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Abstract

We study online learning where a decision maker interacts Nature with the objective of max-
imizing her long-term average reward subject to some sapgile average constraints. We define
the reward-in-hindsight as the highest reward the decisiaker could have achieved, while sat-
isfying the constraints, had she known Nature’s choiceslimace. We show that in general the
reward-in-hindsight i:iot attainable. The convex hull of the reward-in-hindsightdtion is, how-
ever, attainable. For the important case of a single canstitae convex hull turns out to be the
highest attainable function. Using a calibrated forecgstule, we provide an explicit strategy
that attains this convex hull. We also measure the perfocmar heuristic methods based on
non-calibrated forecasters in experiments involving a @BWer management problem.

Keywords: online learning, calibration, regret minimization, apgcbability

1. Introduction

We consider a repeated game from the viewpoint of a decision maker (flaygho plays against
Nature (player P2). The opponent (Nature) is “arbitrary” in the seinaeplayer P1 has no pre-
diction, statistical or strategic, of the opponent’s choice of actions. Thimgevas considered
by Hannan (1957), in the context of repeated matrix games. Hannanungddhe Bayes utility
with respect to the current empirical distribution of the opponent’s actems, performance goal
for adaptive play. This quantity, defined as the highest average aeWwar player P1 could have
achieved, in hindsight, by playing some fixed action against the obsettied aequence of player
P2. Player P1'segretis defined as the difference between the highest average rewantdsight
that player P1 could have hypothetically achieved, and the actual awexagrd obtained by player
P1. It was established in Hannan (1957) that there exist strategieg wdgret converges to zero as
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MANNOR, TSITSIKLIS AND YU

the number of stages increases, even in the absence of any prior Egevale the strategy of player
P2. For recent advances on online learning, see Cesa-Bianchugagdil(2006).

In this paper we consider regret minimization under sample-path constrhivasis, in addition
to maximizing the average reward, or more precisely, minimizing the regret, tigalemaker has
some side constraints that need to be satisfied on the average. In parfamuésery joint action
of the players, there is an additional penalty vector that is accumulated lietison maker. The
decision maker has a predefined set in the space of penalty vector$, wwpresents the accept-
able tradeoffs between the different components of the penalty vectoimportant special case
arises when the decision maker wishes to keep some constrained rdsglovea certain threshold.
Consider, for example, a wireless communication system where the decisken adjust the
transmission power to improve the probability that a message is receiveesstudty. Of course,
the decision maker does not know a priori how much power will be neetiesidepends on the
behavior of other users, the channel conditions, etc.). Still, a decisioarmsalksually interested in
both the rate of successful transmissions, and in the average povgeingption. In an often consid-
ered variation of this problem, the decision maker wishes to maximize the trangmriatowhile
keeping the average power consumption below some predefined thregYmlafer the reader to
Mannor and Shimkin (2004) and references therein for a discussionrstrained average cost
stochastic games and to Altman (1999) for constrained Markov decisibiepns. We note that the
reward and the penalty are not treated the same; otherwise they coulddeveombined into a
single scalar value, resulting in a much simpler problem.

The paper is organized as follows. In Section 2, we present formally abie Imodel, and
provide a result that relates attainability with the value of the game. In Sectiare rovide
an example where the reward-in-hindsight cannot be attained. In ligthisohegative result, in
Section 4 we define the closed convex hull of the reward-in-hindsigtitshow that it is attainable.
Furthermore, in Section 5, we show that when there is a single constraints tthie maximal
attainable objective. In Section 6, we provide a simple strategy, basedibratsd forecasting,
that attains the closed convex hull. Section 7 presents heuristic algorithimsddfzom an online
forecaster, while incorporating strictly enforced constraints. The agipit of the algorithms of
Section 7 to a power management domain is presented in Section 8. We finallydmm Section
9 with some open questions and directions for future research.

2. Problem Definition

We consider a repeated game against Nature, in which a decision makeotriesximize her
reward, while satisfying some constraints on certain time-averages. Teelying stage game is
a game with two players: P1 (the decision maker of interest) and P2 (wheseeyis Nature and is
assumed arbitrary). For our purposes, we only need to define reaaddconstraints for P1.

A constrained game with respect to a $ds defined by a tupl¢A,B,R C, T) where:

1. Ais the set of actions of P1; we will assurhe= {1,2,...,|A|}.
2. Bis the set of actions of P2; we will assufBe= {1,2,...,|B|}.

3. Ris an|A| x |B| matrix where the entrfR(a,b) denotes the expected reward obtained by
P1, when P1 plays actiome A and P2 actiorb € B. The actual rewards obtained at each
play of actionsa andb are assumed to be IID random variables, with finite second moments,
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distributed according to a probability lawdfr|a,b). Furthermore, the reward streams for
different pairs(a, b) are statistically independent.

4. Cis an|A| x |B| matrix, where the entr¢(a,b) denotes the expectetidimensional penalty
vector incurred by P1, when P1 plays actma A and P2 actiorb € B. The actual penalty
vectors obtained at each play of acti@asndb are assumed to be IID random variables, with
finite second moments, distributed according to a probability lay(-Pa, b). Furthermore,
the penalty vector streams for different p&iesb) are statistically independent.

5. T is a set inRY within which we wish the average of the penalty vectors to lie. We assume
thatT is convex and closed. Since the entrie€afre bounded, we will also assume, without
loss of generality, thal is bounded.

The game is played in stages. At each stadl and P2 simultaneously choose actians A
andb; € B, respectively. Player P1 obtains a rewardistributed according to Rf- | a;, b;), and a
penaltyc, distributed according to B¢ | &, by). We define P1’s average reward by titne be

irrv (1)

ft =

s

and P1's average penalty vector by tine be

R .
P ?

