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1. Introduction. Motivated by the issue of investing in a research and development project, Denardo
et al. [1] introduced and studied a stochastic search problem in an out-forest, which we will be referring to as
the DRV model. In particular, they established the optimality of “index” policies for either linear or exponential
utility functions.
While their main result is simple and is reminiscent of similar results on multiarmed bandit problems, their

proof is not. In fact, the authors note that standard lines of analysis in the bandit literature do not seem to yield
their results. In this paper, we show that a short proof is possible for a suitable generalization of the DRV model,
using the approach of Tsitsiklis [2] for the classical multiarmed bandit problem. The reason for introducing a
more general model is precisely that it enables the simpler proof.
We remark that both the proof in Denardo et al. [1] and our proof are inductive in nature. The fundamental

distinction between the two approaches is that the proof in Denardo et al. [1] proceeds by iteratively eliminating
leaf edges, whereas the proof we present iteratively identifies and eliminates a “highest priority” edge. Our
approach results in an exponential growth in problem size, so a direct implementation of the algorithm we
propose is not efficient (although, for the special case of the DRV model, this can be remedied—see the end
of §4). In contrast, Denardo et al. design an algorithm for their model that finds an optimal policy in O�m2�
time when the given out-forest has m edges.
The rest of the paper is organized as follows. Section 2 presents the model and the problem formulation; §3

provides the proof of the main result; §4 discusses indexability and computational issues; and §5 deals with
various extensions.

2. The model. Let G = �N �E� be an out-forest, that is, a directed acyclic graph in which every node
has an in-degree of zero or one. For each edge e ∈ E, A�e� denotes the (possibly empty) set of immediate
successors of edge e. More precisely, if e= �i� j�, then A�e� contains all edges of the form �j� k� for some k.
We say that an edge e′ is a successor of e (and that e is a predecessor of e′) if there is a sequence of edges
e= e1� e2� � � � � ek = e′ such that each ei+1 is a successor of ei. An edge e is called a leaf edge if A�e� is empty.
The search model takes the form of a sequential decision process, whereby at each stage an edge is selected

and attempted. To define the model, we describe the state of the process, the set of available actions, the transition
mechanism, and the associated rewards.
The states of the sequential decision process are subsets S of E, with the property that none of the edges

in S is a predecessor of another edge in S; the edges in S are said to be available. In addition, there is a special
termination state, denoted by T . If the state S is the empty set, the process moves to the termination state at the
next step. If a nonempty and nonterminal state (S �= �� T ) is reached, the decision maker must select and attempt
an edge e ∈ S, resulting in a random immediate reward, whose expected value is Re. (Note that Re is allowed
to be negative.) If edge e is attempted, the process either moves to the terminal state T (with probability �e) or
it “succeeds” and a random set of immediate successors of e becomes “available;” for each set X of immediate
successors of e, we use pe�X� to denote the probability that the set X is generated. In particular,

�e+
∑

X⊆A�e�
pe�X�= 1�
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Formally, given a current state S �= �� T � and given that e was attempted, the probability P�S ′ � S� e� of
transitioning to a next state S ′ is given by

P�S ′ � S� e�=


�e� if S ′ = T �
pe�X�� if X ⊆A�e� and S ′ = �S ∪X�\�e��

The outcomes at different edges are mutually independent events. (However, the immediate random reward is
allowed to be dependent on the set of immediate successors that become available.) The goal of the decision
maker is to maximize the expected total reward earned until termination. (Note that voluntary termination on
the part of the decision maker can be modeled by adding an independent edge e with Re = 0, �e = 1.)
The initial state of this decision process consists of all the edges of E that have no predecessors. It is

straightforward to verify that the decision maker reaches state S (with S �= �� T ) only if he has successfully
attempted all predecessors of the edges in S, but has not attempted any edge in S.
The decision maker is allowed to use general, possibly randomized, history-dependent policies. However,

standard results from the theory of Markov decision processes imply the existence of an optimal policy within
the class of deterministic and stationary policies, to be referred to as DS policies. (That is, the decision at each
stage is just a function of the current state.) Formally, a DS policy is a function � from the state space into E,
where each nonempty and nonterminal state S is mapped into an edge ��S� ∈ S. A DS policy � is optimal
for state S if it maximizes the total expected reward when S is the initial state. A policy is called optimal if
it is optimal jointly for all states. A policy � is called a priority policy if there is an ordering on the edges
such that for each state S, ��S� is the first edge in S according to this ordering. Note that priority policies are
automatically DS policies. The main result in this paper establishes the existence of an optimal priority policy.

