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a b s t r a c t

A problem that often arises in the process of searching for a job or for a candidate to fill a
position is that applicants do not know if they will receive an offer from any given firm with
which they interview, and, conversely, firms do not know whether applicants will definitely
take positions they are offered. In this paper, we model the search process as an optimal
stopping problem with probabilistic appearance of offers from the perspective of a single
decision-maker who wants to maximize the realized value of the offer she accepts. Our
main results quantify the value of information in the following sense: how much better off
is the decision-maker if she knows each time whether an offer appeared or not, compared
to the case where she is only informed when offers actually appear? We show that for
some common distributions of offer values, she can expect to receive very close to her
optimal value even in the lower information case, as long as she knows the probability that
any given offer will appear. However, her expected value in the low information case (as
compared to the high information case) can fall dramatically when she does not know the
appearance probability ex ante but must infer it from data. This suggests that hiring and
job-search mechanisms may not suffer from serious losses in efficiency or stability from
participants hiding information about their decisions, unless agents are uncertain of their
own attractiveness as employees or employers.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Many job markets are structured in a manner where potential employees submit their applications to a number of
employing firms simultaneously, and then wait to hear back from these firms. Firms themselves often make exploding
offers that employees have to decide on in a short time-frame. Sometimes the firms will tell potential employees as soon
as they are no longer under consideration, and in other cases they wait until the end of the search process to provide this
information to applicants. The central question that we address in this paper is this: How much better off is an applicant if she
is told every time she has been rejected by a firm, as opposed to only knowing when she receives offers?

In order to study this problem, we construct a stylized model in which the decision problem faced by agents is a version
of the problem variously referred to in the literature as the Cayley–Moser problem, the (job) search problem, the house
hunting problem and the problem of selling an asset (Ferguson, 1989). In the original problem, a job applicant knows that
there will be exactly n job opportunities, which will be presented to her sequentially. At the time each job is presented, she
observes the utility she would receive from taking that job offer (one can think of it purely in terms of wages), and must
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decide immediately whether to accept the job offer or not. If she declines the offer, she may not go back to it. If she accepts
it, she may not pick any of the subsequent offers. What is the strategy that maximizes her expected utility? This problem
has been addressed for various distributions of offer values, and much of that work is summarized by Gilbert and Mosteller
(1966).

The problem we consider is a variant of the above problem in which the total number of possible offers is known, but each
offer appears only with a certain probability. This problem is motivated in part by models of two-sided matching markets
like labor markets or dating markets. In particular, a problem considered by Das and Kamenica (2005) is one in which men
are asked out on dates by women and must respond immediately, but while they have priors on the values of going out
with particular women, they do not know the order in which women are going to appear, so they are not aware of whether
or not a better option might come along in the future. This is because a better woman than the one currently asking a man
out might either have already appeared in the ordering and not asked him out, or might appear later and not ask him out,
or might appear later and ask him out. A similar problem can arise in faculty hiring processes for universities and colleges.
Universities may not know whether applicants will definitely take positions that are offered, and, conversely, applicants do
not know if they will receive an offer from any given university with which they interview. This paper only looks at one side
of this process without considering the dynamics involved when multiple agents interact, potentially strategically. Another
motivation comes from thinking of the offers as investment opportunities (Gilbert and Mosteller, 1966). In particular, the
continuous-time variant we discuss can be interpreted in terms of investment opportunities that arrive as a Poisson process
where the decision-maker wants to choose the best one. To simplify the analysis, we assume that the probability that a
particular offer appears, p, is the same across all offers and is independent of the actual value of the offer. The value of p
may or may not be known to the applicant and can be thought of as a measure of the “attractiveness” of the applicant or
decision-maker.

Most of the previous research on search models focuses on solving an agent’s infinite horizon optimal stopping problem
when there is either a cost to generating the next offer, or a discount factor associated with future utility (the book by
DeGroot (1970) provides an account of much of this line of research). The problem we study here is a finite-horizon search
problem with no cost to seeing more offers and no search frictions. The basic questions we pose and attempt to answer
relate to how much the expected utility of the decision-maker changes between different information sets and different
mechanisms. The question with regard to information sets can be thought of as follows. Suppose you interview with n firms
that might want to hire you. Then the companies get ordered randomly and come along in that order and decide whether
or not to make you an offer. How much would you pay to go from a situation in which you saw only which companies made
you an offer (the low information variant) to a situation in which you saw, for each company, whether or not they chose to
make you an offer (the high information variant)? Generalizing the two informational cases to continuous time provides good
approximations for large n and insight into the value of information in these cases. It also allows us to make an interesting
connection to a closely related problem called the secretary problem. We will also discuss the difference in expected utility
between two different mechanisms. The exploding offer mechanism can lead to a substantial decline in the expected utility
of a job-seeker compared to a mechanism in which she sees all the offers she will receive simultaneously and can choose
from among them. What if you could pay to see the entire set of offers you would get simultaneously so that you could pick
among them? How much should you be willing to pay? We will explicitly compare the expected loss in value in going from
this simultaneous choice mechanism to the sequential choice mechanism that generates the stopping problem.

1.1. Related work

In the classical secretary problem (CSP), a decision-maker has to hire one applicant out of a pool of n applicants who
will appear sequentially. Again, the decision-maker must decide immediately upon seeing an applicant whether to hire her
or not. The key difference between secretary problems and search problems, as Ferguson (1989) notes, is that in secretary
problems “the payoff depends on the observations only through their relative ranks and not otherwise on their actual values.”
The most studied types of secretary problems are games with 0–1 payoffs, with the payoff of 1 being received if and only if
the decision-maker hires the best applicant. The decision-maker’s optimal policy is thus one that maximizes the probability
of selecting the best applicant.

A historical review of the early literature on secretary problems, including important references, can be found in the paper
by Gilbert and Mosteller (1966), as can solutions to many extensions of the basic problem, including the search problem (with
finite and known n and no search costs) for various different distributions over the values of applicants. Many interesting
variants of the original problem, mostly focusing on maximizing the probability of hiring the best applicant, have appeared
in intervening decades. For instance, Cowan and Zabczyk (1978) introduce a continuous-time version of the problem with
applicants arriving according to a Poisson process, which is closely related to the continuous-time problem we describe
in Section 4. Their work has been extended by Bruss (1987) and by Kurushima and Ano (2003). Stewart (1981) studies a
secretary problem with an unknown number of applicants which is also related to the problem we consider, but differs in
the sense that he assumes n to be a random variable and the arrival times of offers to be i.i.d. exponential random variables,
so that the decision-maker must maintain a belief distribution on n in order to optimize.

