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Abstract. We develop a methodological framework and present a few different ways in which dynamic 
programming and compact representations can be combined to solve large scale stochastic control problems. 
In particular, we develop algorithms that employ two types of feature-based compact representations; that is, 
representations that involve feature extraction and a relatively simple approximation architecture. We prove 
the convergence of these algorithms and provide bounds on the approximation error. As an example, one of 
these algorithms is used to generate a strategy for the game of Tetris. Furthermore, we provide a counter- 
example illustrating the difficulties of integrating compact representations with dynamic programming, which 
exemplifies the shortcomings of certain simple approaches. 
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1. Introduction 

Problems of sequential decision making under uncertainty (stochastic control) have been 
studied extensively in the operations research and control theory literature for a long 
time, using the methodology of dynamic programming (Bertsekas, 1995). The "planning 
problems" studied by the artificial intelligence community are of a related nature although, 
until recently, this was mostly done in a deterministic setting leading to search or shortest 
path problems in graphs (Korf, 1987). In either context, realistic problems have usually 
proved to be very difficult mostly due to the large size of the underlying state space 
or of the graph to be searched. In artificial intelligence, this issue is usually addressed 
by using heuristic position evaluation functions; chess playing programs are a prime 
example (Korf, 1987). Such functions provide a rough evaluation of the quality of a 
given state (or board configuration in the context of chess) and are used in order to rank 
alternative actions. 

In the context of dynamic programming and stochastic control, the most important 
object is the cost-to-go function, which evaluates the expected future cost to be incurred, 
as a function of the current state. Similarly with the artificial intelligence context, cost- 
to-go functions are used to assess the consequences of any given action at any particular 
state. Dynamic programming provides a variety of methods for computing cost-to-go 
functions. Due to the curse of dimensionality, however, the practical applications of 
dynamic programming are somewhat limited; they involve certain problems in which 
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the cost-to-go function has a simple analytical form (e.g., controlling a linear system 
subject to a quadratic cost) or to problems with a manageably small state space. 

In most of the stochastic control problems that arise in practice (control of nonlinear 
systems, queueing and scheduling, logistics, etc.) the state space is huge. For example, 
every possible configuration of a queueing system is a different state, and the number of 
states increases exponentially with the number of queues involved. For this reason, it is 
essentially impossible to compute (or even store) the value of the cost-to--go function at 
every possible state. The most sensible way of dealing with this difficulty is to generate 
a compact parametric representation (compact representation, for brevity), such as an 
artificial neural network, that approximates the cost-to-go function and can guide future 
actions, much the same as the position evaluators are used in chess. Since a compact 
representation with a relatively small number of parameters may approximate a cost-to- 
go function, we are required to compute only a few parameter values rather than as many 
values as there are states. 

There are two important preconditions for the development of an effective approxima- 
tion. First, we need to choose a compact representation that can closely approximate 
the desired cost-to-go function. In this respect, the choice of a suitable compact repre- 
sentation requires some practical experience or theoretical analysis that provides some 
rough information on the shape of the function to be approximated. Second, we need 
effective algorithms for tuning the parameters of the compact representation. These two 
objectives are often conflicting. Having a compact representation that can approximate 
a rich set of functions usually means that there is a large number of parameters to be 
tuned and/or that the dependence on the parameters is nonlinear, and in either case, there 
is an increase in the computational complexity involved. 

It is important to note that methods of selecting suitable parameters for standard func- 
tion approximation are inadequate for approximation of cost-to-go functions. In function 
approximation, we are given training data pairs {(xl, yl),..., (XK, YK)} and must con- 
struct a function y = f(x) that "explains" these data pairs. In dynamic programming, 
we are interested in approximating a cost-to-go function y = V(x) mapping states to 
optimal expected future costs. An ideal set of training data would consist of pairs 
{(x~, Ya),..., (xK, YK)}, where each x~ is a state and each Yi is a sample of the future 
cost incurred starting at state xi when the system is optimally controlled. However, 
since we do not know how to control the system at the outset (in fact, our objective is to 
figure out how to control the system), we have no way of obtaining such data pairs. An 
alternative way of making the same point is to note that the desirability of a particular 
state depends on how the system is controlled, so observing a poorly controlled system 
does not help us tell how desirable a state will be when the system is well controlled. 
To approximate a cost-to-go function, we need variations of the algorithms of dynamic 
programming that work with compact representations. 

