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Québec H3A-2A7

John N. Tsitsiklis JNT@MIT.EDU

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology
Cambridge, MA 02139

Jia Yuan Yu JIA.YU@MCGILL .CA

Department of Electrical and Computer Engineering
McGill University
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Abstract

We study online learning where a decision maker interacts with Nature with the objective of max-
imizing her long-term average reward subject to some samplepath average constraints. We define
the reward-in-hindsight as the highest reward the decisionmaker could have achieved, while sat-
isfying the constraints, had she known Nature’s choices in advance. We show that in general the
reward-in-hindsight isnot attainable. The convex hull of the reward-in-hindsight function is, how-
ever, attainable. For the important case of a single constraint, the convex hull turns out to be the
highest attainable function. Using a calibrated forecasting rule, we provide an explicit strategy
that attains this convex hull. We also measure the performance of heuristic methods based on
non-calibrated forecasters in experiments involving a CPUpower management problem.

Keywords: online learning, calibration, regret minimization, approachability

1. Introduction

We consider a repeated game from the viewpoint of a decision maker (player P1) who plays against
Nature (player P2). The opponent (Nature) is “arbitrary” in the sensethat player P1 has no pre-
diction, statistical or strategic, of the opponent’s choice of actions. This setting was considered
by Hannan (1957), in the context of repeated matrix games. Hannan introduced the Bayes utility
with respect to the current empirical distribution of the opponent’s actions,as a performance goal
for adaptive play. This quantity, defined as the highest average reward that player P1 could have
achieved, in hindsight, by playing some fixed action against the observed action sequence of player
P2. Player P1’sregret is defined as the difference between the highest average reward-in-hindsight
that player P1 could have hypothetically achieved, and the actual average reward obtained by player
P1. It was established in Hannan (1957) that there exist strategies whose regret converges to zero as
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the number of stages increases, even in the absence of any prior knowledge on the strategy of player
P2. For recent advances on online learning, see Cesa-Bianchi and Lugosi (2006).

In this paper we consider regret minimization under sample-path constraints.That is, in addition
to maximizing the average reward, or more precisely, minimizing the regret, the decision maker has
some side constraints that need to be satisfied on the average. In particular, for every joint action
of the players, there is an additional penalty vector that is accumulated by thedecision maker. The
decision maker has a predefined set in the space of penalty vectors, which represents the accept-
able tradeoffs between the different components of the penalty vector. An important special case
arises when the decision maker wishes to keep some constrained resourcebelow a certain threshold.
Consider, for example, a wireless communication system where the decision maker can adjust the
transmission power to improve the probability that a message is received successfully. Of course,
the decision maker does not know a priori how much power will be needed (this depends on the
behavior of other users, the channel conditions, etc.). Still, a decision maker is usually interested in
both the rate of successful transmissions, and in the average power consumption. In an often consid-
ered variation of this problem, the decision maker wishes to maximize the transmission rate, while
keeping the average power consumption below some predefined threshold. We refer the reader to
Mannor and Shimkin (2004) and references therein for a discussion ofconstrained average cost
stochastic games and to Altman (1999) for constrained Markov decision problems. We note that the
reward and the penalty are not treated the same; otherwise they could havebeen combined into a
single scalar value, resulting in a much simpler problem.

The paper is organized as follows. In Section 2, we present formally the basic model, and
provide a result that relates attainability with the value of the game. In Section 3,we provide
an example where the reward-in-hindsight cannot be attained. In light ofthis negative result, in
Section 4 we define the closed convex hull of the reward-in-hindsight, and show that it is attainable.
Furthermore, in Section 5, we show that when there is a single constraint, thisis the maximal
attainable objective. In Section 6, we provide a simple strategy, based on calibrated forecasting,
that attains the closed convex hull. Section 7 presents heuristic algorithms derived from an online
forecaster, while incorporating strictly enforced constraints. The application of the algorithms of
Section 7 to a power management domain is presented in Section 8. We finally conclude in Section
9 with some open questions and directions for future research.

2. Problem Definition

We consider a repeated game against Nature, in which a decision maker triesto maximize her
reward, while satisfying some constraints on certain time-averages. The underlying stage game is
a game with two players: P1 (the decision maker of interest) and P2 (who represents Nature and is
assumed arbitrary). For our purposes, we only need to define rewards and constraints for P1.

A constrained game with respect to a setT is defined by a tuple(A,B,R,C,T) where:

1. A is the set of actions of P1; we will assumeA = {1,2, . . . , |A|}.

2. B is the set of actions of P2; we will assumeB = {1,2, . . . , |B|}.

3. R is an |A| × |B| matrix where the entryR(a,b) denotes the expected reward obtained by
P1, when P1 plays actiona ∈ A and P2 actionb ∈ B. The actual rewards obtained at each
play of actionsa andb are assumed to be IID random variables, with finite second moments,
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distributed according to a probability law PrR(· |a,b). Furthermore, the reward streams for
different pairs(a,b) are statistically independent.

4. C is an|A|× |B| matrix, where the entryC(a,b) denotes the expectedd-dimensional penalty
vector incurred by P1, when P1 plays actiona∈ A and P2 actionb∈ B. The actual penalty
vectors obtained at each play of actionsa andb are assumed to be IID random variables, with
finite second moments, distributed according to a probability law PrC(· |a,b). Furthermore,
the penalty vector streams for different pairs(a,b) are statistically independent.

5. T is a set inR
d within which we wish the average of the penalty vectors to lie. We assume

thatT is convex and closed. Since the entries ofC are bounded, we will also assume, without
loss of generality, thatT is bounded.

The game is played in stages. At each staget, P1 and P2 simultaneously choose actionsat ∈ A
andbt ∈ B, respectively. Player P1 obtains a rewardrt , distributed according to PrR(· |at ,bt), and a
penaltyct , distributed according to PrC(· |at ,bt). We define P1’s average reward by timet to be

r̂t =
1
t

t

∑
τ=1

rτ, (1)

and P1’s average penalty vector by timet to be

ĉt =
1
t

t

∑
τ=1

cτ. (2)

A strategyfor P1 (resp. P2) is a mapping from the set of all possible past histories tothe set of
mixed actions onA (resp.B), which prescribes the (mixed) action of that player at each timet, as a
function of the history in the firstt−1 stages. Loosely, P1’s goal is to maximize the average reward
while having the average penalty vector converge toT, pathwise:

limsup
t→∞

dist(ĉt ,T) → 0, a.s., (3)

where dist(·) is the point-to-set Euclidean distance, that is, dist(x,T) = infy∈T ‖y− x‖2, and the
probability measure is the one induced by the policy of P1, the policy of P2, and the randomness in
the rewards and penalties.

