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Abstract—We consider a communication network and study the
problem of designing a high-throughput and low-delay scheduling
policy that only requires a polynomial amount of computation
at each time step. The well-known maximum weight scheduling
policy, proposed by Tassiulas and Ephremides (1992), has fa-
vorable performance in terms of throughput and delay but, for
general networks, it can be computationally very expensive. A
related randomized policy proposed by Tassiulas (1998) provides
maximal throughput with only a small amount of computation
per step, but seems to induce exponentially large average delay.
These considerations raise some natural questions. Is it possible
to design a policy with low complexity, high throughput, and low
delay for a general network? Does Tassiulas’ randomized policy
result in low average delay? In this paper, we answer both of these
questions negatively. We consider a wireless network operating
under two alternative interference models: (a) a combinatorial
model involving independent set constraints and (b) the standard
SINR (signal to interference noise ratio) model. We show that
unless �� � ��� (or � � �� for the case of determistic
arrivals and deterministic policies), and even if the required
throughput is a very small fraction of the network’s capacity,
there does not exist a low-delay policy whose computation per time
step scales polynomially with the number of queues. In particular,
the average delay of Tassiulas’ randomized algorithm must grow
super-polynomially. To establish our results, we employ a clever
graph transformation introduced by Lund and Yannakakis (1994).

Index Terms—Hardness, high-throughput, independent set, low-
delay, scheduling, SINR model.

I. INTRODUCTION

C ONSIDER a collection of queues operating in discrete-
time. At each time slot, a number of packets from different

queues can be served, according to a schedule constrained to lie
within a prespecified set which captures various interference and
scheduling constraints. Upon obtaining service, a packet may
leave the network or possibly join other queues. New packets
may also arrive to each of these queues, according to an exoge-
nous arrival process.

This general model has been used to describe various settings,
including: (i) input-queued switches, a key functional compo-
nent of Internet routers, where simultaneous packet transfers

Manuscript received August 09, 2009; revised March 09, 2011; accepted
April 24, 2011. Date of current version December 07, 2011. D. Shah and J.
Tsitsiklis were supported by NSF Grant CCF-0728554. D. Shah and D. N. C.
Tse were supported by AFOSR Grant FA9550-09-1-0317.

D. Shah and J. N. Tsitsiklis are with the Laboratory of Information and Deci-
sion Systems (LIDS), Massachusetts Institute of Technology, Cambridge, MA
02139 USA (e-mail: devavrat@mit.edu; jnt@mit.edu).

D. N. C. Tse is with the Department of Electrical Engineering and Com-
puter Sciences, University of California, Berkeley, CA 94720 USA (e-mail:
dtse@eecs.berkeley.edu).

Communicated by S. Ulukus, Associate Editor for Communication
Networks.

Digital Object Identifier 10.1109/TIT.2011.2168897

from ingress ports to egress ports are constrained by underlying
hardware; and (ii) wireless local area networks, where packet
transmissions are constrained by interference.

In all of the above examples, a scheduling algorithm, or
policy, is employed, which at each time slot chooses the queues
that are scheduled for transmission. The nature of the policy
typically has a significant effect on the resulting network
performance, measured in terms of throughput and delay. In
addition, a policy carries out certain computations at each time
step, and practical considerations call for low computational
requirements.

A particular policy that applies to a broad class of con-
strained network scheduling problems, and which has received
much attention, is the maximum-weight policy introduced by
Tassiulas and Ephremides [12]. This policy assigns a weight
to each candidate schedule, equal to the sum of the sizes of
the queues that are selected for service by that schedule, and
chooses a schedule with the largest weight. This policy is
known to achieve maximal throughput [12]. Furthermore, it
results in low1 delay under “friendly” arrival traffic. However,
this policy needs to find a maximum weight schedule at each
time step, which can be computationally burdensome when the
constraints involved are of a combinatorial nature. For example,
in a wireless network with interference constraints specified
in terms of independent set constraints, the problem of finding
a maximum weight schedule amounts to solving a maximum
weight independent set problem, which is NP-hard.