A strategyfor P1 (resp. P2) is a mapping from the set of all possible past histortes &et of
mixed actions oA (resp.B), which prescribes the (mixed) action of that player at each tirae a
function of the history in the firdt— 1 stages. Loosely, P1's goal is to maximize the average reward
while having the average penalty vector converge tpathwise:

limsupdist(¢,T) — 0, a.s, 3

t—o0

where dist-) is the point-to-set Euclidean distance, that is, (igt) = infyct ||y — X||2, and the
probability measure is the one induced by the policy of P1, the policy of RRthemrandomness in
the rewards and penalties.

We will often consider the important special case wheee {c € RY: ¢ < ¢y}, for some given
co € RY, with the inequality interpreted component-wise. We simply call such a gamestrained
game with respect to (a vectax). For that special case, the requirement (3) is equivalent to:

limsupé < cy, a.s.

t—oo

For a seD, we will use the notatiod\(D) to denote the set of all probability measuredorif
D is finite, we will identify A(D) with the set of probability vectors of the same sizédadf D is a
subset of Euclidean space, we will assume that it is endowed with the @diedt!.
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2.1 Reward-in-hindsight
We definegs € A(B) as the empirical distribution of P2’s actions by tilé¢hat is,

r—wp

t
z 1{b[ b} beB. (4)

If P1 knew in advance thai Will equal g, and if P1 were restricted to using a fixed action, then
P1 would pick an optimal response (generally a mixed action) to the mixed aptsumject to the
constraints specified b. In particular, P1 would solve the convex progfam

max % p(a)a(b)R(a,b), ()

PEA(A) ’
% p(a)q(b)C(a,b) e T.

By playing ap that solves this convex program, P1 would meet the constraints (up to sroalbflu
tions that are a result of the randomness and the finitenéysamid would obtain the maximal aver-
age reward. We are thus led to define P1’s reward-in-hindsight, wheathemote by * : A(B) — R,
as the optimal objective value in the program (5), as a functiap ®he functiorr* is often referred
to as theBayes envelope

For the special case of a constrained game with respect to a \@ctilie convex constraint
Y apP(@)a(b)C(a,b) € T is replaced by 5, p(a)q(b)C(a, b) < ¢o (the inequality is to be interpreted
component-wise).

The following examples show some of the properties of the Bayes envelypesider a X 2
constrained game with respect to a scatgspecified by:

where each entry (pair) corresponds(R(a,b),C(a,b)) for a pair of actionsa andb. (Herea
andb correspond to a choice of row and column, respectively.) Supposéhitssy) = 1. In that
case the constraint does not play a part in the problem, and we are deiling version of the
matching pennies game. So, if we identifywith the frequency of the first action, we have that
r(q) = maxq,1—q). Suppose now thaty = 1/2. In this case, it is not difficult to show that
r<(q) = 1/2, since P1 cannot take advantage of any deviation fjoml1/2 while satisfying the
constraint.

The next example involves a game where P2’s action does not affeacrbeaints; such games
are further discussed in Section 4.1. Considera2constrained game with respect to a scapar
specified by:

1. If T is a polyhedron (specified by finitely many linear inequalities), then the ogtroizproblem is a linear program.
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where each entry (pair) correspondgRia, b),C(a, b)) for a pair of actions andb. We identify

g with the frequency of the second action of P2 as before. Suppos¢hfitsiy = 1. As before,
the constraint has no effect antiq) = max(g,1— q). Suppose now thaiy = 1/2. It is not hard

to show that in this case’(q) = max(q,1/2). Finally, if co = 0, P1 is forced to choose the second
action; in this case,"(q) = g. The monotonicity of *(q) in ¢y is to be expected since the lonwey

is, the more stringent the constraint in Eq. (5).

2.2 The Objective

Formally, our goal is to attain a functianin the sense of the following definition. Naturally, the
higher the functiom, the better.

Definition 1 A function r: A(B) — R is attainableby P1 in a constrained game with respect to a
set T if there exists a strategyof P1 such that for every strategyof P2:

(i) liminfi_e(ft —r(G)) >0, a.s,and
(i) limsup_dist(&,T) — 0, a.s,
where the almost sure convergence is with respect to the probabilityuregiasluced by andp.

In constrained games with respect to a vectowe can replace (i) in the definition with

limsupé <cg, a.s.

t—o0

2.3 The Value of the Game

In this section, we consider the attainability of a constant funatiof(B) — R, that is,r(q) = a,
for all g. We will establish that attainability is equivalent to havimg< v, where v is a naturally
defined “value of the constrained game.”

We first introduce the assumption that P1 is always able to satisfy the dahstra

Assumption 1 For every mixed action g A(B) of P2, there exists a mixed actionepA(A) of P1,
such that:

% p(a)g(b)C(a,b) € T. (6)

For constrained games with respect to a vedgrthe condition (6) reduces to the inequality
S anP(@)a(b)C(a,b) < co.

If Assumption 1 is not satisfied, then P2 can choogeach that for every (mixed) action of P1,
the constraint is violated in expectation. By repeatedly playingghi®l's average penalty vector
will be outsideT, and the objectives of P1 will be impossible to meet.

The following result deals with the attainability of the value, v, of an averageurd repeated
constrained game, defined by

v=inf sup p(a)q(b)R(a,b). (7)
9€A(B) peA(A):3 ap P(@)a(b)C(ab)eT &

The existence of a strategy for P1 that attains the value was proven in St{irBki) in the broader
context of stochastic games.
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Proposition 2 Suppose that Assumption 1 holds. Then,

(i) P1 has a strategy that guarantees that the constant functign= v is attained with respect
toT.

(i) For every number’ > v there exist® > 0 such that P2 has a strategy that guarantees that
eitherliminfi_»ft < V' — 0 or limsup_,, dist(&, T) > &, almost surely. (In particular, the
constant functiow’ is not attainable.)