We will often consider the important special case whereT = {c∈ R
d : c≤ c0}, for some given

c0 ∈ R
d, with the inequality interpreted component-wise. We simply call such a game a constrained

game with respect to (a vector)c0. For that special case, the requirement (3) is equivalent to:

limsup
t→∞

ĉt ≤ c0, a.s..

For a setD, we will use the notation∆(D) to denote the set of all probability measures onD. If
D is finite, we will identify∆(D) with the set of probability vectors of the same size asD. If D is a
subset of Euclidean space, we will assume that it is endowed with the Borelσ-field.
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2.1 Reward-in-hindsight

We define ˆqt ∈ ∆(B) as the empirical distribution of P2’s actions by timet, that is,

q̂t(b) =
1
t

t

∑
τ=1

1{bt=b}, b∈ B. (4)

If P1 knew in advance that ˆqt will equal q, and if P1 were restricted to using a fixed action, then
P1 would pick an optimal response (generally a mixed action) to the mixed actionq, subject to the
constraints specified byT. In particular, P1 would solve the convex program1

max
p∈∆(A)

∑
a,b

p(a)q(b)R(a,b), (5)

s.t. ∑
a,b

p(a)q(b)C(a,b) ∈ T.

By playing ap that solves this convex program, P1 would meet the constraints (up to small fluctua-
tions that are a result of the randomness and the finiteness oft), and would obtain the maximal aver-
age reward. We are thus led to define P1’s reward-in-hindsight, which we denote byr∗ : ∆(B) 7→ R,
as the optimal objective value in the program (5), as a function ofq. The functionr∗ is often referred
to as theBayes envelope.

For the special case of a constrained game with respect to a vectorc0, the convex constraint
∑a,b p(a)q(b)C(a,b)∈T is replaced by∑a,b p(a)q(b)C(a,b)≤ c0 (the inequality is to be interpreted
component-wise).

The following examples show some of the properties of the Bayes envelope.Consider a 2×2
constrained game with respect to a scalarc0 specified by:

(

(1,0) (0,1)
(0,1) (1,0)

)

,

where each entry (pair) corresponds to(R(a,b),C(a,b)) for a pair of actionsa and b. (Herea
andb correspond to a choice of row and column, respectively.) Suppose first that c0 = 1. In that
case the constraint does not play a part in the problem, and we are dealingwith a version of the
matching pennies game. So, if we identifyq with the frequency of the first action, we have that
r∗(q) = max(q,1− q). Suppose now thatc0 = 1/2. In this case, it is not difficult to show that
r∗(q) = 1/2, since P1 cannot take advantage of any deviation fromq = 1/2 while satisfying the
constraint.

The next example involves a game where P2’s action does not affect the constraints; such games
are further discussed in Section 4.1. Consider a 2×2 constrained game with respect to a scalarc0,
specified by:

(

(1,1) (0,1)
(0,0) (1,0)

)

,

1. If T is a polyhedron (specified by finitely many linear inequalities), then the optimization problem is a linear program.
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where each entry (pair) corresponds to(R(a,b),C(a,b)) for a pair of actionsa andb. We identify
q with the frequency of the second action of P2 as before. Suppose firstthat c0 = 1. As before,
the constraint has no effect andr∗(q) = max(q,1−q). Suppose now thatc0 = 1/2. It is not hard
to show that in this caser∗(q) = max(q,1/2). Finally, if c0 = 0, P1 is forced to choose the second
action; in this case,r∗(q) = q. The monotonicity ofr∗(q) in c0 is to be expected since the lowerc0

is, the more stringent the constraint in Eq. (5).

2.2 The Objective

Formally, our goal is to attain a functionr in the sense of the following definition. Naturally, the
higher the functionr, the better.

Definition 1 A function r: ∆(B) 7→ R is attainableby P1 in a constrained game with respect to a
set T if there exists a strategyσ of P1 such that for every strategyρ of P2:

(i) liminf t→∞(r̂t − r(q̂t)) ≥ 0, a.s., and

(ii) limsupt→∞ dist(ĉt ,T) → 0, a.s.,

where the almost sure convergence is with respect to the probability measure induced byσ andρ.

In constrained games with respect to a vectorc0 we can replace (ii) in the definition with

limsup
t→∞

ĉt ≤ c0, a.s.

2.3 The Value of the Game

In this section, we consider the attainability of a constant functionr : ∆(B) 7→ R, that is,r(q) = α,
for all q. We will establish that attainability is equivalent to havingα ≤ v, where v is a naturally
defined “value of the constrained game.”

We first introduce the assumption that P1 is always able to satisfy the constraint.

Assumption 1 For every mixed action q∈ ∆(B) of P2, there exists a mixed action p∈ ∆(A) of P1,
such that:

∑
a,b

p(a)q(b)C(a,b) ∈ T. (6)

For constrained games with respect to a vectorc0, the condition (6) reduces to the inequality
∑a,b p(a)q(b)C(a,b) ≤ c0.

If Assumption 1 is not satisfied, then P2 can choose aq such that for every (mixed) action of P1,
the constraint is violated in expectation. By repeatedly playing thisq, P1’s average penalty vector
will be outsideT, and the objectives of P1 will be impossible to meet.

The following result deals with the attainability of the value, v, of an average reward repeated
constrained game, defined by

v = inf
q∈∆(B)

sup
p∈∆(A):∑a,b p(a)q(b)C(a,b)∈T

∑
a,b

p(a)q(b)R(a,b). (7)

The existence of a strategy for P1 that attains the value was proven in Shimkin(1994) in the broader
context of stochastic games.
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Proposition 2 Suppose that Assumption 1 holds. Then,

(i) P1 has a strategy that guarantees that the constant function r(q) ≡ v is attained with respect
to T .

(ii) For every numberv′ > v there existsδ > 0 such that P2 has a strategy that guarantees that
either liminf t→∞ r̂t < v′− δ or limsupt→∞ dist(ĉt ,T) > δ, almost surely. (In particular, the
constant functionv′ is not attainable.)