2.1. Relation to the DRV model. The model we introduced is a generalization of the DRV model considered
by Denardo et al. [1]. More specifically, the basic DRV model is the following special case:
(a) For every edge e, pe�X�= 0, if X �= ��A�e�;
(b) For all edges, Re =�ere− ce, where ce > 0; and
(c) For all nonleaf edges, �e = 0, and so re is irrelevant for these edges.

For the basic model, they prove the existence of an optimal priority policy and show how it can be computed in
O�m2� time, when the out-forest has m edges. They exploit the special cost structure to show that it is optimal
to conduct a series of “depth first” searches of paths to leaf edges. Finally, they observe that the structural results
(including the existence of an optimal priority policy) hold for the more general probabilistic model in which
condition (a) above is dropped.
The motivation for the basic DRV model is as follows: Consider a research and development project, whose

various activities are represented by the edges of the out-forest. Each activity can be attempted at a certain
cost, and the outcome is a success with a certain probability. If an activity is attempted successfully, all of its
immediate successors become eligible to be attempted. The overall project succeeds—and yields a reward—if
a leaf edge (an edge with no successors) is attempted successfully. It is evident that for the overall project
to succeed, there must be a path from a stem edge (an edge with no predecessors) to a leaf, all of whose
edges are attempted successfully. The objective is to find an investment strategy that maximizes expected utility.
For instance, the various leaf edges may represent different technologies for accomplishing a certain outcome,
and the stem-leaf paths may represent the sequence of tasks that must be undertaken successfully to build the
corresponding technology.

3. Main result. The proof technique in Tsitsiklis [2] essentially involves two steps: First, identify by inspec-
tion or by some elementary computation a highest-priority edge; and second, find a reduced problem in which
this edge is eliminated. The first step identifies an edge e∗ with the property that whenever edge e∗ is available,
there is at least one optimal policy that attempts it. Once such an edge e∗ is identified, the second step eliminates
that edge using the following reasoning: If attempting edge e causes e∗ to become available, the decision maker
will necessarily attempt e∗ next; therefore, one can contract edge e∗ and update the parameters associated with
edge e in a manner that captures this two-step attempt. Note that because the given graph is an out-forest, there
is at most one edge e that can cause e∗ to become available, and so e∗ can be safely eliminated. The resulting
problem has one fewer edge, to which the same argument can be inductively applied. Given the graph G and
the coefficients Re, �e, we define

�G�e�=




Re/�e� if �e �= 0,
−� if �e = 0 and Re < 0,
+� if �e = 0 and Re ≥ 0.
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Let
e∗ ∈ argmax

e∈E
�G�e��

and �∗�e∗�= �G�e∗�.
Lemma 3.1. There is an optimal DS policy �, with ��S�= e∗ for every state S that contains e∗.

Proof. For any DS policy �, we say that a state S is exceptional if e∗ ∈ S, but ��S� �= e∗. In this terminology,
the lemma asserts the existence of an optimal DS policy that has no exceptional states.
Let �∗ be an optimal DS policy with the smallest number of exceptional states. If �∗ has no exceptional

states, we are done. Suppose �∗ has at least one exceptional state. Then, there exists an exceptional state S∗

such that: (i) �∗ attempts e ∈ S∗, with e �= e∗; and (ii) if the attempt at e does not result in termination, �∗

attempts e∗. To see this, consider the state-transition graph, whose nodes are the exceptional states of �∗, and
whose edges are the pairs �S�S ′� of exceptional states such that if �∗ reaches S, then it is possible to reach S ′ in
the next step. This is a directed acyclic graph, so it must have a node S∗ with out-degree zero. Such a state S∗

has the properties claimed above.
Now consider the following alternative policy �. If the initial state is not S∗, then � selects the same action

as �∗ at every time step. If, on the other hand, the initial state is S∗, then: (i) � attempts e∗ at the first time step;
(ii) if the attempt at e∗ does not result in termination, � attempts e in the following step; (iii) � agrees with �∗

after the first two steps. (Note that � is not, in general, a DS policy; it is history dependent, because the action
at the second time step may be affected by the initial state.) As a result of this “local interchange,” the increase
in the expected total reward when S∗ is the initial state is

Re∗ + �1−�e∗�Re−Re− �1−�e�Re∗ � (1)

Because �∗ is an optimal policy, this expression is less than or equal to zero; by the definition of e∗, however,
this expression is nonnegative. Thus, the net change in expected total reward as a result of this interchange is
zero. It follows that the action of attempting e∗ at state S∗ is an optimal action. Therefore, the DS policy �� that
satisfies ���S∗�= e∗, and ���S�= �∗�S� for S �= S∗, is also optimal. We have thus constructed a new DS policy
��, which is optimal and has one fewer exceptional state, contradicting the definition of �∗. Therefore, �∗ must
be an optimal policy with no exceptional states. �

We are now ready for the main result.