Proof The proof relies on Blackwell's approachability theory (Blackwell, 1956&e construct a
nested family of convex sets ik4*+* defined byS, = {(r,c) e RxRY:r > a,c € T}. Obviously,

S € §fora > B. Consider the vector-valued gameRf*! associated with the constrained game.
In this game, P1’s vector-valued payoff at titrie thed + 1 dimensional vectam, = (r¢,c;) and P1’s
average vector-valued payoffiig = (i, & ). SinceS, is convex, it follows from approachability the-
ory for convex sets (Blackwell, 1956a) that e&&his either approachatfler excludablé. If &, is
approachable, the®; is approachable for evef/< a. We define ¥ = sup{p | S is approachable

It follows thatS,, is approachable (as the limit of approachable sets; see Spinat, 200B)agky
well’'s theorem, for every) € A(B), an approachable convex set must intersect the set of feasible
payoff vectors when P2 plays Using this fact, it is easily shown thag equals v, as defined by
Eq. (7), and part (i) follows. Part (ii) follows because a convex daichvis not approachable is
excludable. |

Note that part (ii) of the proposition implies that, essentially, v is the highesageaeward P1
can attain while satisfying the constraints, if P2 plays an adversarial str&ggomparing Eq. (7)
with Eq. (5), we see that infqr*(q). On the other hand, if P2 does not play adversarially, P1 may
be able to do better, perhaps attainirigqq). Our subsequent results address the question whether
this is indeed the case.

Remark 3 In general, the infimum and supremum in ¢@nnotbe interchanged. This is because
the set of feasible p in the inner maximization depends on the value of gowaré can be shown
that the set of p,q) pairs that satisfy the constrairff,, p(a)q(b)C(a,b) € T is not necessarily
COnvex.

2. A setX is approachable if there exists a strategy for the agent such that fyreeved, there exists an integt such
that, for every opponent strategy:

n
Pr(dist(i Zm,X) > ¢ for somen > N) <E.
i=

3. A setX is excludable if there exists a strategy for the opponent such that thistedx 0 such that for everg > 0,
there exists an integét such that, for every agent strategy:

ln
Pr| dist| = X | >dforalln>N| >1—¢.
( (”i;m >_ - )
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2.4 Related Works

Notwithstanding the apparent similarity, the problem that we consider is nioistance of online
convex optimization (Zinkevich, 2003; Hazan and Megiddo, 2007). Iratier setting, there is a
convex feasible domaiff ¢ R", and an arbitrary sequence of convex functidns¥ — R. At
every sted, the decision maker pickg € F based on the past history, without knowledge of the
future functionsf;, and with the objective of minimizing the regret

T T
Zlft(xt)—min ft(y)
t= YT (=
An analogy with our setting might be possible, by identifyi@nd f; with a; andb, respectively,
and by somehow relating the feasibility constraints describeé hp our constraints. However,
this attempt seems to run into some fundamental obstacles. In particular, iettog,sfeasibility
is affected by the opponent’s actions, whereas in online convex optimizétierieasible domain
F is fixed for all time steps. For this reason, we do not see a way to redupedablem of online
learning with constraints to an online convex optimization problem, and givereshdts below, it
is unlikely that such a reduction is possible.

3. Reward-in-Hindsight Is Not Attainable

As it turns out, the reward-in-hindsight cannot be attained in generas. iJkemonstrated by the
following simple 2x 2 matrix game, with just a single constraint.
Consider a % 2 constrained game specified by:

(1,-1) (1,1)
< (07_1) (_17_1) )’

where each entry (pair) correspondsRia, b),C(a,b)) for a pair of actions andb. At a typical
stage, P1 chooses a row, and P2 chooses a column. Vg s€d. Letq denote the frequency
with which P2 chooses the second column. The reward of the first row @besitthe reward of
the second one, so if the constraint can be satisfied, P1 would prefeodsethe first row. This
can be done as long as<0q < 1/2, in which case*(q) = 1. For 1/2 < q< 1, player P1 needs
to optimize the reward subject to the constraint. Given a speg;ifil will try to choose a mixed
action that satisfies the constraint (on the average) while maximizing thedrelvase leta denote
the frequency of choosing the first row, we see that the reward araltpeare:

r(a,q) =a—(1-a)g, c(a,q)=2aq-1,

respectively. We observe that for eveyyr (o) andc(a) are monotonically increasing functions of
a. As a result, P1 will choose the maxinathat satisfieg(a) < 0, which isa(qg) = 1/2q, and the
optimal reward is 12+ 1/2q— g. We conclude that the reward-in-hindsight is:

1, if0<gq<1/2,
rr@=4 1 .

= <g<1.

2+2q q, ifl/2<q<1

The graph of *(q) is the solid line in Figure 1.
We now claim that P2 can make sure that P1 does not attain
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2x2 R-C game

0.8 J

0.4 g

02t 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

q

Figure 1: The reward-in-hindsight of the constrained game. Hé(q) is the solid line, and the
dotted line connects the two extreme valuesgfer 0 andq = 1.

Proposition 4 If cg = 0, then there exists a strategy for P2 such thatannot be attained.

Proof Suppose that the opponent, P2, plays according to the following stréégplize a counter
k= 1. Letd; be the empirical frequency with which P1 choosesfitst row during the first time

steps. Similarly, lety"be the empirical frequency with which P2 choosesdteondcolumn during
the firstt time steps.

1. Whilek=1 or@;_1 > 3/4, P2 chooses the second column, &iiglincremented by 1.

2. For the nexk times, P2 chooses the first column. Then, reset the colntey and go back
to Step 1.

We now show that if

limsupé <0, a.s,

t—oo

then a strict inequality holds for the regret:
Ii{ninf(ﬂ —r*(G)) <0, as.