Proof The proof relies on Blackwell’s approachability theory (Blackwell, 1956a). We construct a
nested family of convex sets inRd+1 defined bySα = {(r,c) ∈ R×R

d : r ≥ α,c∈ T}. Obviously,
Sα ⊂ Sβ for α > β. Consider the vector-valued game inR

d+1 associated with the constrained game.
In this game, P1’s vector-valued payoff at timet is thed+1 dimensional vectormt = (rt ,ct) and P1’s
average vector-valued payoff is ˆmt = (r̂t , ĉt). SinceSα is convex, it follows from approachability the-
ory for convex sets (Blackwell, 1956a) that eachSα is either approachable2 or excludable.3 If Sα is
approachable, thenSβ is approachable for everyβ < α. We define v0 = sup{β | Sβ is approachable}.
It follows thatSv0 is approachable (as the limit of approachable sets; see Spinat, 2002). ByBlack-
well’s theorem, for everyq ∈ ∆(B), an approachable convex set must intersect the set of feasible
payoff vectors when P2 playsq. Using this fact, it is easily shown that v0 equals v, as defined by
Eq. (7), and part (i) follows. Part (ii) follows because a convex set which is not approachable is
excludable.

Note that part (ii) of the proposition implies that, essentially, v is the highest average reward P1
can attain while satisfying the constraints, if P2 plays an adversarial strategy. By comparing Eq. (7)
with Eq. (5), we see that v= infq r∗(q). On the other hand, if P2 does not play adversarially, P1 may
be able to do better, perhaps attainingr∗(q). Our subsequent results address the question whether
this is indeed the case.

Remark 3 In general, the infimum and supremum in (7)cannotbe interchanged. This is because
the set of feasible p in the inner maximization depends on the value of q. Moreover, it can be shown
that the set of(p,q) pairs that satisfy the constraint∑a,b p(a)q(b)C(a,b) ∈ T is not necessarily
convex.

2. A setX is approachable if there exists a strategy for the agent such that for every ε > 0, there exists an integerN such
that, for every opponent strategy:

Pr

(

dist

(

1
n

n

∑
i=1

mt ,X

)

≥ ε for somen≥ N

)

< ε.

3. A setX is excludable if there exists a strategy for the opponent such that there existsδ > 0 such that for everyε > 0,
there exists an integerN such that, for every agent strategy:

Pr

(

dist

(

1
n

n

∑
i=1

mt ,X

)

≥ δ for all n≥ N

)

> 1− ε.
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2.4 Related Works

Notwithstanding the apparent similarity, the problem that we consider is not aninstance of online
convex optimization (Zinkevich, 2003; Hazan and Megiddo, 2007). In thelatter setting, there is a
convex feasible domainF ⊂ R

n, and an arbitrary sequence of convex functionsft : F → R. At
every stept, the decision maker picksxt ∈ F based on the past history, without knowledge of the
future functionsft , and with the objective of minimizing the regret

T

∑
t=1

ft(xt)−min
y∈F

T

∑
t=1

ft(y).

An analogy with our setting might be possible, by identifyingxt and ft with at andbt , respectively,
and by somehow relating the feasibility constraints described byF to our constraints. However,
this attempt seems to run into some fundamental obstacles. In particular, in our setting, feasibility
is affected by the opponent’s actions, whereas in online convex optimization, the feasible domain
F is fixed for all time steps. For this reason, we do not see a way to reduce theproblem of online
learning with constraints to an online convex optimization problem, and given theresults below, it
is unlikely that such a reduction is possible.

3. Reward-in-Hindsight Is Not Attainable

As it turns out, the reward-in-hindsight cannot be attained in general. This is demonstrated by the
following simple 2×2 matrix game, with just a single constraint.

Consider a 2×2 constrained game specified by:

(

(1,−1) (1,1)
(0,−1) (−1,−1)

)

,

where each entry (pair) corresponds to(R(a,b),C(a,b)) for a pair of actionsa andb. At a typical
stage, P1 chooses a row, and P2 chooses a column. We setc0 = 0. Let q denote the frequency
with which P2 chooses the second column. The reward of the first row dominates the reward of
the second one, so if the constraint can be satisfied, P1 would prefer to choose the first row. This
can be done as long as 0≤ q ≤ 1/2, in which caser∗(q) = 1. For 1/2 ≤ q ≤ 1, player P1 needs
to optimize the reward subject to the constraint. Given a specificq, P1 will try to choose a mixed
action that satisfies the constraint (on the average) while maximizing the reward. If we letα denote
the frequency of choosing the first row, we see that the reward and penalty are:

r(α,q) = α− (1−α)q, c(α,q) = 2αq−1,

respectively. We observe that for everyq, r(α) andc(α) are monotonically increasing functions of
α. As a result, P1 will choose the maximalα that satisfiesc(α) ≤ 0, which isα(q) = 1/2q, and the
optimal reward is 1/2+1/2q−q. We conclude that the reward-in-hindsight is:

r∗(q) =







1, if 0 ≤ q≤ 1/2,

1
2

+
1
2q

−q, if 1/2≤ q≤ 1.

The graph ofr∗(q) is the solid line in Figure 1.
We now claim that P2 can make sure that P1 does not attainr∗.
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Figure 1: The reward-in-hindsight of the constrained game. Here,r∗(q) is the solid line, and the
dotted line connects the two extreme values, forq = 0 andq = 1.

Proposition 4 If c0 = 0, then there exists a strategy for P2 such that r∗ cannot be attained.

Proof Suppose that the opponent, P2, plays according to the following strategy.Initialize a counter
k = 1. Let α̂t be the empirical frequency with which P1 chooses thefirst row during the firstt time
steps. Similarly, let ˆqt be the empirical frequency with which P2 chooses thesecondcolumn during
the firstt time steps.

1. Whilek = 1 or α̂t−1 > 3/4, P2 chooses the second column, andk is incremented by 1.

2. For the nextk times, P2 chooses the first column. Then, reset the counterk to , and go back
to Step 1.

We now show that if

limsup
t→∞

ĉt ≤ 0, a.s.,

then a strict inequality holds for the regret:

liminf
t→∞

(r̂t − r∗(q̂t)) < 0, a.s.

Suppose that Step 2 is entered only a finite number of times. Then, after some finite time, P2 keeps
choosing the second column, and ˆqt converges to 1. For P1 to satisfy the constraint limsupt→∞ ĉt ≤
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0, we must have lim̂αt ≤ 1/2. But then, the condition̂αt−1 > 3/4 will be eventually violated. This
shows that Step 2 is entered an infinite number of times. In particular, there exist infinite sequences
ti andt ′i such thatti < t ′i < ti+1 and (i) if ti < t ≤ t ′i , P2 chooses the second column (Step 1); (ii) if
t ′i < t ≤ ti+1, P2 chooses the first column (Step 2).