Theorem 3.1. There is an optimal policy that is a priority policy.

Proof. Our proof is by induction on the number of edges in the given out-forest. If the given out-forest has
only one edge, the result is trivially true. Suppose the theorem holds for all out-forests with fewer than m edges.
Let us now consider an out-forest G with m edges, and let e∗ be an edge for which �G�e� is largest. Let  �e∗�
be the class of DS policies that attempt e∗ whenever it is available. By Lemma 3.1, there is an optimal policy
within the class  �e∗�. We argue next that the problem of finding an optimal policy within the class  �e∗� can
itself be formulated as a search problem in an out-forest involving the remaining m− 1 edges.
To define this reduced problem, we consider two possibilities, depending on whether or not e∗ has an imme-

diate predecessor. If e∗ has no predecessor, then the reduced problem is equivalent to the out-forest �N �E\�e∗��.
In that case, the following priority policy is optimal: First attempt e∗, and then (in the absence of termination)
follow an optimal policy for the out-forest �N �E\�e∗��; the latter policy can be taken to be a priority policy by
the induction hypothesis.
Suppose now that e is the immediate predecessor of edge e∗. If a policy in  �e∗� attempts e, the process

does not terminate, and e∗ becomes available; it will then immediately attempt e∗. By viewing this “automatic”
attempt of e∗ as part of a single composite step initiated with the attempt of e, we obtain a reduced but equivalent
model, in which e∗ is eliminated, and which involves an out-forest with m−1 edges. We now specify the details
of the reduced model.
The new set of edges is simply �E =E\�e∗�. The new termination probability ��e when attempting e needs to

include the probability that e∗ becomes available and its attempt results in termination. Thus,

��e =�e+ qe∗�e∗� (2)

where
qe∗ =

∑
X⊆A�e�" e∗∈X

pe�X�
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is the probability that when e is attempted, the attempt is successful and edge e∗ becomes available. Similarly,
the new expected reward �Re needs to include the expected reward from the possible subsequent attempt of e∗:

�Re =Re+ qe∗Re∗ � (3)

The set Ā�e� of immediate successors of e in the reduced model will be the set of all edges that may become
available once the composite step is carried out. Thus,

Ā�e�= (
A�e�\�e∗�)∪A�e∗��

It remains to specify the probabilities with which different subsets of Ā�e� become available. Consider a typical
subset of Ā�e�, of the form X ∪ Y , where X ⊆A�e�\�e∗� and Y ⊆A�e∗�. The probability that the set of newly
available edges at the end of the composite step equals X ∪ Y is given by

p̄e�X ∪ Y �=


pe�X�+pe�X ∪ �e∗��pe∗���� if Y =�,
pe�X ∪ �e∗��pe∗�Y �� if Y �= �.

For the case where Y = �, the two terms in the formula above correspond to the cases where e∗ did or did
not become available when e was attempted. Note that the mutual independence of the sets generated when
attempting different edges in the reduced problem follows from the corresponding assumption for the original
problem.
There is a one-to-one correspondence between policies in  ∗ and DS policies for the reduced problem.

Furthermore, because of the definition of the reduced problem, corresponding policies have the same expected
total reward. Consider an optimal policy for the reduced problem that is a priority policy. (Such a policy exists
because the reduced problem corresponds to an out-forest with m − 1 edges, and the induction hypothesis
applies.) This priority policy on the reduced problem, together with giving top priority to e∗, defines a priority
policy for the original problem that is optimal. �

4. Indices and computation. The proof of Theorem 3.1 suggests a recursive algorithm for determining an
optimal priority policy by a repeated application of the following two steps: (i) identifying a highest-priority
edge e∗ from the problem data (ties can be broken arbitrarily, e.g., lexicographically); and (ii) deleting e∗, and
updating the coefficients Re and �e as in Equations (2)–(3), to obtain a smaller problem.
We make some observations on the structure of the algorithm.
(a) With the above algorithm, every edge will eventually be eliminated. Let ek be the kth edge to be eliminated