The concept of approximating cost-to-go functions with compact representations is 
not new. Bellman and Dreyfus (1959) explored the use of polynomials as compact 
representations for accelerating dynamic programming. Whitt (1978) and Reetz (1977) 
analyzed approaches of reducing state space sizes, which lead to compact representa- 
tions. Schweitzer and Seidmann (1985) developed several techniques for approximating 



FEATURE-BASED METHODS 61 

cost-to-go functions using linear combinations of fixed sets of basis functions. More 
recently, reinforcement learning researchers have developed a number of approaches, in- 
cluding temporal-difference learning (Sutton, 1988) and Q-learning (Watkins and Dayan, 
1992), which have been used for dynamic programming with many types of compact 
representation, especially artificial neural networks. 

Aside from the work of Whitt (1988) and Reetz (1977), the techniques that have 
been developed largely rely on heuristics. In particular, there is a lack of formal proofs 
guaranteeing sound results. As one might expect from this, the methods have generated 
a mixture of success stories and failures. Nevertheless, the success stories - most notably 
the world-class backgammon player of Tesauro (1992) - inspire great expectations in the 
potential of compact representations and dynamic programming. 

The main aim of this paper is to provide a methodological foundation and a rigorous 
assessment of a few different ways that dynamic programming and compact represen- 
tations can be combined to form the basis of a rational approach to difficult stochastic 
control problems. Although heuristics have to be involved at some point, especially in 
the selection of a particular compact representation, it is desirable to retain as much 
as possible of the non-heuristic aspects of the dynamic programming methodology. A 
related objective is to provide results that can help us assess the efficacy of alternative 
compact representations. 

Cost-to-go functions are generally nonlinear, but often demonstrate regularities similar 
to those found in the problems tackled by traditional function approximation. There 
are several types of compact representations that one can use to approximate a cost- 
to-go function. (a) Artificial neural networks (e.g., multi-layer perceptrons) present one 
possibility. This approach has led to some successes, such as Tesauro's backgammon 
player which was mentioned earlier. Unfortunately, it is very hard to quantify or analyze 
the performance of neural-network-based techniques. (b) A second form of compact 
representation is based on the use of feature extraction to map the set of states onto a 
much smaller set of feature vectors. By storing a value of the cost-to-go function for 
each possible feature vector, the number of values that need to be computed and stored 
can be drastically reduced and, if meaningful features are chosen, there is a chance of 
obtaining a good approximation of the true cost-to-go function. (c) A third approach is 
to choose a parametric form that maps the feature space to cost- to-go values and then 
try to compute suitable values for the parameters. If  the chosen parametric representation 
is simple and structured, this approach may be amenable to mathematical analysis. One 
such approach, employing linear approximations, will be studied here. 

In this paper, we focus on dynamic programming methods that employ the latter two 
types of compact representations, i.e., the feature-based compact representations. We 
provide a general framework within which one can reason about such methods. We also 
suggest variants of the value iteration algorithm of dynamic programming that can be 
used in conjunction with the representations we propose. We prove convergence results 
for our algorithms and then proceed to derive bounds on the difference between optimal 
performance and the performance obtained using our methods. As an example, one of 
the techniques presented is used to generate a strategy for Tetris, the arcade game. 
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This paper is organized as follows. In Section 2, we introduce the Markov decision 
problem (MDP), which provides a mathematical setting for stochastic control problems, 
and we also summarize the value iteration algorithm and its properties. In Section 3, 
we propose a conceptual framework according to which different approximation method- 
ologies can be studied. To illustrate some of  the difficulties involved with employing 
compact representations for dynamic programming, in Section 4, we describe a "natural" 
approach for dynamic programming with compact representations and then present a 
counter-example demonstrating the shortcomings of  such an approach. In Section 5, we 
propose a variant of  the value iteration algorithm that employs a look-up table in feature 
space rather than in state space. We also discuss a theorem that ensures its convergence 
and provides bounds on the accuracy of resulting approximations. Section 6 discusses 
an application of  the algorithm from Section 5 to the game of  Tetris. In Section 7, we 
present our second approximation methodology, which employs feature extraction and 
linear approximations. Again, we provide a convergence theorem as well as bounds on 
the performance it delivers. This general methodology encompasses many types of  com- 
pact representations, and in Sections 8 and 9 we provide two subclasses: interpolative 
representations and localized basis function architectures. Two technical results that are 
central to our convergence theorems are presented in the Appendices A and B. In partic- 
ular, Appendix A proves a theorem involving transformations that preserve contraction 
properties of  an operator, and Appendix B reviews a result on stochastic approximation 
algorithms involving maximum norm contractions. Appendices C and D provide proofs 
of  the convergence theorems of Sections 5 and 7, respectively. 