The above discussion suggests the need for alternative, low-
complexity and high-throughput policies. Towards this purpose,
Tassiulas [11] proposed a simple throughput-optimal random-
ized policy for switch scheduling that requires only a polyno-
mial amount of computation at each time slot. This policy is
easily extended to networks with general combinatorial sched-
uling constraints including the independent set constraint. It can
even be implemented in a distributed manner, using a gossip
mechanism [8]. However, the best known bound on the resulting
average delay grows exponentially with the number of nodes.

In summary, there do exist throughput-optimal policies for
arbitrary networks, with low complexity at each step. How-
ever, it is not known whether a low complexity (polynomial
per time step), low-delay, and throughput-optimal policy is
possible for networks with general combinatorial scheduling
constraints. This question is not easy to address because the
classical methods from stochastic network or queueing theory
do not provide tools that can capture issues of computational
complexity.

In this paper, we provide answers to the above question, by
combining a very simple queueing theoretic analysis with tools

1In this paper, unless otherwise specified, the term “low” means polynomial
in the number of queues in the network.
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from computational complexity theory. Specifically, we estab-
lish that for certain network models, any policy with favorable
delay properties and modest throughput requirements must im-
plicitly solve a computationally hard problem. This implies that
under certain widely believed computational hypotheses, any
such policy will have high computational requirements. Specif-
ically, with a deterministic arrival stream, deterministic policies
with the desired properties do not exist unless . Fur-
thermore, with either deterministic or Poisson arrival streams,
randomized policies with the desired properties do not exist un-
less .

Remarkably, our negative results continue to hold even if the
required throughput is very low, equal to a vanishing fraction,

, of the maximum possible throughput. As a corollary,
we conclude that unless , Tassiulas’s randomized
policies cannot have low delay.

In what follows, we describe two alternative formulations
that have been considered in the literature: one involving in-
dependent set constraints, and one involving the popular SINR
wireless interference model. We prove our negative results for
both of these models, in Sections IV and V, respectively. In
the process, we also establish that determining whether a given
vector of arrival rates belongs to the stability region, even in an
approximate sense, is computationally hard, which is interesting
in its own right.

II. MODELS

In this section, we present the two communication network
models that we will study, and introduce the required concepts
and notation.

A. Model I: Independent Set Constraints

We consider a network, modeled as an undirected graph
. Here, is the set of nodes, and is the

set of undirected edges. We consider a discrete-time model and
assume that at each time step, any node can transmit a packet (if
it has one), subject to the constraint that no two neighbors can
transmit simultaneously. This model arises in various contexts,
including [2], [4], [7].

At each node , packets arrive according to an external arrival
process with rate . We let be the number of packets that
arrive at node during time slot , and let be the cumula-
tive number of arrivals, so that .
Given that we are interested in negative results, it suffices to
consider rather simple arrival processes, such as the ones below,
because the results then readily apply to more general classes of
arrival processes.

(i) Deterministic arrivals: The packet arrival processes are
deterministic and satisfy

where is an absolute constant.
(ii) Poisson arrivals: The random variables

, are independent Poisson random vari-
ables, with , for all , .

Each node has an associated queue. Let denote the
queue-size at node at the end of slot . We assume that the

system starts empty, i.e., , for all . Let and
denote the number of departures during slot (respec-

tively, the cumulative number of departures in the first time
slots) from queue . Thus

(1)

The departures at each time slot are determined according
to a scheduling policy. In particular, we define a deterministic
policy as a mapping that determines each as a function
of the problem data (the graph and the arrival rates ) and
the history of the arrival and departure processes during the
first slots. We also consider randomized policies under
which the choice of the can take into account some ex-
ogenous random variables that are independent of the history of
the process during the first time slots. We consider policies
that satisfy the following conditions:

(i) , for every and .
(ii) If , then , that is, departures

are not possible from an empty queue. This involves an
implicit assumption that a packet arriving during slot
cannot depart during that same slot.

(iii) The set is an independent
set; that is, if , and , then

.
As a concrete example, the popular maximum-weight policy
chooses at each time an independent set for which

is largest.
In the sequel, we identify a set with a binary vector

whose th component is one if and only if .
We also let denote the set of all vectors associated with
independent sets (including the empty set).