Suppose that Step 2 is entered only a finite number of times. Then, after siteériie, P2 keeps
choosing the second column, agcconverges to 1. For P1 to satisfy the constraint limsyg; <
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0, we must have limi; < 1/2. But then, the conditiofi;_1 > 3/4 will be eventually violated. This
shows that Step 2 is entered an infinite number of times. In particular, thisterdiite sequences

ti andt/ such that; <t/ <tjyq and (i) ift; <t <t/, P2 chooses the second column (Step 1); (ii) if
t! <t <ty1, P2 chooses the first column (Step 2).

Note that Steps 1 and 2 last for an equal number of time steps. Thus, eé;havl/2, and
r*(6;) = 1, for alli. Furthermoretj .1 —t/ <t/, ort/ >t,1/2. Note thaﬁt{ < 3/4, because otherwise
P2 would still be in Step 1 at timg+ 1. Thus, during the firsi 1 time steps, P1 has played the
first row at most

3 /4+ (ti1—t) =t 1 —t/4< Tt 1/8

times. Due to the values of the reward matrix, we have limsyp < limsup_,,fy. In particular,
we havery,, <7/8, and liminf_.(ft —r*(6)) <7/8—1<0. [

Intuitively, the strategy that was described above allows P2 to force P1ue,hack and forth,
between the extreme pointg£ 0 andq = 1) that are linked by the dotted line in Figure 1. Since
r (q) is not convex, and since the dotted line is strictly belowq) for g = 1/2, this strategy
precludes P1 from attaining (q). We note that the choice @ is critical in this example. With
other choices o, (for examplegcy = —1), the reward-in-hindsight may be attainable.

4. Attainability of the Convex Hull

Since the reward-in-hindsight is not attainable in general, we have to settke rmore modest
objective. More specifically, we are interested in functidnsA(B) — R that are attainable with
respect to a given constraint set As a target we suggest the closed convex hull of the reward-in-
hindsight,r*. After defining it, we prove that it is indeed attainable. In the next sectienyill also
show that it is the highest possible attainable function, when there is a songéaint.

Given a functionf : X — R, over a convex domaiiX, its closed convex hull the function
whose epigraph is

cony({(x.r):r=f(x)}),

where conyD) is the convex hull, an® is the closure of a s&®. We denote the closed convex hull
of r* by r€.

We will make use of the following facts. Forming the convex hull and then theuckoresults
in a larger epigraph, hence a smaller function. In particufdq) < r*(q), for all g. Furthermore,
the closed convex hull is guaranteed to be continuou&(@&). (This would not be true if we had
considered the convex hull, without forming its closure.) Finally, for exgrythe interior ofA(B),
we have:

k

re = inf air* (g o
(q) q17q27'qukeA(B),Gl,,,.qui; I (ql) ( )

st. iaiqi(b):q(b), Vb € B,

|
>0, i=12...k
k

Zdi =1
i=
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wherek can be taken equal {8| + 2 by Caratheodory’s Theorem.

The following result is proved using Blackwell's approachability theotye Technique is simi-
lar to that used in other no-regret proofs (e.g., Blackwell, 1956b; Miaand Shimkin, 2003), and
is based on the convexity of a target set in an appropriately defined.spac

Theorem 5 Let Assumption 1 hold for a given convex set RY. Then F is attainable with respect
toT.

Proof Define the following game with vector-valued payoffs, where the paywéfeng toR x
RY x A(B) (a |B| 4+ d + 1 dimensional space, which we denote #). Suppose that P1 plays,
P2 playd, P1 obtains an immediate rewardrpfand an immediate penalty vector@f Then, the
vector-valued payoff obtained by P1 is

m = (rt7ctve(bt))a

wheree(b) is a vector of zeroes, except for a 1 in ith component. It follows that the average
vector-valued reward at timewhich we define amy™= %th:lmr, satisfiesny = (1, &, G ), where
fi, &, anddg; were defined in Egs. (1), (2), and (4), respectively. Considerdtse s

Br={(r.c,q) e M :r>r%q)}, B, ={(r,c,q)e M :ceT},

and letB = By N B,. Note thatB is a convex set. We claim th& is approachable. Lean:
A(A) x A(B) — M describe the expected payoff in a single stage game, when P1 and P& choo
actionsp andq, respectively. That is,

m(p.0) = (3 P@)AbR@D). 5 plaja(bIC(ab. a).

Using the sufficient condition for approachability of convex sets (Bladkwt956a), it suffices to
show that for every there exists @ such thatn(p,q) € B. Fixg e A(B). By Assumption 1, the con-
strainty 5, p(a)q(b)C(a,b) € T is feasible, which implies that the program (5) has an optimal solu-
tion p*. It follows thatm(p*,q) € B. We now claim that a strategy that approactesso attaing®

in the sense of Definition 1. Indeed, sinBeC B, we have that Rd(ct, T) > € infinitely often) =0

for everye > 0. SinceB C B; and using the continuity of, we obtain liminf(f; —r¢(¢)) > 0. &

We note that Theorem 5 is not constructive. Indeed, a strategy thedaaghesB, based on a
naive implementation Blackwell's approachability theory, requires an effigisocedure for com-
puting the closest point i®,and therefore a computationally efficient descriptiomBpfvhich may
not be available (we do not know whethBican be described efficiently). This motivates the devel-
opment of the calibration based scheme in Section 6.

Remark 6 Convergence rate results also follow from general approachability theony are gen-
erally of the order of t1/3; see Mertens et al. (1994). It may be possible, perhaps, to impipwe u
this rate and obtaint/2, which is the best possible convergence rate for the unconstrained case

Remark 7 For every ge A(B), we have t(q) > v, which implies that%(q) > v. Thus, attaining ¥
guarantees an average reward at least as high as the value of the game
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4.1 Degenerate Cases

In this section, we consider the degenerate cases where the penaltyivaffiected by only one of
the players. We start with the case where P1 alone affects the penalty, @eatahen discuss the
case where P2 alone affects the penalty vector.