There has been considerable interest in explicitly modeling two-sided search and matching problems in the economics
community. In particular, Burdett and Wright (1998) study two-sided search with nontransferable utility, which is relevant
to our model because we assume exogenous offer values, implying that an employer cannot make her offer more attractive
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by, for example, offering a higher salary. The book by Roth and Sotomayor (1990) and the chapter by Mortensen and Pissarides
(1999) both provide excellent background on this line of literature in economics.

1.2. Contributions

This paper introduces a model of search processes where offers appear probabilistically and sequentially without explicit
costs to sampling more offers, but with a limited number of possibilities that cannot be recalled. This is a good model for
various job search and hiring processes where offers are “exploding” and search takes place during a fixed hiring season.
Our main contributions can be summarized as follows:

(a) We introduce two possible search processes, a “high information” process in which agents find out whether an offer
appears or does not appear (this can also be thought of as agents being accepted or rejected) at each point in time, and a
“low information” process in which agents only receive signals when an offer appears, so they do not know how many
times they might have been rejected already.

(b) We solve for the expected values of the low and high information processes for uniform and exponentially distributed
offer values when agents know the underlying probability of offer appearance. For these distributions we show that the
expected utility in the low information process comes very close to the expected utility in the high information process,
and we provide numerical evidence that the gap is widest in a critical range of expected number of offers between four
and six.

(c) We show that the ratio of the expected utilities for the low and high information processes can be substantially lower.
Specifically, when agents do not know the true probability of offer appearance, the expected utility in the low informa-
tion process can decline substantially relative to the high information process. This suggests that the most important
informational value of rejections may lie in helping decision-makers estimate their own “attractiveness,” when this
attractiveness is measured in terms of the probability of offer appearance.

(d) We introduce continuous-time versions of the search processes, characterized by Poisson appearance of offers, and obtain
closed form solutions for expected values of the high information processes. The solutions have a surprisingly simple
form, which helps us gain insight into the dependence of the expected value on the offer arrival rate.

(e) We evaluate the “competitive ratio” (in the sense used in computer science, e.g. Borodin and El-Yaniv, 1998), which
quantifies the relative reduction in the expected value, compared to the case where all offers are received simultaneously.
We compare the competitive ratios of expected values in the stopping problem and the “simultaneous choice” problem
to the ratios of expected values in the high and low information cases.

2. The model

We consider a search process in which a decision-maker (job-seeker) has to choose among n potential total offers, which
appear sequentially. At each point in time, an offer either appears (with probability p), in which case its value w is revealed
to the applicant, or does not appear (with probability 1 − p). If an offer does not appear, the applicant may or may not be
told this fact. For the purposes of this paper, we assume that all offers have an identical probability of appearance p, and
that the values w are independently and identically distributed. We will consider two cases for the distribution of w, namely
uniform and exponential. The job-seeker must decide immediately upon seeing an offer whether to accept it or not. If she
accepts the offer, she receives utility w, and if she rejects it she may not recall that offer in the future.

We consider a number of variants of this process for the two distributions mentioned above. The two axes along which
we parameterize the process are (a) whether or not the decision-maker knows the probability p of getting an offer; and (b)
whether or not the decision-maker receives a signal when an offer does not appear. In the first case, the question is whether
or not the decision-maker has to learn p. The second case essentially embodies two informational variants of the decision
problem. In the high information variant, the decision-maker is told at each of the n stages whether an offer appeared or not.
Therefore, she always knows the exact total number of possible offers that may yet appear. In the low information variant,
the decision-maker is only informed when an offer appears—if the offer does not appear the decision-maker is not informed
of this event. Thus, the decision-maker does not know how many offers are potentially left out of the n total offers. We
will begin by showing results about the informational variants assuming that the decision-maker knows p. In each case we
will consider two distributions over the offers wi, one a uniform [0,1] and the other an exponential distribution with rate
parameter ˛. For calibration, when we report numerical results, we assume ˛ = 2 so that the expected values of draws from
both distributions are the same (0.5).

2.1. An example where n = 2

As a motivating example, let us consider the case where n = 2, offer values are uniformly distributed in [0,1], and offers
arrive with probability p. Later we will derive the expected values for general n. We can compute the expected value for
an agent participating in the search process in the high and low information cases. In general, we will denote the expected
value of the high information search process with n possible offers as Hn and the value of the low information process with
n possible offers as Ln.
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Fig. 1. Expected value of the difference between the high and low information cases as a function of p for n = 2 and values independently drawn from a
uniform [0, 1] distribution.

First, in the high information case, the agent knows that there are two time periods t in total, and she knows which time
period she is in. At t = 1 the reservation value of an agent is her expected value if she declines the offer, which is just her
expected value in the one period process. In the one period process, the agent should always accept any offer she receives,
so the expected value is just the product of the probability that an offer appears and the expected value of that offer, or
0.5p. Therefore, at t = 1, the agent should accept an offer only if it is greater than 0.5p. Since offer values are distributed
uniformly in [0,1], the probability that this is the case is 1 − 0.5p. The expected value of the offer given that she does accept
it is (1 + 0.5p)/2. The expected continuation value of the process if she rejects the offer is 0.5p. Given that an offer arrives at
t = 1 with probability p, the expected value of the search process is:

H2 = p
(

(1 − 0.5p)
1 + 0.5p

2
+ 0.5p(0.5p)

)
+ (1 − p)(0.5p)

= 1
8

p3 − 1
2

p2 + p

The low information case is somewhat more complicated. The major difference from the high information case is that
the decision-maker’s threshold for stopping at the first offer to appear changes. When the decision-maker sees the first
offer (assuming she ever sees an offer and has to make a decision), she does not know if the offer is first in the order-
ing or if the offer is second in the ordering and the first offer did not appear. The probability that she will see another
offer is then the probability that a second offer will appear given that one has appeared. Suppose we denote realized
appearance/non-appearance outcomes by vectors of zeros and ones where the zeros indicate non-appearance and the ones
indicate appearance. The total space of outcomes is {[0 0], [0 1], [1 0], [1 1]}. The appearance of one offer reduces the possible
space of outcomes to {[0 1], [1 0], [1 1]}. The probability that a second offer appears given that a first has appeared is then
p2/((1 − p)p + p(1 − p) + p2) = p/(2 − p). Therefore, the threshold for the decision-maker to stop at the first offer to appear
is p/(4 − 2p).