We now discuss the notions of throughput and delay that we
will be concerned with. Given a particular graph, we let be the
convex hull of the vectors . It is well known, and easy to
check, that the set is the stability region of the system. More
precisely, there exists a policy which is stable whenever lies
in the interior of , in the sense that

Furthermore, if , no policy can be stable. This motivates
us to define the load factor associated to a particular graph

and arrival rate vector by

where . Note that is equivalent
to the condition .

We are generally interested in policies with max-
imum-throughput (i.e., policies that are stable whenever

) and low delay. Equivalently, in view of Little’s law,
we are interested in policies with low expected queue sizes.
On the other hand, a uniform bound on the expected queue
sizes is not possible: even for an M/M/1 queue, the steady-state
queue size grows at the rate of . For this reason, a
more meaningful objective is to require an upper bound on the
queue sizes whenever , for some constant .
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Unfortunately, as we will show, this objective is not attainable:
even if we restrict to lie in a small neighborhood of the zero
vector, low expected queue sizes turn out to be impossible with
a polynomial amount of computation at each step. In order to
state such a result precisely, we need an additional definition.
We use to denote the vector with all components equal to one,
and to denote the usual inner product. We use the notation

. We also let2

Definition 1: A policy has the poly-queue property if there
exists a polynomial such that for every -node graph, and
every arrival rate vector for which , the re-
sulting queue sizes satisfy

(2)

Note that , for any , so
that we are only considering load factors that are significantly
below the maximum possible load factor (namely, 1). In this
sense, the throughput requirements of a poly-queue policy are
very modest.

B. Model II: SINR Model

In this section, we consider a single-hop wireless network
with a somewhat special structure, in which each node is either
a transmitter or a receiver. We assume an equal number of
transmitters and receivers, and index them by and

, respectively. Because we are interested in negative
results, we can furthermore restrict to the case where each
transmitter is associated with a single receiver to whom it
wishes to transmit. We assume the same packet arrival models
as in Section II-A, but introduce an additional parameter, ,
the number of bits in each packet. In keeping with the usual
information-theoretic assumptions, which generally lead to
bit-capacities that are not integer multiples of the packet size,
we will consider a model that allows serving a fraction of a
packet during a time slot.

We introduce an interference model, under which the recep-
tion capabilities of a receiver within range of multiple active
transmitters are jeopardized. We assume that the nodes are laid
out on some geographical area and that the ability of signals to
propagate from transmitter node to receiver is described by
a distance parameter . These parameters may reflect features
of the surrounding environment in a complicated manner; thus,
they may be quite different than Euclidean distances, and in par-
ticular, we do not require them to satisfy the triangle inequality.

At each time slot, a transmitter can be either active (in
which case, we write ) or inactive (in which case, we
write ). Every active transmitter transmits at a fixed,
common power . The received signal power at receiver due

2Throughout the paper, we use logarithms with base 2.

to a transmission by transmitter is denoted by and is as-
sumed to be of the form

where is non-negative valued path loss coefficient. Gener-
ally, it is modeled as a descreasing function of the distance ,
e.g., with positive parameter . When
transmitter is active, attempting to transmit data to node ,
node may also receive interfering signals, due to transmis-
sions by other active nodes. We adopt the popular Signal to In-
terference Noise Ratio (SINR) model, under which the bit rate
(“bit capacity”) at which node can transmit to node at time

, denoted by , is given by

where

We also define

which is the capacity, measured in packets per slot.
As in Section II-A, a (deterministic or randomized) policy

chooses the variables at each time slot , on the basis
of the history of the process. We define the number of packets
in queue , the number of departing packets , etc.,
exactly as in Section II-A, so that (1) again applies. At each
time slot, the variables determine the capacities, and the
resulting number of departures is given by

That is, the (possibly fractional) number of packets transmitted
when transmitter is active, may be as high as the corresponding
capacity, but is limited by the amount of data available in the
queue.

Given the network parameters , we define the stability
region as the set of all vectors
resulting from the possible binary vectors

. We define the load factor and
the poly-queue property exactly as in Section II-A.

III. MAIN RESULT

Our results involve certain computational complexity con-
cepts, which we define here for completeness; see textbooks,
such as [9], for further details.

Definition 2: A policy is said to run in polynomial time if
at each time , the required calculations can be carried out in
time which is bounded by a polynomial in , the number of bits
needed to specify a rational vector of arrival rates, and the
maximum of the queue sizes at that time.