If P1 alone affects the penalty vector, that iC{f,b) = C(a,b’) for allac Aandb,b’ € B, then
r (q) is convex. Indeed, in this case, Eq. (5) becomes (writife) for C(a,b))

r(q)::pEA g?gx ET};p a,b),

which is the maximum of a collection of linear functionsgpfone function for each feasibf®, and
is therefore convex.

If P2 alone affects the penalty vector, that is;(i#,b) = c(a,b) for allb € Banda,a € A, then
Assumption 1 implies that the constraint is always satisfied. Therefore,

:max%pa a,b),

peA(A

which is again a maximum of linear functions, hence convex.
We conclude that in both degenerate cases, if Assumption 1 holds, theswelrin-hindsight
is attainable.

5. Tightness of the Convex Hull

We now show thatC is the maximal attainable function, for the case of a single constraint.

Theorem 8 Suppose that & 1, T is of the form T= {c | c < ¢}, where g is a given scalar, and
that Assumption 1 is satisfied. LietA(B) — R be a continuous attainable function with respect to
the scalar . Then, F(q) > f(q) for all g € A(B).

Proof The proof is constructive, as it provides a concrete strategy for Rpthaents P1 from
attainingr; unlessr®(q) > f(q) for everyqg. Assume, in order to derive a contradiction, that there
exists some that violates the theorem. Sincafidr® are continuous, there exists sonfec A(B)

and some > 0 such that (q) > r°(q) + ¢ for all g in an open neighborhood of. In particular,g®

can be taken to lie in the interior & B). Using Eq. (8), it follows that there exigt,...,q¢ € A(B)
anday, ..., ok (with k < |B| + 2, due to Caratheodory’s Theorem) such that

k
ok c 0y L & =0y E.
i;mrm)érM)+2<NQ) >
K . 0 k
aiq'(b) =qg°(b), VbeB; a=1; a; >0, Vi.
B octt) =0 dot v

Let T be a large positive integer (s to be chosen large enough to ensure that the events of
interest occur with high probability, etc.). We will show that if P2 plays egcfor [a;T] time
steps, in an appropriate order, then either P1 does not satisfy theaiohatong the way or;"<

F(Gr) —€/2.
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Figure 2: In either part (a) or (b) of the figure, we fix some A(B). The triangle is the set of
possible reward-cost pairs, as we varpver the sef\(A). Then, for a given value in
the upper bound on the cost (cf. 10), the shaded region is the setaritkeost pairs that
also satisfy the cost constraint.

We letd', i = 1,...,k, be fixed, as above, and define a functipnRY — RU { —o0} as:

fi(c)= max ¥ p(a)q (b)R(a,b), )
PEA(A) &
subject to %p(a)qi(b)C(a, b) <c, (10)

where the maximum over an empty set is defined to egual Observe that the feasible set (and
hence, optimal value) of the above linear program dependsieigure 2 illustrates how the feasible
sets to (10) may depend on the valueoBy viewing Egs. (9)-(10) as a parametric linear program,
with a varying right-hand side parameterwe see thatf(c) is piecewise linear, concave, and
nondecreasing i (Bertsimas and Tsitsiklis, 1997). Furthermoffg(co) = r*(q'). Letaf" be

the right directional derivative of; at c = ¢y, and note thaﬁfi+ > 0. From now on, we assume
that theq' have been ordered so that the sequedite is nonincreasing (e.g., as in Figure 3).
To visualize the ordering that we have introduced, consider the setssflppe pairs(r,c), given

a fixedq. That is, consider the sél(q N ={(r,c):IpeA(A)s.t.r = > ab P( a)q (b)R(a,b), c =
SabP(@)d (b)C(a,b)}. The seM(d) is the image of the simplex under a linear transformation, and
is therefore a polytope, as illustrated by the triangular areas in Figuree2stidtegy of P2 is to first
pIayq such that thep that maximizes the reward (Eq. 9) satisfies Eq. (10) with equality. (Such a
d results in a seM(q) like the one shown in Figure 2(b).) After all thegeare played, P2 plays
thoseq' for which thep that maximizes the reward (Eq. 9) satisfies Eq. (10) with strict inequality,
anddf” = 0. (Such & results in a seWl(q') like the one shown in Figure 2(a).)

Suppose that P1 knows the sequegte. .,g¢ (ordered as above) in advance, and that P2 fol-
lows the strategy described earlier. We assume thatlarge enough so that we can ignore the
effects of dealing with a finite sample. Lgt be the average of the mixed actions chosen by P1
while player P2 playsi. We introduce the constraints

i“i % p'(a)d (b)C(a,b) < %iai, (=1,2,....k
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f(©)
H\“

Figure 3: An example of functionf ordered according taf;".

These constraints must be satisfied in order to guarantee;thas hegligible probability of sub-
stantially exceedingyg, at the “switching” times from one mixed action to another. If P1 exploits
the knowledge of P2’s strategy to maximize her average reward attiithe resulting expected
average reward at tinrewill be the optimal value of the objective function in the following linear
programming problem:

k . .
max Z\ai%p'(a)q'(b)R(a,b)

pl7p27"'7pki
¢ , , ¢
stS o § p(adbCab) <coy ai, ¢=1,2,... Kk (11)
2% 2"
pleAA), (=12 k

Of course, given the value ¢f,;, p (a)q‘(b)C(a, b), to be denoted by;, player P1 should choose
a p' that maximizes rewards, resulting i, p'(2)q' (b)R(a, b) = fi(ci). Thus, the above problem
can be rewritten as

max ) qfi(ci)
C1,...,Ck

¢ ¢
st.Yac<cda, (=12...k (12)
2,650

We claim that lettings; = cp, for all i, is an optimal solution to the problem (12). This will then
imply that the optimal value of the objective function for the problem (13iis; o fi(co), which
equalsy¥_; air*(q'), which in turn, is bounded above by®) —&/2. Thusyr; < 7(q°) —&/248(1),
where the ternd(t) incorporates the effects due to the randomness in the process. Byimgpea
this argument with ever increasing valuestofso that the stochastic terd{t) is averaged out
and becomes negligible), we obtain that the evert 7(q°) — &/2 will occur infinitely often, and
thereforer’is not attainable.