We compute the expected value of the process by analyzing each of the four possible realizations (see Appendix A) and
conclude that:

L2 = −5p4 + 26p3 − 48p2 + 32p

8(2 − p)2

2.1.1. The value of information
Simplifying the difference in expected values between the high and low information processes for n = 2, D2 = H2 − L2,

we find that:

D2 = (p − 1)p3

8(p − 2)

By setting the derivative to 0, we find that the difference is largest for p = 0.7847. Fig. 1 shows the values of D2 for p
between 0 and 1.
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3. The search process for general n

This section provides the recursive solutions for the expected values of participating in the high and low information
search processes. Solving for the expected value of the high information case is trivial, but it will serve as a point of comparison
for the low information cases and will allow us to generalize to an interesting continuous-time variant.

3.1. The high information case

When offers are drawn from a uniform [0, 1] distribution, the recursive solution to the expected value in the high
information process is given by:

Hn = p

(
1 + H2

n−1

2

)
+ (1 − p)Hn−1 (1)

with the base case H1 = 0.5p.
When offers are drawn from an exponential distribution with rate parameter ˛, the expected value is given by:

Hn = Hn−1 + p
1
˛

e−˛Hn−1 (2)

with the base case H1 = p(1/˛).
Complete derivations of these equations are given in Appendix B.

3.2. The low information case

In the low information process with n total possible offers, any state at which the decision-maker has to take a decision
can be completely characterized by n and by the number of offers that have appeared thus far, denoted by k. The expected
value of not stopping at offer k (state (n, k)) is given by the product of the probability that state [n, k + 1] will be reached (if
not, the decision-maker sees no more offers and gets utility 0) and the expected value L(n, k + 1).

The probability that state (n, k + 1) is reached given that (n, k) was reached is:

qk =

n∑
i=k+1

(
n
i

)
pi(1 − p)n−i

n∑
i=k

(
n
i

)
pi(1 − p)n−i

The continuation value of the process (the expected value of not stopping) is qkL(n, k + 1). We know that L(n, n) = 0.5 for
offers distributed uniformly in [0,1] and L(n, n) = 1/˛ for offers distributed exponentially with rate parameter ˛, so we can
compute the expected value recursively. Let zk = qkL(n, k + 1) and w be the value of the k th offer to appear. Then, for the
case where offers are distributed uniformly on [0,1]:

L(n, k) = Pr(w > zk)E[w|w > zk] + Pr(w < zk)zk

= (1 − zk)
1 + zk

2
+ z2

k

= 1
2

(1 + z2
k )

Similarly, for the case where offers are distributed exponentially with rate parameter ˛:

L(n, k) = Pr(w > zk)E[w|w > zk] + Pr(w < zk)zk = 1
˛

e−˛zk + zk

The expected value of the n offer low information process is then Ln = L(n, 0).

3.3. The value of information

Fig. 2 shows R(n, p), defined as the ratio of the expected values in the low and high information processes, respectively,
for different n and for the two distributions we consider. We can see that the critical region where the value of information
is highest is reached at lower p for higher n —this happens when the expected value of the process is in an intermediate
range. A rule of thumb is that R(n, p) is highest when the expected number of offers, np, is in the range of 4–6.

We formalize this result in a continuous-time setting in the next section, but the intuition is that if the expected number
of offers is only two or three, the threshold for accepting one of the first two offers is low in either case—it is hard to make
a bad decision even without the benefit of knowing when you have been rejected, because you should take any relatively
acceptable offer. Conversely, if you expect to receive many offers (say more than six), not much harm (in expectation) can
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Fig. 2. R(n, p), the ratio of the expected values of the low and high information processes for different values of n and p, for offer values drawn from the
uniform [0,1] distribution (left) and the exponential distribution with rate parameter 2 (right).

be caused by turning down a relatively good offer early based on a misconception about how many places have considered
your application already, because you would expect another pretty good offer to show up. It is in the intermediate range of
4–6 offers that the additional information becomes important.

The most important observation is that the information does not appear to be critical to making a good decision. Even
in the worst of all the cases in Fig. 2, the loss from participating in the low information process is only about 3 percent.
Therefore, it seems clear that participants do not suffer great declines in expected utility from not being told when they
are rejected, as long as they know the true probability p of offers appearing. In Section 5 we consider the case where p is
unknown and show that the loss can be significantly higher.

4. Continuous-time variants

The natural continuous-time limits of the process introduced in Section 2 involve Poisson arrivals of offers over a limited
time horizon. We assume that offers arrive according to a Poisson process with arrival rate � in the time interval [0,1]. Again,
the offer payoffs are sampled from either a uniform [0,1] distribution or an exponential distribution with rate parameter ˛,
and the decision-maker has to decide upon seeing each offer whether to stop and accept that offer or continue searching.
These continuous-time variants allow us to abstract away from the particular number of possible offers and think in terms
of the expected number of offers. We show that the high information processes have closed form solutions for the expected
value at any point in time that allow us to gain insight into the dependence of the expected value on the expected number of
offers. In this section we study and solve for the expected values of a decision-maker in the high and low information con-
tinuous time search processes, and discuss the relation between these processes and the discrete variants discussed above.

4.1. The high information variant

In the high information variant, each time an offer appears, the decision-maker gets to see both the value of the offer,
say w, and the precise time of appearance, t. The decision-maker should stop if w is greater than the continuation value
v(t). At any time t, to derive the continuation value we need to consider when the next offer will be received. At time t, the
probability density function of the time of the next offer arrival (if any) is �e−�(x−t) for x ≤ 1 (any density after 1 effectively
“gets lost”). The value of receiving an offer at time x can be derived as in Section 3.

4.1.1. Uniform distribution
Let w be the random value of an offer received at time x. The value of receiving such an offer is:

Pr(w > v(x))E[w|w > v(x)] + Pr(w < v(x))v(x)

= (1 − v(x))
(

v(x) + 1 − v(x)
2

)
+ v2(x) (because w∼U[0, 1])

= 1
2

(1 − v2(x)) + v2(x)

= 1
2

(1 + v2(x))
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The continuation value at time t must satisfy:

v(t) =
∫ 1

t

�e−�(x−t) 1
2

(1 + v2(x)) dx

Therefore,

e−�tv(t) = 1
2

�

∫ 1

t

e−�x(1 + v2(x)) dx

Differentiating with respect to t,

(−�v(t) + v′(t))e−�t = −1
2

�e−�t(1 + v2(t))

Since v(1) = 0 and v ∈ [0, 1],

v′(t) = −1
2

�(v(t) − 1)2

Or (
− 1

v(t) − 1

)′
= −1

2
�

Integrating from t to 1,

1
v(1) − 1

− 1
v(t) − 1

= 1
2

�(1 − t)

Which gives us the solution:

v(t) = 1 − t

(2/�) + 1 − t
(3)

Therefore, the value of a process with arrival rate � is v(0) = �/(� + 2).