Note that Steps 1 and 2 last for an equal number of time steps. Thus, we have q̂ti = 1/2, and
r∗(q̂ti ) = 1, for all i. Furthermore,ti+1−t ′i ≤ t ′i , or t ′i ≥ ti+1/2. Note that̂αt ′i

≤ 3/4, because otherwise
P2 would still be in Step 1 at timet ′i + 1. Thus, during the firstti+1 time steps, P1 has played the
first row at most

3t ′i /4+(ti+1− t ′i ) = ti+1− t ′i /4≤ 7ti+1/8

times. Due to the values of the reward matrix, we have limsupt→∞ r̂t < limsupi→∞ r̂ti . In particular,
we have ˆrti+1 ≤ 7/8, and liminft→∞(r̂t − r∗(q̂t)) ≤ 7/8−1 < 0.

Intuitively, the strategy that was described above allows P2 to force P1 to move, back and forth,
between the extreme points (q = 0 andq = 1) that are linked by the dotted line in Figure 1. Since
r∗(q) is not convex, and since the dotted line is strictly belowr∗(q) for q = 1/2, this strategy
precludes P1 from attainingr∗(q). We note that the choice ofc0 is critical in this example. With
other choices ofc0 (for example,c0 = −1), the reward-in-hindsight may be attainable.

4. Attainability of the Convex Hull

Since the reward-in-hindsight is not attainable in general, we have to settle for a more modest
objective. More specifically, we are interested in functionsf : ∆(B) → R that are attainable with
respect to a given constraint setT. As a target we suggest the closed convex hull of the reward-in-
hindsight,r∗. After defining it, we prove that it is indeed attainable. In the next section, we will also
show that it is the highest possible attainable function, when there is a single constraint.

Given a functionf : X 7→ R, over a convex domainX, its closed convex hullis the function
whose epigraph is

conv({(x, r) : r ≥ f (x)}),

where conv(D) is the convex hull, andD is the closure of a setD. We denote the closed convex hull
of r∗ by rc.

We will make use of the following facts. Forming the convex hull and then the closure results
in a larger epigraph, hence a smaller function. In particular,rc(q) ≤ r∗(q), for all q. Furthermore,
the closed convex hull is guaranteed to be continuous on∆(B). (This would not be true if we had
considered the convex hull, without forming its closure.) Finally, for everyq in the interior of∆(B),
we have:

rc(q) = inf
q1,q2,...,qk∈∆(B),α1,...,αk

k

∑
i=1

αir
∗(qi) (8)

s.t.
k

∑
i=1

αiqi(b) = q(b), ∀b∈ B,

αi ≥ 0, i = 1,2, . . . ,k,
k

∑
i=1

αi = 1,

577



MANNOR, TSITSIKLIS AND YU

wherek can be taken equal to|B|+2 by Caratheodory’s Theorem.
The following result is proved using Blackwell’s approachability theory. The technique is simi-

lar to that used in other no-regret proofs (e.g., Blackwell, 1956b; Mannor and Shimkin, 2003), and
is based on the convexity of a target set in an appropriately defined space.

Theorem 5 Let Assumption 1 hold for a given convex set T⊂R
d. Then rc is attainable with respect

to T .

Proof Define the following game with vector-valued payoffs, where the payoffsbelong toR×
R

d ×∆(B) (a |B|+ d + 1 dimensional space, which we denote byM ). Suppose that P1 playsat ,
P2 playsbt , P1 obtains an immediate reward ofrt and an immediate penalty vector ofct . Then, the
vector-valued payoff obtained by P1 is

mt = (rt ,ct ,e(bt)) ,

wheree(b) is a vector of zeroes, except for a 1 in itsbth component. It follows that the average
vector-valued reward at timet, which we define as ˆmt = 1

t ∑t
τ=1mτ, satisfies: ˆmt = (r̂t , ĉt , q̂t), where

r̂t , ĉt , andq̂t were defined in Eqs. (1), (2), and (4), respectively. Consider the sets:

B1 = {(r,c,q) ∈M : r ≥ rc(q)}, B2 = {(r,c,q) ∈M : c∈ T},

and letB = B1 ∩B2. Note thatB is a convex set. We claim thatB is approachable. Letm :
∆(A)×∆(B) →M describe the expected payoff in a single stage game, when P1 and P2 choose
actionsp andq, respectively. That is,

m(p,q) =
(

∑
a,b

p(a)q(b)R(a,b), ∑
a,b

p(a)q(b)C(a,b), q
)

.

Using the sufficient condition for approachability of convex sets (Blackwell, 1956a), it suffices to
show that for everyq there exists ap such thatm(p,q)∈B. Fix q∈∆(B). By Assumption 1, the con-
straint∑a,b p(a)q(b)C(a,b) ∈ T is feasible, which implies that the program (5) has an optimal solu-
tion p∗. It follows thatm(p∗,q) ∈ B. We now claim that a strategy that approachesB also attainsrc

in the sense of Definition 1. Indeed, sinceB ⊆ B2 we have that Pr(d(ct ,T) > ε infinitely often) = 0
for everyε > 0. SinceB ⊆ B1 and using the continuity ofrc, we obtain liminf(r̂t − rc(q̂t)) ≥ 0.

We note that Theorem 5 is not constructive. Indeed, a strategy that approachesB, based on a
naive implementation Blackwell’s approachability theory, requires an efficient procedure for com-
puting the closest point inB,and therefore a computationally efficient description ofB, which may
not be available (we do not know whetherB can be described efficiently). This motivates the devel-
opment of the calibration based scheme in Section 6.

Remark 6 Convergence rate results also follow from general approachability theory, and are gen-
erally of the order of t−1/3; see Mertens et al. (1994). It may be possible, perhaps, to improve upon
this rate and obtain t−1/2, which is the best possible convergence rate for the unconstrained case.

Remark 7 For every q∈ ∆(B), we have r∗(q) ≥ v, which implies that rc(q) ≥ v. Thus, attaining rc

guarantees an average reward at least as high as the value of the game.
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4.1 Degenerate Cases

In this section, we consider the degenerate cases where the penalty vector is affected by only one of
the players. We start with the case where P1 alone affects the penalty vector, and then discuss the
case where P2 alone affects the penalty vector.

If P1 alone affects the penalty vector, that is, ifC(a,b) =C(a,b′) for all a∈ A andb,b′ ∈B, then
r∗(q) is convex. Indeed, in this case, Eq. (5) becomes (writingC(a) for C(a,b))

r∗(q) = max
p∈∆(A):∑a p(a)C(a)∈T

∑
a,b

p(a)q(b)R(a,b),

which is the maximum of a collection of linear functions ofq (one function for each feasiblep), and
is therefore convex.

If P2 alone affects the penalty vector, that is, ifc(a,b) = c(a′,b) for all b∈ B anda,a′ ∈ A, then
Assumption 1 implies that the constraint is always satisfied. Therefore,

r∗(q) = max
p∈∆(A)

∑
a,b

p(a)q(b)R(a,b),

which is again a maximum of linear functions, hence convex.
We conclude that in both degenerate cases, if Assumption 1 holds, then the reward-in-hindsight

is attainable.