It remains to establish the claimed optimality @,...,co). Suppose thafci,...,C) #
(Co,...,Co) is an optimal solution of the problem (12). @f < ¢p for all i, the monotonicity of
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the f; implies that(co, .. .,Cp) is also an optimal solution. Otherwise, llebe the smallest index for
whichT;j > co. If c)fj+ = 0 (as in the case shown in Figure 2(b)) we have fh@) is maximized at
co for alli > j and(cy,...,Cp) is optimal. Suppose th.@tfj+ > 0. In order for the constraint (12)
to be satisfied, there must exist some index j such thafcs < ¢p. Let us perturb this solution
by settingd = min{as(co —Cs), 0 (C; — Cp) }, increasingss to & = Ts+ 6/as, and decreasing; to

€j =Cj;—0/aj. This new solution is clearly feasible. Let; = limgo(fs(co) — fs(Co—€)) /€, which

is the left derivative offs at cy. Using the concavity ofs, and the earlier introduced ordering, we
havedfy > ofs > afj+. Observe that

fs(Cs) = fs(Ts) +0f5 &/as,
fj(€j) = fj(cj) —of;"8/aj,

so thatosfs(&s) +a fj(€j) > asfs(Cs) +a; fj(Tj). Therefore, the new solution must also be optimal,
but has fewer components that differ frag By repeating this process, we eventually conclude
that(co,...,Cp) is an optimal solution of (12). [ ]

To the best of our knowledge, this is the first tightness result for a paédioce envelope (the
reward-in-hindsight) different than the Bayes envelope, for redegdees. On the other hand, we
note that our proof relies crucially on the assumption of a single constcaiatl(, which allows us
to order thed f;*.

6. Attaining the Convex Hull Using Calibrated Forecasts

In this section, we consider a specific strategy that attains the convex hudlptbviding a con-
structive proof for Theorem 5. The strategy is based on forecasfisgaetion, and playing a best
response (in the sense of Eq. 5) against the forecast. The quality @sthiéing strategy depends,
of course, on the quality of the forecasts; it is well known ttedibratedforecasts lead to no-regret
strategies in standard repeated matrix games. See Foster and Vohragi@%7esa-Bianchi and
Lugosi (2006) for a discussion of calibration and its implications in learningames. In this
section we consider the consequences of calibrated play for repeatexd gvith constraints.

We start with a formal definition of calibrated forecasts and calibrated atad/then show that
calibrated play attains® in the sense of Definition 1.

A forecasting scheme specifies at each staggrobabilistic forecagi, € A(B) of P2’s action
bx. More precisely a (randomized) forecasting scheme is a sequence sftha@ssociate with
each possible historl_; during the firstk — 1 stages a probability measung over A(B). The
forecastg € A(B) is then selected at random according to the distribytior.et us clarify that for
the purposes of this section, the history is defined to include the realizefbpasasts.

We shall use the following definition of calibrated forecasts.

Definition 9 (Calibrated forecasts) A forecasting scheme ¢alibratedif for every (Borel measur-
able) set QC A(B) and every strategy of P1 and P2

1
tlmf z 1{qT € Q}(e(b'[) - qT) - 07 a.s, (13)
=1
where €b) is a vector of zeroes, except for a 1 in its bth component.
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Calibrated forecasts, as defined above, have been introduced intdtfysong in Foster and Vohra
(1997), and several algorithms have been devised to achieve ther@dsaeBianchi and Lugosi,
2006, and references therein). These algorithms typically start witlctioet that are restricted to
a finite grid, and gradually increase the number of grid points.

The proposed strategy is to let P1 play a best response against R2adted play while still
satisfying the constraints (in expectation, for the single stage game). Fgormeallgt:

p(a = argmax p(a)a(b)R(a,b)

PEA(A) &

s.t. %p e,

where in the case of a non-unique maximum we assumeptlig} is uniquely determined by some
tie-breaking rule; this is easily done, while keepip{-) a measurable function. The strategy is
to play pr = p*(qt), whereq; is a calibrated forecast of P2’s actichsiVe call such a strategy a
calibrated strategy

The following theorem states that a calibrated strategy attains the convex hull.

Theorem 10 Let Assumption 1 hold, and suppose that P1 uses a calibrated stratbgn, ¥ is
attained with respectto T.

Proof Fix € > 0. We need to show that by playing the calibrated strategy, P1 obtains i ifif —
r¢(6)) > 0 and limsup_, dist(&, T) < 0, almost surely.

Fix somee > 0. Consider a partition of the simpleXB) to finitely many measurable sets
Q1,Q2,...,Q/ such thatg,d € Q; implies that||g—d|| < € and||p*(g) — p*(q)| < €. (Such a
partition exists by the compactness&fB) and A(A). The measurability of the set; can be
guaranteed because the mappiri@) is measurable.) For eachlet us fix a representative element
q € Qi and letp' = p*(d).

Since we have a calibrated forecast, Eq. (13) holds for e@eryl <i < ¢. Definel(i) =
st_1 Y € Qi} and assume without loss of generality thgii) > O for larget (otherwise, eliminate
thosei for which'¢(i) = O for allt, and renumber th€;). To simplify the presentation, we assume
that for everyi, and for large enough we havel'((i) > €t. (If for somei, andt this condition is
violated, the contribution of such arn the expressions that follow will b®(g).)

By a law of large numbers for martingales, we have

1 t
tlm —IZ (ar, by a.s.