4.1.2. Exponential distribution
The logic is exactly the same as above, except that with an exponential distribution with rate parameter ˛ the continuation

value at time t must satisfy

v(t) =
∫ 1

t

�e−�(x−t)
(

1
˛

e−˛v(x) + v(x)
)

dx

Differentiating with respect to t, we get:

⇒ v′(t) = − �

˛
e−˛v(t)

or

v(t) = 1
˛

log(−�t + c)

where c is a constant of integration. Using the boundary condition v(1) = 0

v(t) = 1
˛

log(−�t + � + 1) (4)

Therefore, in this case the value of a process with arrival rate � is (1/˛) log(1 + �).

4.2. The low information variant

In the low information variant of the continuous-time process, the decision-maker knows only the number of offers she
has received, not the precise time t at which any of the offers were received. Therefore, any time that a decision has to be
made, the state is completely characterized by the number of offers received so far. Let the value of a process in which k
offers have been received so far (but the decision-maker has not yet seen the value of the k th offer) be denoted by v[k]. Let
w be the (unknown) value of the current offer. The continuation value of the process can then be computed in a manner
exactly analogous to the discrete-time case. Let

qk = Pr(at least one more offer will be received| k offers were received)
zk = qkv[k + 1]
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Then

v[k] = Pr(w > zk)E[w|w > zk] + Pr(w < zk)zk

For offers distributed uniformly in [0,1], we have

v[k] = 1
2

(1 + z2
k ) (5)

For offers distributed exponentially with rate parameter ˛, we have

v[k] = 1
˛

e−˛zk + zk (6)

There are two differences from the discrete case. First, qk must be computed differently, because we now have Pois-
son arrivals. Let f (k) be the Poisson probability mass function (the probability of getting exactly k offers) and F(k) be the
cumulative distribution function, for a particular value of �. Then

qk = 1 − F(k)
1 − F(k − 1)

= 1 − f (k)
1 − F(k − 1)

These are easily computed since we know that f (k) = e−�(�k/k!) and F(k) = ∑k
i=0e−�(�i/i!).

The second difference from the binomial case is that we do not have an obvious base case, such as the case where n offers
out of n are received, from which we can start a backwards recursion. However, we can show that limk→∞qk = 0.

lim
k→∞

qk = lim
k→∞

1 − F(k)
1 − F(k − 1)

= lim
k→∞

−f ′(k)
−f ′(k − 1)

(applying L’ Hospital’ s rule)

= lim
k→∞

�

k
= 0

Therefore, it is reasonable to approximate the actual value by assuming some threshold K such that qK = 0 (the threshold
K may depend on the particular value of �). To convey a sense of the practical value of the threshold K we should note that a
threshold such as K = 200 enables us to compute the expected values to a high degree of precision for � as high as 100, since
the probability of getting more than 200 offers is completely negligible for � = 100. For higher � values one would need to
use higher thresholds.

4.3. Relation to the discrete-time process

Fig. 3 shows that the expected values of the discrete-time processes converge to the expected values of the continuous-
time variants as n → ∞, while holding � = pn constant (other values of � yield similar graphs). We can also show formally
that the expected value of the continuous-time high information process serves as a lower bound for the expected value of
the discrete-time high information process when offer values are distributed uniformly in [0,1].

Theorem 1. The value of the high information discrete-time process for given p and n is greater than the value of the high
information continuous-time process with � = pn, when offer values are drawn from a uniform [0,1] distribution.

See Appendix C for the proof.
We also conjecture that Theorem 1 remains valid for the case of an exponential distribution (see Appendix C for further

details) and that the low information expected values for the continuous-time variants may also serve as lower bounds
for the discrete-time cases. The intuition is that the continuous-time versions have a higher variance for the number of
offers appearing (np as opposed to np(1 − p)), which is why they yield lower expected values, especially for high values of p
(corresponding to lower n since the product is held constant).

Interestingly, a difficult variant of the secretary problem (with the goal of maximizing the probability of selecting the
best candidate) has been proposed and solved in continuous time by Cowan and Zabczyk (1978), and generalized by others
(Kurushima and Ano, 2003; Bruss, 1987). Our problem bears the same relation to this problem as the search problem with
non-probabilistic appearance of offers (Gilbert and Mosteller, 1966) (recovered by using p = 1 in our case) does to the
classical secretary problem.

4.4. The value of information

As n increases, the continuous-time processes become a better approximation to the discrete-time cases, and give us an
opportunity to study general behavior without worrying about the specific interactions of n and p. Fig. 4 shows the ratio
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Fig. 3. Expected values of the low and high information processes in continuous and discrete time holding � = pn constant (at � = 4). Dashed lines represent
the values of the continuous-time processes and solid lines the values of the discrete-time processes.

R(n, p). We can see that information is most important in a critical range of � (between around � = 3 and � = 10, peaking
between 4 and 6) for both distributions and the importance of information drops off quickly thereafter. Information is also
not particularly important if the expected total number of offers is very small. This confirms our intuitions from the discrete
time cases.

5. What if p is unknown?

In some search problems of the kind we have been discussing, the decision-maker may not have a good estimate of the
probability p that any given offer will appear. In this case the decision-maker must update her estimate of p while also
making decisions as before, with each decision based on her current estimate. This can greatly change the complexion of the
problem, and especially of the value of information, because now knowing when an offer will not appear is not only useful
for the decision problem, it is also useful for the problem of learning p to help in future decisions.

Fig. 4. R(n, p) as a function of � for the continuous-time processes.
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We will assume that a decision-making agent starts with a prior on p. In the experiments we report here, this prior always
starts as a uniform [0,1] distribution. First, let us consider the high information case and two possible ways of representing
and updating the agent’s beliefs about p.

5.1. The high information case

5.1.1. Using a Beta prior
One possibility is to use a parameterized distribution. The ideal one for this case is the Beta distribution, because the

two possible events at each time are success and failure, and the Beta distribution is its own conjugate and is particu-
larly easy to update for this case. If the prior distribution on p before seeing the outcome of a binary event is a ˇ(i, j)
distribution, then the posterior becomes ˇ(i + 1, j) in the event of a success and ˇ(i, j + 1) in the event of a failure. The
ˇ(1, 1) distribution is uniform [0,1], and so the agent can start with that as the initial prior. Then, in order to compute
the expected value of the game at any time after s successes and f failures have been seen, the agent only needs to addi-
tionally know the distribution of offer values and the total possible number of offers. However, the dynamic programming
recursions are somewhat different than those in earlier sections. An agent who receives an offer and rejects it has a differ-
ent expected value than an agent who does not receive an offer, due to the informational difference in her next estimate
of p.