5. Tightness of the Convex Hull

We now show thatrc is the maximal attainable function, for the case of a single constraint.

Theorem 8 Suppose that d= 1, T is of the form T= {c | c≤ c0}, where c0 is a given scalar, and
that Assumption 1 is satisfied. Letr̃ : ∆(B) 7→ R be a continuous attainable function with respect to
the scalar c0. Then, rc(q) ≥ r̃(q) for all q ∈ ∆(B).

Proof The proof is constructive, as it provides a concrete strategy for P2 that prevents P1 from
attaining ˜r, unlessrc(q) ≥ r̃(q) for everyq. Assume, in order to derive a contradiction, that there
exists some ˜r that violates the theorem. Since ˜r andrc are continuous, there exists someq0 ∈ ∆(B)
and someε > 0 such that ˜r(q) > rc(q)+ ε for all q in an open neighborhood ofq0. In particular,q0

can be taken to lie in the interior of∆(B). Using Eq. (8), it follows that there existq1, . . . ,qk ∈ ∆(B)
andα1, . . . ,αk (with k≤ |B|+2, due to Caratheodory’s Theorem) such that

k

∑
i=1

αir
∗(qi) ≤ rc(q0)+

ε
2

< r̃(q0)−
ε
2

;

k

∑
i=1

αiq
i(b) = q0(b), ∀ b∈ B;

k

∑
i=1

αi = 1; αi ≥ 0, ∀ i.

Let τ be a large positive integer (τ is to be chosen large enough to ensure that the events of
interest occur with high probability, etc.). We will show that if P2 plays eachqi for ⌈αiτ⌉ time
steps, in an appropriate order, then either P1 does not satisfy the constraint along the way or ˆrτ ≤
r̃(q̂τ)− ε/2.
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Figure 2: In either part (a) or (b) of the figure, we fix someq ∈ ∆(B). The triangle is the set of
possible reward-cost pairs, as we varyp over the set∆(A). Then, for a given valuec in
the upper bound on the cost (cf. 10), the shaded region is the set of reward-cost pairs that
also satisfy the cost constraint.

We letqi , i = 1, . . . ,k, be fixed, as above, and define a functionfi : R
d → R∪{−∞} as:

fi(c) = max
p∈∆(A)

∑
a,b

p(a)qi(b)R(a,b), (9)

subject to ∑
a,b

p(a)qi(b)C(a,b) ≤ c, (10)

where the maximum over an empty set is defined to equal−∞. Observe that the feasible set (and
hence, optimal value) of the above linear program depends onc. Figure 2 illustrates how the feasible
sets to (10) may depend on the value ofc. By viewing Eqs. (9)-(10) as a parametric linear program,
with a varying right-hand side parameterc, we see thatfi(c) is piecewise linear, concave, and
nondecreasing inc (Bertsimas and Tsitsiklis, 1997). Furthermore,fi(c0) = r∗(qi). Let ∂ f +

i be
the right directional derivative offi at c = c0, and note that∂ f +

i ≥ 0. From now on, we assume
that theqi have been ordered so that the sequence∂ f +

i is nonincreasing (e.g., as in Figure 3).
To visualize the ordering that we have introduced, consider the set of possible pairs(r,c), given
a fixedq. That is, consider the setM(qi) = {(r,c) : ∃p ∈ ∆(A)s.t. r = ∑a,b p(a)qi(b)R(a,b), c =

∑a,b p(a)qi(b)C(a,b)}. The setM(qi) is the image of the simplex under a linear transformation, and
is therefore a polytope, as illustrated by the triangular areas in Figure 2. The strategy of P2 is to first
play qi such that thep that maximizes the reward (Eq. 9) satisfies Eq. (10) with equality. (Such a
qi results in a setM(qi) like the one shown in Figure 2(b).) After all theseqi are played, P2 plays
thoseqi for which thep that maximizes the reward (Eq. 9) satisfies Eq. (10) with strict inequality,
and∂ f +

i = 0. (Such aqi results in a setM(qi) like the one shown in Figure 2(a).)
Suppose that P1 knows the sequenceq1, . . . ,qk (ordered as above) in advance, and that P2 fol-

lows the strategy described earlier. We assume thatτ is large enough so that we can ignore the
effects of dealing with a finite sample. Letpi be the average of the mixed actions chosen by P1
while player P2 playsqi . We introduce the constraints

ℓ

∑
i=1

αi ∑
a,b

pi(a)qi(b)C(a,b) ≤ c0

ℓ

∑
i=1

αi , ℓ = 1,2, . . . ,k.
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Figure 3: An example of functionsfi ordered according to∂ f +
i .

These constraints must be satisfied in order to guarantee that ˆct has negligible probability of sub-
stantially exceedingc0, at the “switching” times from one mixed action to another. If P1 exploits
the knowledge of P2’s strategy to maximize her average reward at timeτ, the resulting expected
average reward at timeτ will be the optimal value of the objective function in the following linear
programming problem:

max
p1,p2,...,pk

k

∑
i=1

αi ∑
a,b

pi(a)qi(b)R(a,b)

s.t.
ℓ

∑
i=1

αi ∑
a,b

pi(a)qi(b)C(a,b) ≤ c0

ℓ

∑
i=1

αi , ℓ = 1,2, . . . ,k, (11)

pℓ ∈ ∆(A), ℓ = 1,2, . . . ,k.

Of course, given the value of∑a,b pi(a)qi(b)C(a,b), to be denoted byci , player P1 should choose
a pi that maximizes rewards, resulting in∑a,b pi(a)qi(b)R(a,b) = fi(ci). Thus, the above problem
can be rewritten as

max
c1,...,ck

∑αi fi(ci)

s.t.
ℓ

∑
i=1

αici ≤ c0

ℓ

∑
i=1

αi , ℓ = 1,2, . . . ,k. (12)

We claim that lettingci = c0, for all i, is an optimal solution to the problem (12). This will then
imply that the optimal value of the objective function for the problem (11) is∑k

i=1 αi fi(c0), which
equals∑k

i=1 αir∗(qi), which in turn, is bounded above by ˜r(q0)−ε/2. Thus, ˆrτ < r̃(q0)−ε/2+δ(τ),
where the termδ(τ) incorporates the effects due to the randomness in the process. By repeating
this argument with ever increasing values ofτ (so that the stochastic termδ(τ) is averaged out
and becomes negligible), we obtain that the event ˆrt < r̃(q0)− ε/2 will occur infinitely often, and
therefore ˜r is not attainable.