By definition, we have

""\I—‘

¢ Fe(i) 1 ¢
Z (ao,b) =Y t ;c(a, b)r(i)gll{qT € Q}1{ar = a}1{b; = b}.

i t )

Observe that whenever € Q;, we have|| p; — p'|| < &, wherep, = p*(q;) andp' = p*(d) because
of the way the set®; were constructed. By martingale convergence, the frequency with vehich

4. When the forecasf is mixed,q; is the realization of the mixed rule.
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will be selected whenevey, € Q; andb; = b, will be approximatelyp' (a). Hence, for alb,

imsup zl{qreQ.}l{aT—a}l{br b} - pl(a rljl{qTeQi}l{brzb} <,

t—oo

almost surely. By the calibration property (13) fr= Q;, and the fact that whenevarq € Q;, we
have||g—d/|| < &, we obtain

1 & i
limsup|—— Y 1{¢: € Qi}1{b; =b} - (b)| <k, a.s
o0 p rt(|) -[Z]_ {qT QI} {bT } q ( ) —
By combining the above bounds, we obtain
tlm %C (b)| < 2, a.s. (14)

Note that the sum over indéxin Eq. (14) is a convex combination (because the coefficients
[¢(i)/t sum to 1) of elements oF (because of the definition qf), and is therefore an element of
T (becausd is convex). This establishes that the constraint is asymptotically satisfied @ithjn
Note that in this argument, wheneva(i) /t < €, the summand correspondingitis indeed of order
O(¢g) and can be safely ignored, as stated earlier.

Regarding the average reward, an argument similar to the above yields

P Me(i i i
liminf i > liminf Iz tt() ;R(a, b)p'(a)q (b) — 2¢, a.s.

Next, observe that
"3 Rabpiade = 3 e 2 (35 0),

where the equality is a consequence of the definitiop'péind the inequality follows by the def-
inition of r¢ as the closed convex hull of. Observe also that the calibration property (13), with
Q=A(B), implies that

=0, a.s.

In turn, since]|o — q || < e for a fractionl (i) /t of the time,

- Z ‘1 t re(i) |

G—) —AQ
rzl |Z t

Recall that the functiom® is continuous, hence uniformly continuous. Thus, there exists some
functiong, with limg o g(€) = 0, such that when the argumentréichanges by at most the value

of r® changes by at mosji(€). By combining the preceding results, we obtain

limsup

t—oo

= limsup

t—oo

<g, a.s.

Ii{ninf ft >r°(6) —2e—g(e), a.s.
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The above argument involves a fixgdand a fixed numbet of setsQ;, and letd increase to in-
finity. As such, it establishes that for aay> 0 the functiorr® — 2e — g(¢) is attainable with respect
to the sefl'® defined byT® = {x | dist(x, T) < 2¢}. Since this is true for every > 0, we conclude
that the calibrated strategy attairfsas claimed. |

7. Algorithms

The results in the previous section motivate us to develop algorithms for ondingrig with con-
straints, perhaps based on calibrated forecasts. For practicahseasoare interested in computa-
tionally efficient methods, but there are no known computationally efficielthrated forecasting
algorithms. For this reason, we will consider related heuristics that are simgagirit, even if they
do not have all the desired guarantees.

We first consider a method based on the weighted average predictoaldgdrghm in Table 1
keeps track of the performance of the different actions in thé\sapdating a corresponding set
of weights accordingly at each step. The main idea is to quantify “perfareidsy a linear com-
bination of the total reward and the magnitude of the constraint violation. @famete > 0 of
the algorithm, which acts similar to a Lagrange multiplier, determines the traddofébr these
two objectives. When the average penalty is higher thyafi.e., there is a violation), the weight
of the cost term increases. When the average penalty is lowecghéme weight of the cost term
decreases. The parametBtsindM are used to bound the magnitude of the weight of the cost term;
in the experiments reported in Section 8, they were set to 1000 and 0.8p&ctigely.

1. Set\, wp, M, andM.
2. Fort=1,2,...:

(a) Sample an independent random variabpldistributed so that

(@)

a—=a, with probability — 2

forac A
aeAWt(a)

(b) Compute:
W (a) =w—1(a) exp(n (R(a,by) —AC(a,hy))), acA
(c) Fort=1,2,..., update\:

Ao min(2A,M), if & > co,
" | maxA/2,M), otherwise

Table 1: Exponentially weighted average predictor.

The second algorithm uses the tracking forecaster (Mannor et al.) 280the forecasting
method. This forecaster predicts that the distribution of the next action asghted average of
previous actions, weighing recent actions more than less recent ores. dtbr the special case of
only two actions, it is calibrated, bunot calibrated in general. There are, however, some special
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cases where it is calibrated, in particular if the sequence it tries to calibvatescfrom a source
with some specific properties; see Mannor et al. (2007) for details. [Gloeitam is presented in
Table 2. If there is a current violation, it selects an action that minimizes the imteddiacasted
cost. If the current average penalty does not violate the constraintedisa best response to the
forecasted action of P2, while satisfying the constraints.

1. Setp e (0,1), co, andfo = (1/|B|)1.
2. Fort=1,2,....

(a) Ift=1or¢ > co, choose an action that minimizes the worst-case cost:

a € argmin(C(a,b) f;_1(b)),

acA

(b) Otherwise (ifc; < cp andt > 1), solve

R(a,b) fi_1(b
S g PR ia®)

subject to % p(a)C(a,b) fi_1(b) < co.
a

and choose a random action distributed according to the solution to the lateme
program.

(c) After observingb, update the forecadt on the probability distribution of the next
opponent actiot , 1:

fo = fio1+ (1/t)° (e — fi1),

whereey, is a unit vector inR/Bl with the element 1 in the component correspondling
tobeB.

Table 2: Tracking forecaster.