2. Markov Decision Problems 

In this section, we introduce Markov decision problems, which provide a model for 
sequential decision making problems under uncertainty (Bertsekas, 1995). 

We consider infinite horizon, discounted Markov decision problems defined on a finite 
state space S. Throughout the paper, we let n denote the cardinality of  S and, for 
simplicity, assume that S = { 1 , . . . ,  n}. For every state i E S, there is a finite set U(i) 
of possible control actions and a set of  nonnegative scalars pij(u),  u E U(i),  j E S, 
such that ~ j e s p ~ j ( u )  = 1 for all u E U(i). The scalar pij(u)  is interpreted as the 
probability o f  a transition to state j ,  given that the current state is i and the control u 
is applied. Furthermore, for every state i and control u, there is a random variable ci~ 
which represents the one-stage cost if action u is applied at state i. We assume that the 
variance of  ci~ is finite for every i E S and u E U(i). In this paper, we treat only Markov 
decision problems for which transition probabilities Pij (u) and expected immediate costs 
E[ciu] are known. However, the ideas presented generalize to the context of  algorithms 
such as Q-learning, which assume no knowledge of transition probabilities and costs. 

A stationary policy is a function 7r defined on S such that 7r(i) E U(i) for all i E S. 
Given a stationary policy, we obtain a discrete-time Markov chain s~(t) with transition 
probabilities 

Pr (s~( t  + 1) = j [ s~(t) = i) = pij(Tr(i)). 
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Let /3  E [0, 1) be a discount factor. For any stationary policy 7r and initial state i, the 
cost-to-go V~ ~ is defined by 

t = 0  

where c(t) = cs-(t),~(8~(t))- In much of  the dynamic programming literature, the map- 
ping from states to cost-to-go values is referred to as the cost-to-go function. However, 
since the state spaces we consider in this paper are finite, we choose to think of  the 
mapping in terms of  a cost-to-go vector whose components are the cost-to-go values of 
various states. Hence, given the cost-to-go vector V ~ of policy 7r, the cost-to-go value 
of  policy 7r at state i is the ith component of  V ~. The optimal cost-to-go vector V* is 
defined by 

v? = m nV/, i s. 

It is well known that the optimal cost-to-go vector V* is the unique solution to Bellman's 
equation: 

V i*=  min ( E [ e , ~ ] + / 3 Z p # ( u ) V f )  V i c  S. (1) 
u 6 U ( i )  - - 

jES 

This equation simply states that the optimal cost-toy-go starting from a state i is equal to 
the minimum, over all actions u that can be taken, of  the immediate expected cost E[c~,~] 
plus the suitably discounted expected cost-tot-go Vj* from the next state j ,  assuming that 
an optimal policy will be followed in the future. 

The Markov decision problem is to find a policy 7r* such that 

v (  =v? ,  v i e s .  

This is usually done by computing Vi*, and then choosing 7r* as a function which satisfies 

7r*(i) = arg min (E[Ciu] + / 3  ~-~p~j(u)Vj*) Vi C S. 
uEU(i) - - jEs 

If  we can not compute V* but can obtain an approximation V to V*, we might generate 
a reasonable control policy 7~v satisfying 

uEu(i) 
jEs  

Intuitively, this policy considers actual immediate costs and uses V to judge future 
consequences of control actions. Such a policy is sometimes called a greedy policy with 
respect to the cost-to-go vector V, and as V approaches V*, the performance of  a greedy 
policy 7rv approaches that of  an optimal policy 7v*. 

There are several algorithms for computing V* but we only discuss the value iteration 
algorithm which forms the basis of  the algorithms to be considered later on. We start 
with some notation. We define Ti : ~n  ~ ~ by 
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/ 

T~(v) : min [E[ci,j + fi ) p i j ( u ) V i ) ,  Vi E S. (2) 
~,Eu(i) \ - - z__.., - - - - /  

jES 

We then define the dynamic programming operator T : ~n H ~ by 

T(V) : (T~(V),... ,Tn(V)). 

In terms of this notation, Bellman's equation simply asserts that V* = T(V*)  and V* is 
the unique fixed point of  T. The value iteration algorithm is described by 

V( t  + 1) : T (V( t ) ) ,  

where V(0) is an arbitrary vector in ~ used to initialize the algorithm. Intuitively, each 
V(t)  is an estimate (though not necessarily a good one) of  the true cost-to--go function 
V*, which gets replaced by the hopefully better estimate T(V( t ) ) .  