by the algorithm. We define the index, �∗�ek�, of edge ek to be the value of Rek/�ek computed by the algorithm
at the beginning of the kth iteration, that is, the iteration at which edge ek is eliminated. From Equations (2)–(3),
and the fact that Re∗/�e∗ is maximal, we see that �Re/ ��e ≤ Re∗/�e∗ , where we use the same conventions as in
the definition of �G�e�, when a denominator is zero. It follows that indices are generated in nonincreasing order,
that is, �∗�ek+1�≤ �∗�ek� for every k. In particular, edges with a higher index value get higher priority.
(b) A further property, which is apparent from the structure of the reduction, is that �∗�e� is completely

determined by the data associated with e and its successors in the original out-forest. In particular, if the forest
consists of several independent trees, the index computation can be carried out separately at each tree. This is
in the spirit of indexability results for classical multiarmed bandit problems, where the index of a state of a
particular bandit can be calculated independent of the data associated with the other bandits.
The algorithm above will in general run in exponential time because of the multiplicative increase in the

number of positive probability subsets to be considered, and we suspect that this is unavoidable. For an example,
consider a tree consisting of a path ek� ek−1� � � � � e1, together with additional leaf edges e′k−1� � � � � e

′
1, arranged so

that each edge ei+1 has an immediate successor ei that belongs to the path, and another immediate successor e′i
that is a leaf edge. Suppose that pei+1��ei�� > 0 and pei+1��ei� e

′
i�� > 0. Suppose furthermore that the edges

e1� � � � � ek−1 are eliminated first. In the reduced graph, after the first k− 1 iterations, all of the edges e′i will be
immediate successors of ek, and every subset of this set of successors will have positive probability. An example
of such an exponential increase is possible even for the DRV model.
In some cases, an efficient algorithm becomes possible by bypassing the computation of the probabilities

pe�X� for the reduced problems. We only need to be able to efficiently compute Re and �e for a reduced
problem. Indeed, for a reduced problem in which edges e1� � � � � ek have been eliminated, Re is the expected cost
of a policy for the original problem that starts with edge e, continues by choosing each time the highest-priority
available edge within the set �e1� � � � � ek�, and terminates voluntarily once no such edge is available (even if
other edges are available). It turns out that this interpretation leads to an efficient algorithm for computing Re
(and similarly, �e) for the basic DRV model. We do not provide any further details because this approach
essentially recovers the efficient algorithm given in Denardo et al. [1].
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5. Extensions. We end by noting that the same approach applies to the variants of the basic model described
in Denardo et al. [1, §5, p. 171]. We briefly discuss the necessary changes for the cases of risk-averse and
risk-seeking utility functions; the other variants can be handled in a straightforward way.
Consider the case of a risk-seeking utility function, where the utility of a reward x is e%x, and % is a positive

constant. We denote by Re the expected utility resulting from a single attempt at edge e. We note that Re > 0,
and that utility maximization is equivalent to maximizing the expected value of the product of the single-step
utilities Re of the attempted edges. Voluntary termination is modeled by an independent edge e with �e = 1 and
Re = 1. Lemma 3.1 and Theorem 3.1 are valid with the following modifications. We define �G�e� by

�G�e�=



�eRe
1− �1−�e�Re

� if 1− �1−�e�Re �= 0�
−� if 1− �1−�e�Re = 0�

Let E− be the set of edges e with 1− �1−�e�Re ≤ 0. If E− �= �, we let
e∗ ∈ argmax

e∈E−
�G�e��

otherwise,
e∗ ∈ argmax

e∈E
�G�e��

With this choice of e∗, Lemma 3.1 remains valid. The only change in the proof is that expression (1) now
becomes

�e∗Re∗ + �1−�e∗��eRe∗Re−�eRe− �1−�e��e∗Re∗Re� (4)

With our definition of e∗, the above expression is guaranteed to be nonnegative. Theorem 3.1 and its proof
remain valid, with �� as before and with

�Re = �1− qe∗�Re+ qe∗ReR∗
e �

Consider now the case of a risk-averse utility function, where the utility of a reward x is −e−%x, and % is a
positive constant. We define Re to be the negative of the utility resulting from a single attempt at edge e. We
note that Re > 0 and that utility maximization is equivalent to minimizing the expected value of the product of
the single-step disutilities Re of the attempted edges. The definition of the �G�e� and the rest of the argument
is the same as in the risk-seeking case. The only change is that we now define E+ as the set of edges e with
1− �1−�e�Re > 0. If E+ �= �, we let

e∗ ∈ argmin
e∈E+

�G�e��

otherwise,
e∗ ∈ argmin

e∈E
�G�e��

With this definition, the expression (4) is guaranteed to be nonpositive.
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