Note that the above definition allows the required computa-
tions to be only pseudopolynomial in the current queue sizes;
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hence, it is weaker than the usual definition of polynomial time.
On the other hand, our results will show that even with this
weaker definition, desirable policies do not exist.

Definition 3: The class of Bounded-error Probabilistic Poly-
nomial time languages (BPP) consists of all languages such
that there is a randomized algorithm that runs in polynomial
time and such that for any input :

(i) if , the algorithm returns YES, with probability at
least 3/4;

(ii) , the algorithm returns NO, with probability at least
3/4.

Definition 4: The class of Non-deterministic Polynomial time
languages (NP) consists of all languages such that there is a
(deterministic) algorithm that runs in polynomial time and such
that for any input :

(i) if , there exists some of polynomial size such that
given the input , the algorithm returns YES;

(ii) , then for every input , where is of polyno-
mial size, the algorithm returns NO.

Note that and . On the other hand,
it is widely conjectured that and that BPP does not
contain all of NP. As is customary in complexity theory, our
negative results are contingent on such conjectures. Our main
result is the following.

Theorem 1: Consider either of the two network models intro-
duced in Section II (the model with independent set constraints
or the SINR model). For the case of deterministic arrivals, there
exists no poly-queue deterministic policy that runs in polyno-
mial time, unless . For either case of deterministic or
Poisson arrivals, there exists no poly-queue randomized policy
that runs in polynomial time, unless .

It is an immediate corollary of Theorem 1 that Tassi-
ulas’low-complexity randomized algorithm [11], even though
it is throughput optimal, induces super-polynomial queue sizes
for the network models considered here. Theorem 1 also indi-
cates that the structure of the SINR model does not make the
problem any simpler compared to the independent set model. In
fact, the proof shows that the model involving independent set
constraints can be viewed as a special case of the SINR model.

In the course of the proof of Theorem 1, we also establish that
computing the load factor within a multiplicative factor

is also hard, even though our tolerance factor is quite
large, namely, . The problems of computing or of
answering the stability question whether lies in the interior
of cannot be any easier. We note that this result is not an
obvious corollary of inapproximability results on the cardinality
of a maximum independent set (see the proof of Lemma 4), and
is interesting in its own right.

IV. PROOF OF THEOREM 1: INDEPENDENT SET

CONSTRAINTS MODEL

We start with some preliminaries, continue with some
lemmas, and conclude with the proof of the theorem for the
independent set constraints model. The general structure of
the argument is as follows. Suppose that a polynomial time
poly-queue policy is available. By simulating this policy and

observing whether the resulting queue sizes remain small or
grow large, we can obtain information on , within a certain
multiplicative factor. This leads to a polynomial time algorithm
for determining (approximately) membership in the set .
However, using the combinatorial nature of , and available
inapproximability results for the maximum independent set
problem, such an algorithm is not possible unless one of the
common conjectures in complexity theory fails to hold.

We first note some easy general properties of the load factor
, which we will be using without further comment. As far as

notation is concerned, inequalities between vectors are meant to
hold componentwise:

(a) If , then .
(b) .
(c) .
(d) If , then .
(e) .
Without loss of generality, we only consider larger than 2,

so that .

Lemma 2:
(a) Consider either the deterministic or the Poisson arrival

model. Suppose that there exists a polynomial time poly-
queue randomized policy. Then, there exists a polynomial
time randomized algorithm that on input deter-
mines, with probability at least , some with
the property .

(b) Consider the deterministic arrival model. Suppose that
there exists a polynomial time poly-queue deterministic
policy. Then, there exists a polynomial time deterministic
algorithm that on input determines some with
the property .

Proof: We start with the proof of part (a), for the case of the
Poisson arrival model. Consider a polynomial time poly-queue
randomized policy , and let be the polynomial bound on
the resulting queue sizes [cf. Equation (2)]. Without loss of gen-
erality, assume that for some .