Let ]1 . 11~ be the maximum norm defined for every vector x = ( Z l , . . .  , 2Jn) E ~}~n by 
Ilzll~ = m ~  Izd  It is well known (Bertsekas, 1995) and easy to check that T is a 
contraction with respect to the maximum norm, that is, for all V, V '  E N~, 

lIT(V) - T ( V ' ) ] t ~  G fl]IV - V'llo~. 

For this reason, the sequence V(t)  produced by the value iteration algorithm converges 
to V*, at the rate of  a geometric progression. Unfortunately, this algorithm requires that 
we maintain and update a vector V of  dimension n and this is essentially impossible 
when n is extremely large. 

For notational convenience, it is useful to define for each policy 7r the operator T/'r : 

T : ( V )  : E[ci~{{)] + / 3  E p { j ( ~ - ( i ) ) V  j, 
jEs  

for each i E S. The operator T ~ is defined by 

T~(V)  : ( T [ ( V ) , . . . ,  Tg (V) ) .  

It is well known that T ~ is also a contraction of the maximum norm and that V ~r is its 
unique fixed point (Bertsekas, 1995). Note that, for any vector V E Nn we have 

T ( V )  : T ~v (V),  

since the cost-minimizing control action in Equation (2) is given by the greedy policy. 

3. Compact Representations and Features 

As mentioned in the introduction, the size of state spaces typically grows exponentially 
with the number of variables involved. Because of  this, it is often impractical to compute 
and store every component of a cost-to-go vector. We set out to overcome this limitation 
by using compact representations to approximate cost-to-go vectors. In this section, we 
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develop a formal framework for reasoning about compact representations and features 
as groundwork for subsequent sections, where we will discuss ways of  using compact 
representations for dynamic programming. The setting is in many respects similar to that 
in (Schweitzer and Seidman, 1985). 

A compact representation can be thought of  as a scheme for recording a high-  
dimensional cost-to-go vector V c ~ using a lower-dimensional parameter vector 
W E Nm (m << n). Such a scheme can be described by a mapping V : ~m ~_~ ~n  
which to any given parameter vector W E Nr, associates a cost- to-vector  V(W) .  In 
particular, each component I)/(W) of the mapping is the ith component of a cost-to-go 
vector represented by the parameter vector W.  Note that, although we may wish to 
represent an arbitrary vector V in Nn, such a scheme allows for exact representation 
only of  those vectors V which happen to lie in the range of  I). 

Let us define a feature f as a function from the state space S into a finite set Q 
of  feature values. For example, if the state i represents the number of  customers in a 
queueing system, a possible and often interesting feature f is defined by f (0 )  = 0 and 
f ( i )  = i if i > 0. Such a feature focuses on whether a queue is empty or not. 

Given a Markov decision problem, one may wish to use several features f l ,  - • -, fK,  
each one being a function from the state space S to a finite set Qk, k = 1 , . . . ,  K.  Then, 
to each state i C S, we associate the feature vector F(i)  = ( f l ( i ) , . . . ,  fK(i ) ) .  Such a 
feature vector is meant to represent the most salient properties of  a given state. Note 
that the resulting set of  all possible feature vectors is the Cartesian product of  the sets 
Qk and its cardinality increases exponentially with the number of features. 

In a feature-based compact representation, each component 1)/ of  the mapping Q is a 
function of  the corresponding feature vector F(i)  and the parameter vector W (but not an 

K ~m explicit function of  the state value i). Hence, for some function g : (~Ik=1 Qk) x 

~ ( w )  = 9(F(i), W). (3) 

If  each feature takes on real values, we have Qk c ~ for all k, in which case it may be 
natural to define the function 9 over all possible real feature values, 9 : NK x Nm ~_~ N, 
even though g will only ever be computed over a finite domain. Figure 1 illustrates the 
structure of  a feature-based compact representation. 

In most problems of  interest, Yi* is a highly complicated function of  i. A representation 
like the one in Equation (3) attempts to break the complexity of  V* into less complicated 
mappings 9 and F.  There is usually a trade-off between the complexity of  9 and F and 
different choices lead to drastically different structures. As a general principle, the feature 
extraction function F is usually hand crafted and relies on whatever human experience 
or intelligence is available. The function 9 represents the choice of  an architecture used 
for approximation and the vector W are the free parameters (or weights) of  the chosen 
architecture. When a compact representation is used for static function approximation, 
the values for the parameters W are chosen using some optimization algorithm, which 
could range from linear regression to backpropagation in neural networks. In this pa- 
per, however, we will develop parameter selection techniques for dynamic programming 
(rather than function approximation). Let us first discuss some alternative architectures. 
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Vector 

Parameter 
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= C o s t - T o - G o  

Figure 1. Block structure of a feature-based compact representation. 