The value function is parameterized by n, the maximum number of possible offers remaining, s, the number of successes
seen so far, and f, the number of failures seen so far.

For offer values distributed uniformly in [0,1] the expected value of the game is given by:

V(n, s, f ) =
∫ 1

0

�(x, s + 1, f + 1)
(

x
1
2

(1 + V2(n − 1, s + 1, f )) + (1 − x)V(n − 1, s, f + 1)
)

dx

where �(x, s + 1, f + 1) represents the density function of the Beta (s + 1, f + 1) distribution at x, that is the posterior after
seeing s successes and f failures when starting with a Beta (1, 1) prior.

Similarly, for offer values distributed exponentially with rate parameter ˛, the expected value is given by:

V(n, s, f ) =
∫ 1

0

�(x, s + 1, f + 1)
(

x
(

1
˛

e−˛V(n,s+1,f ) + V(n, s + 1, f )
)

+ (1 − x)V(n − 1, s, f + 1)
)

dx

To actually compute these values, we can use a discrete approximation to the integral along the probability axis. V can
be computed recursively backwards.

5.1.2. Using a discrete non-parametric prior
Another option is to simply use a discrete prior to begin with, and use the appropriate belief vector for subcompu-

tations. The key to making this computation efficient is to note that an agent’s beliefs will always be the same when s
successes and f failures have been observed, regardless of the path. Therefore, the posterior at this time can be computed
as:

Pr(p = x | s, f ) = Pr(s successes out of s + f |p = x)Pr(p = x)
Pr(s successes out of s + f )

Here Pr(p = x) is the original prior.

5.2. The low information case

In the low information case, the only information available to update the decision-maker’s beliefs about p is the number
of offers made so far. In this case, she must update as follows:

Pr(p = x | s offers) = Pr(at least s offers| p = x)Pr(p = x)
Pr(at least s offers)

The probability of getting at least s offers given that p = x can be computed using the cumulative distribution function of
the binomial distribution. Also note that the agent’s beliefs about p will be the same every time that s successes have been
observed.

5.3. Evaluating performance

In order to estimate the expected utility received, we need to specify the form of learning the agent uses, the information
available to the agent, and the true probability p of offer appearance. Then for particular values of p and n we can proceed by
evaluating the expected value of a Markov chain in which states are characterized by the number of successes and failures
seen so far. In either the high or low information cases, the agent will have a certain reservation value at each state that
is completely dependent on the number of successes (in both cases) and failures (in the high information case) observed
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Fig. 5. The ratio R(n, p) when p is unknown, the agent starts with a uniform prior over [0,1] on p, and offers are drawn from a uniform [0,1] distribution
(left) or an exponential distribution with rate parameter ˛ = 2 (right). Note that the Y-axis is significantly different in the two cases.

thus far. Then the expected value of being in that state can be computed based just on the agent’s reservation value and the
true underlying distribution of offer values and probability of offer appearance. For further details see Appendix D. There
is no difference in the expected values for the high information game when using the Beta prior and when using the non-
parametric prior, so we report results only from the use of the Beta prior. We first report results when agents start with a
uniform prior over [0,1] for p.

Fig. 5 shows results in terms of R(n, p) (corresponding to those in Fig. 2 for the case of known p) for the uniform [0,1]
distribution and the exponential distribution with ˛ = 2. There are three cases shown in each graph, corresponding to three
true underlying probabilities. First, note that R(n, p) can be much smaller than when agents know p beforehand. For the
uniform distribution, in both cases expected values are increasing and are bounded by 1, so the ratio does not become as
dramatic as it does for the exponential distribution. The reason why the ratios of expected values are so different is because
in the high information case it is “easy” to learn p by updating your estimate based on seeing both when offers appear and
they do not. In the low information case, the only information available does not help the agent nearly as much in updating
her estimates.

A second interesting effect we see in the graphs is that when n is moderately large, R(n, p) tends to be significantly smaller
when p is larger, especially for the exponential distribution. For example, we observe that R(40, 0.5) is much lower than
R(40, 0.1). We provide an intuitive explanation, based on the nature of the estimation of p. In the high information case,
there is time to accurately estimate the value of p and approximate the performance that would have been obtained if p
were known. In the low information case, however, accurate estimation is not possible: an appearance of n/10 offers can be
explained by either (i) the true (but unknown) time being close to n and p ≈ 1/10, or (ii) the true (but unknown) time being
close to n/5 and p ≈ 0.5. The agent, not being able to tell these two cases apart, sets a conservatively low threshold. If it turns
out that p was actually 0.5, the low information process loses a significant opportunity, whereas the high information process
“learns” p and exploits the opportunity. In comparison, this loss is not significant if p = 0.1, because the low information
process and its low/conservative threshold are a reasonable policy for this case. Note that this argument only applies when
n is moderately large, because it is only then that we get significantly different but indistinguishable scenarios, as in (i) and
(ii) above. In contrast, when n is small, the high information process does not have enough time to learn p and rely on a
high-quality estimate.

A third effect to note is that, for the exponential distribution, for a fixed (high) value of the true underlying p, R(n, p)
increases with n. In the low information process the job-seeker tends to accept an offer too early in the process. An increase
in n does not lead to a sufficient decrease in the job-seeker’s propensity to accept offers, because of the inability to learn the
value of p, as discussed earlier. At the same time, the value of the best offer she could have accepted with a suitably chosen
threshold will tend to increase roughly as the maximum of n exponential random variable (of order O(log n)), leading to a
declining R(n, p) as n increases.

A question that arises in this context is that of what happens when the agent has a less diffuse prior. In many ways this
might correspond to a more realistic situation. Suppose she knows that her true probability of receiving offers is definitely
between 0.4 and 0.6 when it is actually 0.5. We studied this question by calculating the ratios of expected values of the low
and high information processes when the agent starts with a uniform prior on [0.4, 0.6] (modeled using discrete probability
masses, and using the non-parametric technique in the high information case as well as the low information case). The
results are shown in Fig. 6. We can see that R(n, p) actually appears to remain constant (and significantly higher than before)
as n increases, showing that the expected value goes down much less as we move to the low information case, as we would
expect given that the case of known p is the limit of concentrating the prior.
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Fig. 6. R(n, p) when p is unknown, the agent starts with a uniform prior over [0.4, 0.6] on p, and offers are drawn from an exponential distribution with
rate parameter ˛ = 2.