It remains to establish the claimed optimality of(c0, . . . ,c0). Suppose that(c1, . . . ,ck) 6=
(c0, . . . ,c0) is an optimal solution of the problem (12). Ifci ≤ c0 for all i, the monotonicity of
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the fi implies that(c0, . . . ,c0) is also an optimal solution. Otherwise, letj be the smallest index for
which c j > c0. If ∂ f +

j = 0 (as in the case shown in Figure 2(b)) we have thatfi(c) is maximized at
c0 for all i ≥ j and(c0, . . . ,c0) is optimal. Suppose that∂ f +

j > 0. In order for the constraint (12)
to be satisfied, there must exist some indexs < j such thatcs < c0. Let us perturb this solution
by settingδ = min{αs(c0− cs),α j(c j − c0)}, increasingcs to c̃s = cs+ δ/αs, and decreasingc j to
c̃ j = c j −δ/α j . This new solution is clearly feasible. Let∂ f−s = limε↓0( fs(c0)− fs(c0−ε))/ε, which
is the left derivative offs at c0. Using the concavity offs, and the earlier introduced ordering, we
have∂ f−s ≥ ∂ f +

s ≥ ∂ f +
j . Observe that

fs(c̃s) = fs(cs)+∂ f−s δ/αs,

f j(c̃ j) = f j(c j)−∂ f +
j δ/α j ,

so thatαs fs(c̃s)+α j f j(c̃ j)≥ αs fs(cs)+α j f j(c j). Therefore, the new solution must also be optimal,
but has fewer components that differ fromc0. By repeating this process, we eventually conclude
that(c0, . . . ,c0) is an optimal solution of (12).

To the best of our knowledge, this is the first tightness result for a performance envelope (the
reward-in-hindsight) different than the Bayes envelope, for repeated games. On the other hand, we
note that our proof relies crucially on the assumption of a single constraint (d = 1), which allows us
to order the∂ f +

i .

6. Attaining the Convex Hull Using Calibrated Forecasts

In this section, we consider a specific strategy that attains the convex hull, thus providing a con-
structive proof for Theorem 5. The strategy is based on forecasting P2’s action, and playing a best
response (in the sense of Eq. 5) against the forecast. The quality of theresulting strategy depends,
of course, on the quality of the forecasts; it is well known thatcalibratedforecasts lead to no-regret
strategies in standard repeated matrix games. See Foster and Vohra (1997) and Cesa-Bianchi and
Lugosi (2006) for a discussion of calibration and its implications in learning ingames. In this
section we consider the consequences of calibrated play for repeated games with constraints.

We start with a formal definition of calibrated forecasts and calibrated play,and then show that
calibrated play attainsrc in the sense of Definition 1.

A forecasting scheme specifies at each stagek a probabilistic forecastqk ∈ ∆(B) of P2’s action
bk. More precisely a (randomized) forecasting scheme is a sequence of maps that associate with
each possible historyhk−1 during the firstk− 1 stages a probability measureµk over ∆(B). The
forecastqk ∈ ∆(B) is then selected at random according to the distributionµk. Let us clarify that for
the purposes of this section, the history is defined to include the realized past forecasts.

We shall use the following definition of calibrated forecasts.

Definition 9 (Calibrated forecasts) A forecasting scheme iscalibratedif for every (Borel measur-
able) set Q⊂ ∆(B) and every strategy of P1 and P2

lim
t→∞

1
t

t

∑
τ=1

1{qτ ∈ Q}(e(bτ)−qτ) = 0, a.s., (13)

where e(b) is a vector of zeroes, except for a 1 in its bth component.
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Calibrated forecasts, as defined above, have been introduced into gametheory in Foster and Vohra
(1997), and several algorithms have been devised to achieve them (seeCesa-Bianchi and Lugosi,
2006, and references therein). These algorithms typically start with predictions that are restricted to
a finite grid, and gradually increase the number of grid points.

The proposed strategy is to let P1 play a best response against P2’s forecasted play while still
satisfying the constraints (in expectation, for the single stage game). Formally, we let:

p∗(q) = argmax
p∈∆(A)

∑
a,b

p(a)q(b)R(a,b)

s.t. ∑
a,b

p(a)q(b)C(a,b) ∈ T,

where in the case of a non-unique maximum we assume thatp∗(q) is uniquely determined by some
tie-breaking rule; this is easily done, while keepingp∗(·) a measurable function. The strategy is
to play pt = p∗(qt), whereqt is a calibrated forecast of P2’s actions.4 We call such a strategy a
calibrated strategy.

The following theorem states that a calibrated strategy attains the convex hull.

Theorem 10 Let Assumption 1 hold, and suppose that P1 uses a calibrated strategy. Then, rc is
attained with respect to T .

Proof Fix ε > 0. We need to show that by playing the calibrated strategy, P1 obtains liminft→∞(r̂t −
rc(q̂t)) ≥ 0 and limsupt→∞ dist(ĉt ,T) ≤ 0, almost surely.

Fix someε > 0. Consider a partition of the simplex∆(B) to finitely many measurable sets
Q1,Q2, . . . ,Qℓ such thatq,q′ ∈ Qi implies that‖q− q′‖ ≤ ε and‖p∗(q)− p∗(q′)‖ ≤ ε. (Such a
partition exists by the compactness of∆(B) and ∆(A). The measurability of the setsQi can be
guaranteed because the mappingp∗(·) is measurable.) For eachi, let us fix a representative element
qi ∈ Qi , and letpi = p∗(qi).

Since we have a calibrated forecast, Eq. (13) holds for everyQi , 1 ≤ i ≤ ℓ. DefineΓt(i) =

∑t
τ=11{qτ ∈Qi} and assume without loss of generality thatΓt(i) > 0 for larget (otherwise, eliminate

thosei for which Γt(i) = 0 for all t, and renumber theQi). To simplify the presentation, we assume
that for everyi, and for large enought, we haveΓt(i) ≥ εt. (If for somei, andt this condition is
violated, the contribution of such ani in the expressions that follow will beO(ε).)

By a law of large numbers for martingales, we have

lim
t→∞

(

ĉt −
1
t

t

∑
τ=1

C(aτ,bτ)

)

= 0, a.s.

By definition, we have

1
t

t

∑
τ=1

C(aτ,bτ) = ∑
i

Γt(i)
t ∑

a,b

C(a,b)
1

Γt(i)

t

∑
τ=1

1{qτ ∈ Qi}1{aτ = a}1{bτ = b}.

