(a)1/d + p(b)1/d

) (
a

p(a)1/d

)
+

(
p(b)1/d

p(a)1/d + p(b)1/d

) (
b

p(b)1/d

)
,

we have that c ∈ S, i.e., p(c) ≤ 1. By homogeneity, this inequality can be restated as

p(a + b) ≤ (p(a)1/d + p(b)1/d)d ,

and therefore

p
(a + b

2

)
≤

(
p(a)1/d + p(b)1/d

2

)d

≤ p(a) + p(b)

2
, (31)

where the last inequality is due to the convexity of xd .
Finally, note that for any polynomial p, the set {x | p(x) �= 0} is dense in R

n (here
we again appeal to the fact that the only polynomial that is zero on a ball of positive
radius is the zero polynomial); and since p is nonnegative due to Lemma 4.12, the set
{x | p(x) > 0} is dense in R

n . Using the continuity of p, it follows that Eq. (31) holds
not only when a, b satisfy p(a), p(b) > 0, but for all a, b. Appealing to the continuity
of p again, we see that for all a, b, p(λa + (1 − λ)b) ≤ λp(a) + (1 − λ)p(b), for all
λ ∈ [0, 1]. This establishes that p is convex. ��
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Quasiconvexity/pseudoconvexity of polynomials of even degree larger than four.

Corollary 4.13 It is NP-hard to decide quasiconvexity of polynomials of any fixed
even degree d ≥ 4.

Proof We have already proved the result for d = 4. To establish the result for even
degree d ≥ 6, recall that we have established NP-hardness of deciding convexity of
homogeneous quartic polynomials. Given such a quartic form p(x) := p(x1, . . . , xn),
consider the polynomial

q(x1, . . . , xn+1) = p(x1, . . . , xn) + xd
n+1. (32)

We claim that q is quasiconvex if and only if p is convex. Indeed, if p is convex, then
obviously so is q, and therefore q is quasiconvex. Conversely, if p is not convex, then
by Theorem 4.11, it is not quasiconvex. So, there exist points a, b, c ∈ R

n , with c on
the line connecting a and b, such that p(a) ≤ 1, p(b) ≤ 1, but p(c) > 1. Consider-
ing points (a, 0), (b, 0), (c, 0), we see that q is not quasiconvex. It follows that it is
NP-hard to decide quasiconvexity of polynomials of even degree four or larger. ��
Corollary 4.14 It is NP-hard to decide pseudoconvexity of polynomials of any fixed
even degree d ≥ 4.

Proof The proof is almost identical to the proof of Corollary 4.13. Let q be defined
as in (32). If p is convex, then q is convex and hence also pseudoconvex. If p is not
convex, we showed that q is not quasiconvex and hence also not pseudoconvex. ��

5 Summary and conclusions

We studied the computational complexity of testing convexity and some of its variants,
for polynomial functions. The notions that we considered and the implications among
them are summarized below:

strong convexity�⇒strict convexity�⇒convexity�⇒pseudoconvexity�⇒quasiconvexity.

Our complexity results as a function of the degree of the polynomial are listed in
Table 1 in Sect. 1.

We gave polynomial time algorithms for checking pseudoconvexity and quasicon-
vexity of odd degree polynomials that can be useful in many applications. Our negative
results, on the other hand, imply (under P �=NP) the impossibility of a polynomial time
(or even pseudo-polynomial time) algorithm for testing any of the properties listed in
Table 1 for polynomials of even degree four or larger. Although the implications of
convexity are very significant in optimization theory, our results suggest that unless
additional structure is present, ensuring the mere presence of convexity is likely an
intractable task. It is therefore natural to wonder whether there are other properties of
optimization problems that share some of the attractive consequences of convexity,
but are easier to check.
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Of course, NP-hardness of a problem does not stop us from studying it, but on the
contrary, stresses the need for finding good approximation algorithms that can deal
with a large number of instances efficiently. As an example, semidefinite programming
based relaxations relying on algebraic concepts such as sum of squares decomposi-
tion of polynomials currently seem to be very promising techniques for recognizing
convexity of polynomials and basic semialgebraic sets. It would be useful to identify
special cases where these relaxations are exact or give theoretical bounds on their
performance guarantees.
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