6. Comparison of mechanisms: sequential vs. simultaneous choice

So far, we have considered the loss from lack of information within a particular mechanism, a sequential choice mechanism
which introduces a stopping problem for the decision-maker. In this section we ask a different set of questions—namely, what
is the loss from using the sequential choice mechanism itself? This has been an important consideration for previous work on
secretary problems and on optimal stopping more generally. We will focus on the difference between the high information
case with sequential choice and what we call the simultaneous choice case, in which all offers appear simultaneously, and
the decision-maker can simply choose the best one. In continuous time, the simultaneous choice case is simply one in which
all the appearances are realized, and then at time 1, the decision-maker gets to choose the best out of all the realized options.
It can also be thought of as allowing the decision-maker to backtrack to previous choices.

First let us consider the continuous-time case. What is the expected value of participating in a simultaneous choice
process with arrival rate �? It is the sum over all k of the probability that exactly k offers appear and the expected value
given that exactly k offers appear. Appendix E derives these values for the case where offer values are distributed uniformly
in [0,1] and the case where offer values are distributed exponentially with rate parameter ˛. In the uniform case this expected
value is 1 − ((1 − e−�)/�) and for the exponential case it is (1/˛)[� + � (0, �) + log(�)] where � is the Euler constant and �
represents the (upper) incomplete gamma function.

We already know the expected values of the sequential choice high information processes for both distributions. Fig. 7
shows the differences in expected values between the simultaneous and sequential choice cases. Note that the difference
can be an order of magnitude higher in this case than it was between the high and low information variants with known p
(Fig. 4), revealing that the difference in expected value changes much more dramatically when going from one mechanism to
another than it does when going from the higher to lower information variant of the sequential choice process. However, the
difference can be of the same order of magnitude when going from high to low information in the case where p is unknown.
Also note that the shape of the graph is very similar to Fig. 4, and the greatest differences are achieved for similar values of
�.

6.1. Some more search processes

These results bring up some more questions, which we will pose and answer for the uniform distribution in order to
illustrate the differences between the mechanisms we have discussed and some other possible variants. Therefore, results
in this section are confined to cases where offer values are generated from a uniform [0,1] distribution.

The first question that arises is how the expected values of the processes we are considering compare to the expected
values in a comparable non-probabilistic case, in which the total number of appearances is fixed and the decision-maker
knows this number? Gilbert and Mosteller discuss the latter case and present a recurrence relation that is also easily derived
by setting p = 1 in Eq. (1):

Hn+1 = 1
2

(1 + H2
n)
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Fig. 7. Ratio of expected values of the simultaneous choice mechanism and the sequential choice mechanisms with high information as a function of � for
the continuous-time processes.

Fig. 8 shows the ratios of expected values in three different processes. The first is the high information continuous-time
process with arrival rate �. In the other two cases, let us postulate the existence of a Gamesmaster, who first stores all
the offers generated according to the Poisson process, and then informs the decision-maker of the total number of offers
that appeared. The Gamesmaster then presents the offers to the decision-maker, either sequentially or simultaneously.
Obviously, the expected value of the simultaneous process is highest, since it is the best decision that the job-seeker can
make retrospectively (or if she were omniscient with respect to what offers she would receive). The expected value of the
sequential process with a known number of offers is also bound to be significantly higher since it eliminates uncertainty
about the exact number of offers the decision-maker will receive. Fig. 8 shows the ratios of expected values of these three
processes. The continuous-time process has a substantially lower expected value than the sequential process with a known

Fig. 8. Ratios of expected values in three processes: the high information continuous-time process with Poisson arrival rate � (denoted “High”), and two
processes in which the number of offers are known beforehand after being generated by a Poisson distribution with parameter �. The decision-maker has
no recall and must solve a stopping problem in the sequential choice process (denoted “Seq”), but chooses among all realized offers in the simultaneous
choice process (denoted “Sim”).
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Fig. 9. Ratio of expected values in the high information probabilistic process (denoted “High” with probability p and n total possible offers) and a process
in which the number of offers is known beforehand and is equal to pn (denoted “Seq”).

number of offers for values of � below 10, but approaches it much more rapidly than either of the sequential mechanisms
approaches the simultaneous mechanism in terms of expected value. The dropoff in expected value between the continuous-
time and the sequential process with known n is particularly dramatic for very small �, indicating that knowing the exact
number of offers you will receive is much more important if you only expect to receive 1–3 offers.

Fig. 8 focuses on processes generated from an underlying process with Poisson offers arriving in continuous time, and
therefore we (as the experimental designers) possess a fundamental uncertainty about the number of offers arising in each
case. In contrast to this, Fig. 9 shows the difference in expected values between two sequential processes, one with a fixed
and known number of offers pn and the other one with n possible offers that each appear with probability p. While the
expected value ratios are substantially smaller when pn is smaller, this is mostly because of the large probability of getting
no offers. The tradeoff of possibly getting more offers is clearly not worth it in expectation, but much more so for lower
values of pn. An interesting question to ask in this case is, for example, whether it is better to have one offer for sure, or 10
possible offers, each with a 20 percent chance of appearing (the latter, by a hair: it has expected value 0.5183, as opposed to
0.5 for the former).

7. Conclusions

This paper is intended to highlight the importance of the information structure in search processes, particularly processes
that run over a fixed period of time, such as academic job markets. It is common practice in markets of this kind for employers
or job candidates not to keep the other side fully informed about the decisions they have made. For example, universities
will often not send rejections to candidates until they have completed their search, even if they were no longer seriously
considering a candidate much earlier in the process. In order to study the expected loss of participating in such a process
compared to a process in which both sides immediately make decisions and have to inform each other about those decisions,
we have introduced a stylized model of this process that analyzes it from a one-sided perspective. Our main result is that
the loss from participating in the low information process is not significant unless the decision-maker is not well informed
about her own “attractiveness,” measured by the probability of receiving an offer. This suggests that the costs to changing
the structure of markets that operate in the “low information” manner may not be worthwhile. If applicants are poorly
informed about their own attractiveness to employers, one could imagine mechanisms to improve signaling rather than
restructuring the market (of course, this assumes that employers, who participate in these processes repeatedly, can estimate
their attractiveness to employees well).