8. Experimental Setup

Our experiment addresses the problem of minimizing power consumption mjauter with a hu-
man user. The agent is a low-level software controller that decides whpert the central processor
(CPU) into a low-power state, thereby reducing power expendituresgiperiods when the user
is idle. The system is driven by a human user, as well as different laaedprocesses, and can
be realistically assumed to be non-stationary. The actions of the systeeswond to hardware
interrupts (most interrupts are generated by hardware controllers onatieerboard such as direct
memory access, hard disk interrupts and networking interrupts) and gloéngrrunning processes.
In the particular application at hand, there is a software interrupt (geteby the Windows oper-
ating system) every 16 milliseconds. The times of these interrupts are the dexpsichs, at which
the software controller can decide if and when to put the CPU to sleepebiésfemext scheduled
periodic interrupt.
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However, saving energy by putting the processor in the low-power statesat a cost. In the
low-power state, a delay is incurred each time that the processor movesmbmthe high-power
state in response to user-generated interrupts. We wish to limit the delagiveerty the human
user. For this purpose, we assign a cost to the event that an intemupsavhile the processor is
in the low-power state, and impose a constraint on the time average of trstseAgimilar model
was used in Kveton et al. (2008), and we refer the reader to that woflurther details.

We formulate the problem as follows. We divide a typical 16 millisecond inteintal ten
intervals. We let P1's action set Fe= {0,0.1,0.2,...,1}, where actiora corresponds to turning
off the CPU after 16 milliseconds (the actioa = 1 means the CPU is not turned off during the
interval while the actiom = 0 means it is turned off for the whole interval). Similarly, the action set
of P2isB={0,0.1,0.2,...,0.9}, where actiorb corresponds to an interrupt aftertd@illiseconds.
(Note that the actiolo = 0 means there is no interrupt and that there is no point in including an
actionb =1 in B since it would coincide with the known periodic interrupt.) The assumption is that
an interrupt is handled instantaneously so if the CPU choaséghtly larger tharb it maximizes
the power savings while incurring no penalty for observed delay (it israsd for the sake of
discussion that only a single interrupt is possible in each 16 millisecond it)tei¥@ define the
reward at each stage as follows:

1—-a, ifb=0ora>b, thatis,ifnointerruptoccurs or an interruptoccurs
before the CPU turns off,

b—a, ifb>0anda<b, thatis,ifthereisan interrupt
after the CPU is turned off.

The costis:

1, fa<bandb>0,

0, otherwise

)

C(a,b) = {

In “normal” operation where the CPU is powered throughout, the actiandsl and in that case
there is no reward (no power saving) and no cost (no perceiveg)défdhena = 0 the CPU is
turned off immediately and in this case the reward will be proportional to the aneddime until
an interrupt (or until the next decision). The cost in the aase0 is 0 only is there is no interrupt
(b=0).

We used the real data trace obtained from what is known as MobileMa% @aMO05), a
performance benchmark that simulates the activity of an average MitM&oflows user. This
CPU activity trace is 90 minutes long and contains more than 500,000 interhugltsgling the
periodic scheduled interrupts mentioned earlier. The exponentially weigligedthm (Table 1)
and the tracking forecaster (Table 2) were run on this data set. Figlmewsshe performance of
the two algorithms. The straight line shows the tradeoff between constialation and average
reward by picking a fixed action over the entire time horizon. The diffgreintts for the exponential
weighted predictor (Table 1) or the tracking forecaster (Table 2) spored to different values of
co. We observe that for the same average cost, the tracking forectsnpebetter (i.e., gets higher
reward).

We selected, = 0.3 and used both algorithms for the MMO5 trace. Figures 5(a) and 5(la) sho
the instantaneous cost incurred by the tracking forecaster and thetecmlerage forecaster over
the same short period. It should be observed that the cost of the afgsrighdifferent, reflecting
the fact that different policies are employed. Figures 6(a) and 6¢ay she time evolution of the
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Figure 4: Plot of average reward against constraint violation freguom experiments in power
management for the MMO5 data.
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Figure 5: Instantaneous cost incurred by the tracking forecastewaighted average predictor
with target constraintg = 0.3 for the MMO5 data.

average reward and average cost for the same experiment. In spite béing calibrated, the
tracking forecast based algorithm outperforms the exponentially weidpatset algorithm.

9. Conclusions

There are several open problems and directions for future resthatcire worth mentioning. First,
the issue of convergence rate is yet to be settled. We noted that thereaexadtgprithm based on
approachability that converges at the rat¢ df 3, and that the usual lower bound ©f'/2 holds.
The other algorithm based on calibration suffers from potentially evesevoonvergence rate, as
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Figure 6: Time evolution of average reward and average cost for tle&irica forecaster and
weighted average forecaster wig= 0.3 for the MMO5 data.

we are not aware of any approximate calibration algorithm with comparalolkegence rates.
Second, the complexity of these two online learning algorithms leaves much tesbedl The
complexity of a policy based on approachability theory is left undetermineduse we do not
have a specific procedure for computing P1’s action at each stagepertstage complexity is
unknown for calibrated forecasts, but is exponential for approximatipprated schemes (Cesa-
Bianchi and Lugosi, 2006). Moreover, it is not clear whether onlinenieg with constraints is as
hard computationally as finding a calibrated forecast. Third, we only ediedlithe tightness of
the lower convex hull of the Bayes envelope for the case of a one-diomathpenalty function.
This is a remarkable result because it establishes the tightness of anpenwtier than the Bayes
envelope, and we are not aware of any such results for similar settingweudr, it is not clear
whether such a result also holds for two-dimensional penalties. In partithe proof technique of
the tightness result does not seem to extend to higher dimensions.

Our formulation of the learning problem (learning with pathwise constraintsnig a first
step in considering multi-objective problems in online learning. In particutagrdormulations,
for example, that consider the number of time-windows where the consteagtgolated, are of
interest; see Kveton et al. (2008).
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