We first show that there exists a polynomial time random-
ized algorithm that produces, with probability at least

, the output YES whenever , and NO
whenever . (The output is arbitrary, otherwise.) The
algorithm is as follows. If for some , it outputs NO.
(In this case, we have and this output sat-
isfies our specifications.) If , for all , we proceed as fol-
lows. Generate independent Poisson arrival processes according
to the arrival vector , and simulate the network under policy ,
starting with empty queues, until time . The output
of the algorithm is as follows:

(i) if , then output YES;
(ii) if , then output NO;

(iii) otherwise, the output is arbitrary.
Assuming that a sample of a Poisson random variable can be

generated in unit time, this is a randomized algorithm that runs
in polynomial time. This is because at any time , the
queue sizes are polynomially bounded, with high probability.
Thus, the algorithm requires a polynomial amount of computa-
tion at each step, and there are only polynomially many steps.
Actually, Poisson samples cannot be generated in unit time, but
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an approximation is possible that does not affect the correctness
of the algorithm, as we now proceed to discuss. Instead of gen-
erating a sample from a Poisson distribution with mean ,
we generate a sample from a binomial distribution with pa-
rameters , where . (Note that this re-
quires only a polynomial number of random bits per sample.)
By Le Cam’s Theorem [1], the variational distance between

and is . Since the algorithm
only needs to generate random variables, and
by coupling a process driven by Poisson random variables to a
process driven by binomial random variables, we see that that
the two processes have identical sample paths with probability

. Thus, an algorithm driven by binomial random
variables simulates the Poisson-driven algorithm correctly, with
probability . Once we show (in the sequel) that
the Poisson-driven algorithm satisfies the desired specifications
with probability , it will immediately follow that the
binomial-driven algorithm shares this property as well.

We now show that algorithm has the claimed properties, for
the case where for all . Suppose that .
Since the policy has the poly-queue property, we have

(3)

From the Markov inequality, we obtain

Thus, when , the output of the algorithm is YES,
with probability at least , as desired.

Suppose now that . Let , which is
the departure rate observed during the interval . Note that

is the average of the vectors ,
. The latter vectors all belong to because the

queues served at each time must correspond to an independent
set. It follows that belongs to , the convex hull of , and that

. Suppose that , for all . Then

which contradicts the assumption . Thus, there exists
some for which . From Chebyshev’s inequality,
and using the assumption in the bound

, we have

Therefore, with probability, at least , we have
. In that case, using the inequality

, we obtain

and the output of the algorithm is NO, as desired.
We now show how to use algorithm to determine

within a multiplicative factor of . We are given ,
and the corresponding total arrival rate . Consider the
output of algorithm when the input is , for some
integer . For the purposes of this argument, let us temporarily
assume that the probability of error of is zero.

If , then , and the
output of the algorithm is YES. If , then ,
and the output of the algorithm is NO. Thus, we can determine
the outputs of , for the inputs for all , by running
the algorithm only for those for which ,
i.e., by running algorithm only times.
Since the output is YES when is small and NO when is large,
there exists some for which the output associated with
and is YES and NO, respectively. Since

, we must have , i.e., . Since
, we must have ,

so that . By taking , we have
, as desired.3 f

We have so far ignored the possibility that algorithm makes
an error. However, since is to be run less than times, and
the probability of error at each run is no more than , it
follows from union bound that the overall probability of error is
no more than . This completes the proof of the lemma
for the case of Poisson arrivals.

If arrivals are deterministic, the same argument goes through.
The only difference is that Chebyshev’s inequality is replaced
by a deterministic inequality. Finally, if arrivals are determin-
istic and there exists a deterministic poly-queue policy that runs
in polynomial time, then the simulation and algorithm are
all deterministic. In particular, can be determined within a
multiplicative factor using a deterministic algorithm. This com-
pletes the proof of both parts of Lemma 2.

Let denote the maximum cardinality of the indepen-
dent sets in , and let denote the minimum number of
colors required for a vertex coloring of . We will now show
that an algorithm that computes approximately can be used
to compute approximately. The difficulty here is that al-
though the value of (when ) provides an easy lower
bound on , it does not provide in general a comparable
upper bound. We handle this difficulty by using a convenient
transformation, due to Lund and Yannakakis [5], which trans-
forms a general graph into a related graph with the property
that , and on which there is a fairly tight relation

3A faster search, based on bisection, is possible, but is not needed for the
purposes of this proof.
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between and . The precise form of the result that we
will use is as follows.