We solve for the expected utilities of participants under two particular distributions of offer values (uniform and expo-
nential) which provide general qualitative intuition. When participants are well informed of their own attractiveness, the
ratios of the low and high information games show a similar pattern of behavior for different expected numbers of offers
under both distributions. In both cases, the value of information initially increases (the ratio of expected values mentioned
above decreases) in the expected number of offers, up to a maximum in the 4–6 range, and then decreases rapidly. The
graphs of the ratio have the same shape for both distributions. On the other hand, when participants are not well informed
of their own attractiveness, the bounded nature of the uniform distribution changes this result significantly. In this case, as
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the expected number of total offers increases, the value of knowing you have been rejected can continue to increase for the
exponential distribution, because the decision-maker in the low information variant may “settle” for an offer that is not good
enough early, and the potential loss can continue increasing, unlike when offer values are drawn from the uniform distribu-
tion, in which case the best outcome is bounded. This suggests that the value of information may be highest in cases where
the decision-maker is unaware of his or her attractiveness, and the potential upside continues to increase meaningfully with
the expected number of offers.

The model we have introduced simplifies the problem along some dimensions. We do not incorporate two-sided strate-
gic considerations, which may become important. For example, less attractive employers may be more inclined to make
exploding offers than more attractive employers, and employees may decide to look for more job opportunities in response
to a series of rejections (in which case the importance of knowing you have been rejected may increase). In markets matching
graduates to jobs (MBAs to their first position, PhDs to their first academic positions, etc.) these factors tend to be less impor-
tant because there are norms about how long an applicant should have to decide on an offer, and the applicant often first
chooses a set of places to apply to, sends in applications and waits to hear back—there is a distinct hiring season, and not too
much opportunity to re-apply once the original decision on how many places to apply to has already been made. However,
these factors may need to be considered more explicitly in related markets. Further, the assumption that the probability p of
receiving an offer is independent of the value of the offer may be unrealistic for some markets. Future studies should focus
on these directions for extending our model.
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Appendix A. Low information expected value for n = 2

The four possible cases for the low information process when n = 2 can be analyzed as follows (where, as in Section 2.1
0 denotes non-appearance of an offer and 1 denotes appearance):

1. [0 0]: Occurs with probability (1 − p)2 and has value 0.
2. [0 1]: Occurs with probability (1 − p)p. The offer which appears is accepted with probability 1 − (1/2)(p/(2 − p)), and if

rejected, the utility received is 0. Therefore, the expected value is:

Pr
(

w >
p

2(2 − p)

)
E
[

w|w >
p

2(2 − p)

]

=
(

1 − p

2(2 − p)

)(
p

2(2 − p)
+ 1

2

(
1 − p

2(2 − p)

))

= 3p2 − 16p + 16

8(2 − p)2

3. [1 0]: Precisely the same argument as the previous case, with the same probability and expected value.
4. [1 1]: Occurs with probability p2. In this case, if the first offer to appear is rejected, the second offer is automatically going

to be selected. Therefore, the expected value will be the sum of the above expected value and the expected value of the
second given that the first is rejected (weighted by the probability of the first being rejected). The additional term is then:

(
1 − Pr

(
w >

1
2

p

2 − p

))(
1
2

)

= p

4(2 − p)

Adding this to the expected value for the previous case and simplifying gives:

p2 − 12p + 16

8(2 − p)2
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Then the total expected value is:

L2 = 2p(1 − p)
3p2 − 16p + 16

8(2 − p)2
+ p2 p2 − 12p + 16

8(2 − p)2

= −5p4 + 26p3 − 48p2 + 32p

8(2 − p)2

Appendix B. Derivation of dynamic programming equations

This section derives the equations for computing the expected value of participating in the high information search
process for general n and arbitrary p. In both cases, the base case is the expected value when n = 1, which is given by the
product of the probability of an offer appearing (p) and the expected value of the offer given that it does appear (0.5 when
offers are distributed uniformly in [0,1] and 1/˛ when offers are distributed exponentially with rate parameter ˛). Also, in
all cases when there are n possible offers remaining, the threshold for accepting an offer should be the expected value of the
search process with n − 1 possible offers. Let w denote the value of the offer:

Hn = p [Pr(w > Hn−1)E(w|w > Hn−1) + (1 − Pr(w > Hn−1))Hn−1] + (1 − p)Hn−1

B.1. Uniform [0,1] distribution

In this case,

Pr(w > Hn−1) = 1 − Hn−1

E(w|w > Hn−1) = Hn−1 + 1 − Hn−1

2
= 1 + Hn−1

2

This gives us:

Hn = p(1 − Hn−1)
1 + Hn−1

2
+ H2

n−1 + (1 − p)Hn−1

= p
1 + H2

n−1

2
+ (1 − p)Hn−1

and we know H1 = 0.5p.

B.2. Exponential distribution with rate parameter ˛

In this case,

Pr(w > Hn−1) =
∫ ∞

Hn−1

˛e−˛x dx

= e−˛Hn−1

E(w|w > Hn−1) =
∫ ∞

0

˛e−˛x(x + Hn−1) dx (using the memorylessness property)

= 1
˛

+ Hn−1

Therefore,

Hn = p
[

e−˛Hn−1

(
1
˛

+ Hn−1

)
+ (1 − e−˛Hn−1 )Hn−1

]
+ (1 − p)Hn−1

= p
[

1
˛

e−˛Hn−1 + Hn−1

]
+ (1 − p)Hn−1

= p
1
˛

e−˛Hn−1 + Hn−1

and we know H1 = p(1/˛).
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Appendix C. Proof of Theorem 1 (lower bound)

In this section we consider the high information cases in both discrete and continuous time. We show that, in addition
to being an approximation of the value of the process for large n, the values of the continuous-time processes function as a
lower bound for the values of discrete-time processes where pn = � for the case where offer values are distributed uniformly
in [0,1]. This is Theorem 1, as initially stated in Section 4.

Let us denote the value of the discrete-time process by H[i], where i is the number of offers that have appeared in the past,
and the continuation value of the continuous-time process at time t by v(t). We want to show that, when � = pn, H[0] > v(0).
We shall proceed by induction, showing that, for given p and n,

H[i] > v(i/n), ∀i < n

We know that

v(t) = 1 − t

2/� + 1 − t
= �(1 − t)

2 + �(1 − t)

For i = n − 1, we have H[n − 1] = 0.5p because the value is sampled from the uniform [0,1] distribution, and

v
(

n − 1
n

)
= �(1 − ((n − 1)/n))

2 + �(1 − ((n − 1)/n))

= �/n

2 + (�/n)

= p

2 + p
(because � = np)

<
1
2

p (because p ∈ [0, 1])

= H[n − 1]

Now, given that H[i] > v(i/n) we have to show that H[i − 1] > v((i − 1)/n) for integral i ≥ 1, which will complete the
proof. Let X = v(i/n). Then

H[i − 1] = p
(

1
2

(1 + H[i]2)
)

+ (1 − p)H[i]

>
1
2

p + 1
2

pX2 + (1 − p)X (inductive hypothesis)

= 1
2

p(1 + X2 − 2X) + pX + X − pX

= 1
2

p(1 − X)2 + X

In order to complete the induction step, it is therefore sufficient to show that

1
2

p(1 − X)2 > v
(

i − 1
n

)
− X

Simplifying the right hand side, we get

v
(

i − 1
n

)
− X = 2�n

(2n + �n − �i + �)(2n + �n − �i)

= 2�n

(2n + �n − �i)2 + �(2n + �n − �i)

<
2�n

(2n + �n − �i)2

= 1
2

p(1 − X)2

which completes the proof.