Observe that wheneverqτ ∈ Qi , we have
∥

∥pτ − pi
∥

∥≤ ε, wherepτ = p∗(qτ) andpi = p∗(qi) because
of the way the setsQi were constructed. By martingale convergence, the frequency with whicha

4. When the forecastµt is mixed,qt is the realization of the mixed rule.
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will be selected wheneverqτ ∈ Qi andbτ = b, will be approximatelypi(a). Hence, for allb,

limsup
t→∞

∣

∣

∣

∣

∣

1
Γt(i)

t

∑
τ=1

1{qτ ∈ Qi}1{aτ = a}1{bτ = b}− pi(a)
1

Γt(i)

t

∑
τ=1

1{qτ ∈ Qi}1{bτ = b}

∣

∣

∣

∣

∣

≤ ε,

almost surely. By the calibration property (13) forQ = Qi , and the fact that wheneverq,q′ ∈ Qi , we
have‖q−q′‖ ≤ ε, we obtain

limsup
t→∞

∣

∣

∣

∣

∣

1
Γt(i)

t

∑
τ=1

1{qτ ∈ Qi}1{bτ = b}−qi(b)

∣

∣

∣

∣

∣

≤ ε, a.s.

By combining the above bounds, we obtain

lim
t→∞

∣

∣

∣

∣

∣

ĉt −∑
i

Γt(i)
t ∑

a,b

C(a,b)pi(a)qi(b)

∣

∣

∣

∣

∣

≤ 2ε, a.s. (14)

Note that the sum over indexi in Eq. (14) is a convex combination (because the coefficients
Γt(i)/t sum to 1) of elements ofT (because of the definition ofpi), and is therefore an element of
T (becauseT is convex). This establishes that the constraint is asymptotically satisfied withinO(ε).
Note that in this argument, wheneverΓt(i)/t < ε, the summand corresponding toi is indeed of order
O(ε) and can be safely ignored, as stated earlier.

Regarding the average reward, an argument similar to the above yields

liminf
t→∞

r̂t ≥ liminf
t→∞ ∑

i

Γt(i)
t ∑

a,b

R(a,b)pi(a)qi(b)−2ε, a.s.

Next, observe that

∑
i

Γt(i)
t ∑

a,b

R(a,b)pi(a)qi(b) = ∑
i

Γt(i)
t

r∗(qi) ≥ rc
(

∑
i

Γt(i)
t

qi
)

,

where the equality is a consequence of the definition ofpi , and the inequality follows by the def-
inition of rc as the closed convex hull ofr∗. Observe also that the calibration property (13), with
Q = ∆(B), implies that

lim
t→∞

∥

∥

∥

∥

∥

q̂t −
1
t

t

∑
τ=1

qτ

∥

∥

∥

∥

∥

= 0, a.s.

In turn, since
∥

∥qτ −qi
∥

∥≤ ε for a fractionΓt(i)/t of the time,

limsup
t→∞

∥

∥

∥

∥

∥

q̂t −∑
i

Γt(i)
t

qi

∥

∥

∥

∥

∥

= limsup
t→∞

∥

∥

∥

∥

∥

1
t

t

∑
τ=1

qτ −∑
i

Γt(i)
t

qi

∥

∥

∥

∥

∥

≤ ε, a.s.

Recall that the functionrc is continuous, hence uniformly continuous. Thus, there exists some
functiong, with limε↓0g(ε) = 0, such that when the argument ofrc changes by at mostε, the value
of rc changes by at mostg(ε). By combining the preceding results, we obtain

liminf
t→∞

r̂t ≥ rc(q̂t)−2ε−g(ε), a.s.
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The above argument involves a fixedε, and a fixed numberℓ of setsQi , and letst increase to in-
finity. As such, it establishes that for anyε > 0 the functionrc−2ε−g(ε) is attainable with respect
to the setTε defined byTε = {x | dist(x,T) ≤ 2ε}. Since this is true for everyε > 0, we conclude
that the calibrated strategy attainsrc as claimed.

7. Algorithms

The results in the previous section motivate us to develop algorithms for online learning with con-
straints, perhaps based on calibrated forecasts. For practical reasons, we are interested in computa-
tionally efficient methods, but there are no known computationally efficient calibrated forecasting
algorithms. For this reason, we will consider related heuristics that are similarin spirit, even if they
do not have all the desired guarantees.

We first consider a method based on the weighted average predictor. Thealgorithm in Table 1
keeps track of the performance of the different actions in the setA, updating a corresponding set
of weights accordingly at each step. The main idea is to quantify “performance” by a linear com-
bination of the total reward and the magnitude of the constraint violation. The parameterλ > 0 of
the algorithm, which acts similar to a Lagrange multiplier, determines the tradeoff between these
two objectives. When the average penalty is higher thanc0 (i.e., there is a violation), the weight
of the cost term increases. When the average penalty is lower thanc0, the weight of the cost term
decreases. The parametersM andM are used to bound the magnitude of the weight of the cost term;
in the experiments reported in Section 8, they were set to 1000 and 0.001, respectively.

1. Setλ, w0, M, andM.

2. Fort = 1,2, . . .:

(a) Sample an independent random variableat distributed so that

at = a, with probability
wt(a)

∑a∈Awt(a)
for a∈ A.

(b) Compute:

wt(a) = wt−1(a) exp
(

η
(

R(a,bt)−λC(a,bt)
))

, a∈ A.

(c) Fort = 1,2, . . ., updateλ:

λ :=

{

min(2λ,M), if ĉt > c0,
max(λ/2,M), otherwise.

Table 1: Exponentially weighted average predictor.

The second algorithm uses the tracking forecaster (Mannor et al., 2007) as the forecasting
method. This forecaster predicts that the distribution of the next action as a weighted average of
previous actions, weighing recent actions more than less recent ones others. For the special case of
only two actions, it is calibrated, butnot calibrated in general. There are, however, some special
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cases where it is calibrated, in particular if the sequence it tries to calibrate comes from a source
with some specific properties; see Mannor et al. (2007) for details. The algorithm is presented in
Table 2. If there is a current violation, it selects an action that minimizes the immediate forecasted
cost. If the current average penalty does not violate the constraint, it selects a best response to the
forecasted action of P2, while satisfying the constraints.

1. Setρ ∈ (0,1), c0, and f0 = (1/|B|)~1.

2. Fort = 1,2, . . .:

(a) If t = 1 or ĉt > c0, choose an action that minimizes the worst-case cost:

at ∈ argmin
a∈A

(C(a,b) ft−1(b)) ,

(b) Otherwise (if ˆct ≤ c0 andt > 1), solve

max
p∈∆(A)

∑
a,b

p(a)R(a,b) ft−1(b),

subject to ∑
a,b

p(a)C(a,b) ft−1(b) ≤ c0.

and choose a random action distributed according to the solution to the abovelinear
program.