Proposition 3 ([5], Proposition 4.1): There exists a polyno-
mial time algorithm which given a graph with nodes, a
prime number , and an integer , with , generates a
graph with nodes such that

Note that for the graph obtained from this construction, the
product is completely determined within a factor
of two. Of course, for this construction to be useful, we need
to pick and polynomially small. For concreteness, we can
choose , and let be the first prime larger than ; such a
is bounded by a polynomial in , as a consequence of the prime
number theorem.

Lemma 4: Suppose that there exists a randomized polynomial
time algorithm that computes a such that ,
with probability . Then, there exists a randomized
polynomial time algorithm that determines within a mul-
tiplicative factor of , with probability . If the
algorithm for is deterministic, the algorithm for can also
be taken deterministic.

Proof: Given a graph with nodes, we proceed as fol-
lows. We first use the algorithm from Proposition 3 to generate
a graph with nodes, and with only polynomially
larger than . We then consider an arrival vector equal to ,
and determine the resulting load factor on the graph (to
be denoted simply by ), within a multiplicative factor of .
Let be the stability region associated with .

Consider a coloring of with the minimal number of
colors. Nodes with the same color form an independent set in

. By serving similarly colored nodes at each time step, and
alternating between the different colors, we see that the vector

of arrivals can be served in time steps. Thus, the vector
belongs to , or . Thus

From the definition of , we have that belongs to the
convex hull of the set of vectors associated with indepen-
dent sets. Thus

where the coefficients are nonnegative and sum to one.
Therefore

Since , we have

Since can be determined within a multiplicative factor of
, it follows that can be determined within a multi-

plicative factor of .

We now invoke the following result of Trevisan [13] on the
nonapproximability of the independent set problem.

Proposition 5: An algorithm that can determine
for any graph with maximum vertex degree within factor

, can be used, with a polynomial time reduction,
to decide the satisfiability of any 3-CNF formula.

We can now complete the proof of the theorem. If there ex-
ists a polynomial time poly-queue randomized policy (for either
deterministic or Poisson arrivals), then (by Lemma 2) there ex-
ists a polynomial time randomized algorithm for determining
within a factor of (with a small error probability), and
therefore (by Lemma 4), a polynomial time randomized algo-
rithm for determining within a factor of . Since

, Proposition 5 (with ) im-
plies that there exists a polynomial time randomized algorithm
for satisfiability, and therefore, . The argument for
the case of deterministic arrivals and deterministic policies is
entirely similar, except that we end up with a deterministic al-
gorithm for satisfiability, and therefore, .

V. PROOF OF THEOREM 1: SINR MODEL

The main idea of the proof is the following. With a suitable
choice of the problem parameters, , , , and , an instance
of the model with independent set constraints (Model I) can be
closely approximated by an instance of the SINR model (Model
II) with almost the same stability region and load factors. Then,
a poly-queue policy for Model II that runs in polynomial time
results in a policy with similar properties for Model I, contra-
dicting what we have already proved for the latter. A similar
reduction from the independent set problem was used in Luo
and Zhang [6] in the context of dynamic spectrum allocation.

To this end, consider an instance of Model I, with
edge set , and stability region . We say that and are neigh-
bors if and . We construct an instance of Model
II, with transmitters labeled , and receivers, labeled

and the same arrival vector . We let

We choose distances so that the effective path loss coefficients
are such that for all , and

if . Otherwise, we set
. Consider an arbitrary policy for the SINR model.

Recall that is a binary variable indicating whether trans-
mitter is active during slot . We have the following three
possibilities.

(a) If , then , and .
(b) If and for every neighbor of ,

then interference at is only due to nodes for which
. Then

Therefore, for large enough , since
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it follows that

Dividing by , we obtain

(4)

(c) If and there exists a neighbor of for which
, then satisfies , and

It then follows that, , and

(5)

We now relate the stability region of our instance of Model II
(denoted by ) to the stability region of the instance of Model
I. Recall that is the convex hull of the set of binary vectors
associated with independent sets in . Pick an independent set

, and let every transmitter be active. We are then in case
(b) above, and we have for every . This shows
that for each one of the vectors (which generate the set ), the
vector is in . Thus, , which implies that

(6)

where is the load factor in Model II. Here, and in the re-
mainder of the proof, we use primes to denote variables associ-
ated with Model II.