Conjecture 1. The value of the high information discrete-time process for specified p and n is greater than the value of the high
information continuous-time process with � = pn when offer values are drawn from an exponential distribution.
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This conjecture may not be provable by induction. While the base case is simple enough to prove, the problem is that the
difference between two “consecutive” instances of the continuous-time process is not always smaller than the differences
between the corresponding cases of n and n − 1 in the discrete-time case.

Appendix D. Expected values with unknown p

We can evaluate the expected value of the search process for a given true underlying p and n and a given initial prior
by describing the process as a Markov chain whose state consists of the number of past successes and failures (s and f,
respectively).

In the high information case, the reservation value of an agent is dependent on s, f, and n, while in the low information
case, the reservation value only depends on s and n. Suppressing the dependence on n, denote the reservation value in the
high information case by Rh(s, f ) and in the low information case by Rl(s). The reservation value at state s is the expected
value of the process if the agent does not accept an offer that appears. This is important because the appearance of the offer
is itself informative.

Let w be the value of an offer that does appear. Let Vs denote the value of state (s + 1, f ) and Vf denote the value of state
(s, f + 1). The value of state (s, f ) is 0 when s + f ≥ n.

Then in the high information case, the value of state (s, f ) is:

p(Pr(w > Rh(s, f ))E[w|w > Rh(s, f )] + Pr(w < Rh(s, f ))Vs) + (1 − p)Vf

In the low information case, the value of state (s, f ) is (the decision-making agent does not have access to f, but we use it
when evaluating the chain):

p(Pr(w > Rl(s))E[w|w > Rl(s)] + Pr(w < Rl(s))Vs) + (1 − p)Vf

The actual reservation values at any given state can be precomputed and stored in a table, since they are completely
independent of the value of the state. Then the Markov chain can be evaluated based on this table and the known true
probability p.

Appendix E. Expected values of simultaneous choice processes

For all continuous-time models, offers arrive as a Poisson process, and the probability of exactly k offers is given by
(e−��k/k!).

For offer values distributed uniformly in [0,1], if k choices are available, the expected value is (k/(k + 1)) (from the order
statistic of the uniform distribution). Then the expected value of the process is:

∞∑
i=0

Pr(isuccesses)
i

i + 1
=

∞∑
i=0

e−��ii

i!(i + 1)

= e−�

�

∞∑
i=0

[
(i + 1)�i+1

(i + 1)!
− �i+1

(i + 1)!

]

= 1 − 1 − e−�

�

The expression for the expected value for offers distributed exponentially with rate parameter ˛ is slightly more complex.
First note that the distribution function for the maximum of k such random variables is:

f (x) = k[1 − e−˛x]k−1˛e−˛x

Therefore, the expected value of the maximum is:

k˛

∫ ∞

0

[e−˛x(1 − e−˛x)k−1
x] dx = Hk

˛

where Hi represents the ith harmonic number.
Then the expected value is given by:

∞∑
i=0

Pr(i successes)
Hi

˛
= e−�

˛

∞∑
i=0

�iHi

i!

= 1
˛

[� + �(0, �) + log(�)]

where � is the Euler constant and � represents the (upper) incomplete gamma function.



122 S. Das, J.N. Tsitsiklis / Journal of Economic Behavior & Organization 74 (2010) 104–122

References

Borodin, A., El-Yaniv, R., 1998. Online Computation and Competitive Analysis. Cambridge University Press, Cambridge, UK.
Bruss, F.T., 1987. On an optimal selection problem by Cowan and Zabczyk. Journal of Applied Probability 24, 918–928.
Burdett, K., Wright, R., 1998. Two-sided search with nontransferable utility. Review of Economic Dynamics 1, 220–245.
Cowan, A., Zabczyk, J., 1978. An optimal selection problem associated with the Poisson process. Theory of Probability and its Applications 23, 584–592.
Das, S., Kamenica, E., 2005. Two-sided bandits and the dating market. In: Proceedings of the Nineteenth International Joint Conference on Artificial

Intelligence, pp. 947–952.
DeGroot, M.H., 1970. Optimal Statistical Decisions. McGraw-Hill, New York.
Ferguson, T.S., 1989. Who solved the secretary problem? Statistical Science 4, 282–289.
Gilbert, J., Mosteller, F., 1966. Recognizing the maximum of a sequence. Journal of the American Statistical Association 61, 35–73.
Kurushima, A., Ano, K., 2003. A note on the full-information Poisson arrival selection problem. Journal of Applied Probability 40, 1147–1154.
Mortensen, D.T., Pissarides, C.A., 1999. New Developments in Models of Search in the Labor Market. Handbook of Labor Economics, vol. 3B. Elsevier Science,

North-Holland, Amsterdam, pp. 2567–2627.
Roth, A.E., Sotomayor, M., 1990. Two-Sided Matching: A Study in Game-Theoretic Modeling and Analysis. Econometric Society Monograph Series. Cambridge

University Press, Cambridge, UK.
Stewart, T.J., 1981. The secretary problem with an unknown number of options. Operations Research 29, 130–145.


	When is it important to know you've been rejected? A search problem with probabilistic appearance of offers
	Introduction
	Related work
	Contributions

	The model
	An example where n=2
	The value of information


	The search process for general n
	The high information case
	The low information case
	The value of information

	Continuous-time variants
	The high information variant
	Uniform distribution
	Exponential distribution

	The low information variant
	Relation to the discrete-time process
	The value of information

	What if p is unknown?
	The high information case
	Using a Beta prior
	Using a discrete non-parametric prior

	The low information case
	Evaluating performance

	Comparison of mechanisms: sequential vs. simultaneous choice
	Some more search processes

	Conclusions
	Acknowledgments
	Low information expected value for n=2
	Derivation of dynamic programming equations
	Uniform [0,1] distribution
	Exponential distribution with rate parameter alpha

	Proof of Theorem 1 (lower bound)
	Expected values with unknown p
	Expected values of simultaneous choice processes
	References