(c) After observingbt , update the forecastft on the probability distribution of the next
opponent actionbt+1:

ft = ft−1 +(1/t)ρ (ebt − ft−1),

whereeb is a unit vector inR|B| with the element 1 in the component corresponding
to b∈ B.

Table 2: Tracking forecaster.

8. Experimental Setup

Our experiment addresses the problem of minimizing power consumption in a computer with a hu-
man user. The agent is a low-level software controller that decides whento put the central processor
(CPU) into a low-power state, thereby reducing power expenditures during periods when the user
is idle. The system is driven by a human user, as well as different hardware processes, and can
be realistically assumed to be non-stationary. The actions of the system correspond to hardware
interrupts (most interrupts are generated by hardware controllers on themotherboard such as direct
memory access, hard disk interrupts and networking interrupts) and the ongoing running processes.
In the particular application at hand, there is a software interrupt (generated by the Windows oper-
ating system) every 16 milliseconds. The times of these interrupts are the decision epochs, at which
the software controller can decide if and when to put the CPU to sleep before the next scheduled
periodic interrupt.
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However, saving energy by putting the processor in the low-power state comes at a cost. In the
low-power state, a delay is incurred each time that the processor moves back into the high-power
state in response to user-generated interrupts. We wish to limit the delay perceived by the human
user. For this purpose, we assign a cost to the event that an interrupt arrives while the processor is
in the low-power state, and impose a constraint on the time average of these costs. A similar model
was used in Kveton et al. (2008), and we refer the reader to that work for further details.

We formulate the problem as follows. We divide a typical 16 millisecond intervalinto ten
intervals. We let P1’s action set beA = {0,0.1,0.2, . . . ,1}, where actiona corresponds to turning
off the CPU after 16a milliseconds (the actiona = 1 means the CPU is not turned off during the
interval while the actiona= 0 means it is turned off for the whole interval). Similarly, the action set
of P2 isB= {0,0.1,0.2, . . . ,0.9}, where actionb corresponds to an interrupt after 16b milliseconds.
(Note that the actionb = 0 means there is no interrupt and that there is no point in including an
actionb= 1 in B since it would coincide with the known periodic interrupt.) The assumption is that
an interrupt is handled instantaneously so if the CPU choosesa slightly larger thanb it maximizes
the power savings while incurring no penalty for observed delay (it is assumed for the sake of
discussion that only a single interrupt is possible in each 16 millisecond interval). We define the
reward at each stage as follows:

R(a,b) =



















1−a, if b = 0 ora > b, that is, if no interrupt occurs or an interrupt occurs

before the CPU turns off,

b−a, if b > 0 anda≤ b, that is, if there is an interrupt

after the CPU is turned off.

The cost is:

C(a,b) =

{

1, if a≤ b andb > 0,

0, otherwise.

In “normal” operation where the CPU is powered throughout, the action isa = 1 and in that case
there is no reward (no power saving) and no cost (no perceived delay). Whena = 0 the CPU is
turned off immediately and in this case the reward will be proportional to the amount of time until
an interrupt (or until the next decision). The cost in the casea = 0 is 0 only is there is no interrupt
(b = 0).

We used the real data trace obtained from what is known as MobileMark 2005 (MM05), a
performance benchmark that simulates the activity of an average Microsoft Windows user. This
CPU activity trace is 90 minutes long and contains more than 500,000 interrupts,including the
periodic scheduled interrupts mentioned earlier. The exponentially weightedalgorithm (Table 1)
and the tracking forecaster (Table 2) were run on this data set. Figure 4 shows the performance of
the two algorithms. The straight line shows the tradeoff between constraint violation and average
reward by picking a fixed action over the entire time horizon. The differentpoints for the exponential
weighted predictor (Table 1) or the tracking forecaster (Table 2) correspond to different values of
c0. We observe that for the same average cost, the tracking forecast performs better (i.e., gets higher
reward).

We selectedc0 = 0.3 and used both algorithms for the MM05 trace. Figures 5(a) and 5(b) show
the instantaneous cost incurred by the tracking forecaster and the weighted average forecaster over
the same short period. It should be observed that the cost of the algorithms is different, reflecting
the fact that different policies are employed. Figures 6(a) and 6(b) show the time evolution of the
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Figure 4: Plot of average reward against constraint violation frequency from experiments in power
management for the MM05 data.
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Figure 5: Instantaneous cost incurred by the tracking forecaster andweighted average predictor
with target constraintc0 = 0.3 for the MM05 data.

average reward and average cost for the same experiment. In spite of not being calibrated, the
tracking forecast based algorithm outperforms the exponentially weightedbased algorithm.

9. Conclusions

There are several open problems and directions for future researchthat are worth mentioning. First,
the issue of convergence rate is yet to be settled. We noted that there existsan algorithm based on
approachability that converges at the rate oft−1/3, and that the usual lower bound oft−1/2 holds.
The other algorithm based on calibration suffers from potentially even worse convergence rate, as

588



ONLINE LEARNING WITH SAMPLE PATH CONSTRAINTS

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

A
ve

ra
ge

 r
ew

ar
d 

an
d 

co
st

Time

 

 

Average cost
Average reward

(a) Tracking forecaster

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

A
ve

ra
ge

 r
ew

ar
d 

an
d 

co
st

Time

 

 
Average cost
Average reward

(b) Weighted average predictor

Figure 6: Time evolution of average reward and average cost for the tracking forecaster and
weighted average forecaster withc0 = 0.3 for the MM05 data.

we are not aware of any approximate calibration algorithm with comparable convergence rates.
Second, the complexity of these two online learning algorithms leaves much to be desired. The
complexity of a policy based on approachability theory is left undetermined because we do not
have a specific procedure for computing P1’s action at each stage. Theper stage complexity is
unknown for calibrated forecasts, but is exponential for approximatelycalibrated schemes (Cesa-
Bianchi and Lugosi, 2006). Moreover, it is not clear whether online learning with constraints is as
hard computationally as finding a calibrated forecast. Third, we only established the tightness of
the lower convex hull of the Bayes envelope for the case of a one-dimensional penalty function.
This is a remarkable result because it establishes the tightness of an envelope other than the Bayes
envelope, and we are not aware of any such results for similar settings. However, it is not clear
whether such a result also holds for two-dimensional penalties. In particular, the proof technique of
the tightness result does not seem to extend to higher dimensions.

Our formulation of the learning problem (learning with pathwise constraints) isonly a first
step in considering multi-objective problems in online learning. In particular, other formulations,
for example, that consider the number of time-windows where the constraintsare violated, are of
interest; see Kveton et al. (2008).
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