Suppose that the policy for Model II has the poly-queue
property. We will show how can be used to construct a policy

for the instance of Model I that we started with, with favorable
properties, thus contradicting our negative results for Model I.

Policy operates as follows. The policy (which is applied
to Model I) simulates the operation of policy on Model II,
under the exact same arrival processes, on a sample path basis,
i.e., with , for all , . We define binary vari-
ables by setting if and only if and

for every neighbor of (this corresponds to case (b)
above). Then, is an independent set. We let
policy serve all of the queues in , to the extent that packets
are available. In particular, the departure process for Model I
satisfies

(7)

Recalling the definition of Model II, its departure process
satisfies

(8)

By virtue of (4) and (5), we have , and
if . Thus

Using this inequality, and by comparing (7) and (8), an easy
induction shows that

(9)

Since has the poly-queue property, there exists some
such that whenever , we have

, for all . Whenever , we have
[cf. Equation (6)]. We let , and then use (9)

to obtain

Other than the term instead of , and the factor of
2 change from to , none of which are essen-
tial, this is the same as the property (3) on which the proof in
Section II-A was based. According to that proof, with essen-
tially no change, this property leads to a contradiction. This
completes the proof of our negative result for Model II.

VI. DISCUSSION

Consider a variant of the randomized algorithm proposed by
Tassiulas [11] in the context of the model with independent
set constraints. Specifically, we have a network graph , and
choose at each time slot an independent set in , and associ-
ated binary vector , prescribing the queues to be served at
that slot. Initially, at , we let the schedule be arbitrary.
Given the schedule used at time , we choose as
follows. Select an independent set at random. Based
on the current queue-size vector , compare the weights of

and , and let to be the vector with the larger
weight, with respect to the current queue-size vector, . That
is

In [11], Tassiulas showed that if there is , such that for any

then the algorithm is stable. Furthermore, it is shown in [3],
[8] that this algorithm can be implemented in a distributed
manner with a small polynomial computational effort per time
slot. The standard Lyapunov-Foster moment bound provides
a upper bound on the expected queue-size (see [10,
Theorem 6.2] for a precise bound). However, it is not apparent
whether this is a loose upper bound or whether the average
queue-sizes can be exponentially large in . In particular, the
standard network theoretic techniques fail to provide a useful
lower bound on the average queue-size. Theorem 1 indicates
that under the common computational hypotheses on BPP
and NP, this algorithm will indeed induce average queue-sizes
that are super-polynomial in , in the worst case over all pos-
sible systems with nodes. In other words, the objective of a
computationally efficient algorithm/policy that guarantees low
average delay in the interior of the stability region appears to
be unachievable. This result, which provides a computational
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complexity based approach to obtaining lower bounds on av-
erage queue-size for large network problems, is fundamentally
different from the classical approaches to stochastic networks.

It is worth noting that Theorem 1 is essentially tight in deter-
mining the range of load factors for which there exist polyno-
mial time stabilizing policies. Under the common complexity-
theoretic conjectures, it shows that for any , no polyno-
mial time policy can keep the expected queue sizes bounded
by a polynomial whenever . On the other hand,
when , a policy with this property is available. Indeed, if

, then , and the queue sizes can be stabi-
lized by simply serving one (nonempty) queue at a time.

One might be tempted to argue that wireless networks are dif-
ferent from models involving independent set constraints, and
that there might be additional structure that could be exploited,
rendering the negative results inapplicable. To address this pos-
sible objection, we showed that, at least in some regimes, nat-
ural interference models are very close to independent set prob-
lems, so that the negative results also apply to more realistic
wireless network models. One can argue that the regimes used
in our proofs are not representative of real-world models. This
is a generic issue, always present when using complexity theo-
retic tools, which are geared towards a worst case analysis. It is
an interesting direction for future research to identify classes of
network graphs and models that allow for both computationally
tractable policies and low delay. On the other hand, our results
indicate that a search for policies that would be universally ap-
plicable is likely to be futile.

One special feature of our SINR model is that the power
at each transmitter was taken as given. It would be interesting
to derive similar negative results for formulations that involve
tunable power levels.
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