Look-Up Tables 
One possible compact representation can be obtained by employing a look-up table in 

feature space, that is, by assigning one value to each point in the feature space. In this 
case, the parameter vector W contains one component for each possible feature vector. 
The function g acts as a hashing function, selecting the component of W corresponding 
to a given feature vector. In one extreme case, each feature vector corresponds to a single 
state, there are as many parameters as states, and V becomes the identity function. On 
the other hand, effective feature extraction may associate many states with each feature 
vector so that the optimal cost-to-go values of states associated to any particular feature 
vector are close. In this scenario, the feature space may be much smaller that the state 
space, reducing the number of required parameters. Note, however, that the number of 
possible feature vectors increases exponentially with the number of features. For this 
reason, look-up tables are only practical when there are very few features. 

Using a look-up table in feature space is equivalent to partitioning the state space 
and then using a common value for the cost-to-go from all the states in any given 
partition. In this context, the set of states which map to a particular feature vector 
forms one partition. By identifying one such partition per possible feature vector, the 
feature extraction mapping F defines a partitioning of the state space. The function g 
assigns each component of the parameter vector to a partition. For conceptual purposes, 
we choose to view this type of representation in terms of state aggregation, rather than 
feature-based look-up tables. As we will see in our formulation for Tetris, however, the 
feature-based look-up table interpretation is often more natural in applications. 

We now develop a mathematical description of state aggregation. Suppose that the state 
space S = {1, ..., n} has been partitioned into m disjoint subsets $1 , - . . ,  S,~, where m 
is the same as the dimension of the parameter vector W. The compact representations 
we consider take on the following form: 

9 (w) = wj,  

for any i c Sj. 
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There are no inherent limitations to the representational capability of such an archi- 
tecture. Whatever limitations this approach may have are actually connected with the 
availability of useful features. To amplify this point, let us fix some e > 0 and let us 
define, for all j ,  

Sy = {i I je  _< V~* < (j  + 1)¢}. 

Using this particular partition, the function V* can be approximated with an accuracy of 
¢. The catch is of course that since V* is unknown, we are unable to form the sets Sj. 
A different way of making the same point is to note that the most useful feature of a 
state is its optimal cost- to-go but, unfortunately, this is what we are trying to compute 
in the first place. 

Linear Architectures 

With a look-up table, we need to store one parameter for every possible value of 
the feature vector F(i), and, as already noted, the number of possible values increases 
exponentially with the number of features. As more features are deemed important, 
look-up tables must be abandoned at some point and a different kind of parametric 
representation is now called for. For instance, a representation of the following form can 
be used: 

K 

= w k A ( i ) .  
k = l  

(4) 

This representation approximates a cost-to-go function using a linear combination of 
features. This simplicity makes it amenable to rigorous analysis, and we will develop an 
algorithm for dynamic programming with such a representation. Note that the number 
of parameters only grows linearly with the number of features. Hence, unlike the case 
of look-up tables, the number of features need not be small. However, it is important to 
choose features that facilitate the linear approximation. 

Many popular function approximation architectures fall in the class captured by Equa- 
tion (4). Among these are radial basis functions, wavelet networks, polynomials, and 
more generally all approximation methods that involve a fixed set of basis functions. In 
this paper, we will discuss two types of these compact representations that are compatible 
with our algorithm - a method based on linear interpolation and localized basis functions. 

Nonlinear Architectures 

The architecture, as described by g, could be a nonlinear mapping such as a feedfor- 
ward neural network (multi-layer perceptron) with parameters W. The feature extraction 
mapping F could be either entirely absent or it could be included to facilitate the job 
of the neural network. Both of these options were used in the backgammon player of 
Tesauro and, as expected, the inclusion of features led to improved performance. Un- 
fortunately, as was mentioned in the introduction, there is not much that can be said 
analytically in this context. 
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4. Least-Squares Value Iteration: A Counter-Example 

Given a set of k samples {(il,V/~),(i2, V:*), (iK,V/~c) } of an optimal cost-to-go 

vector V*, we could approximate the vector with a compact representation ~" by choosing 
parameters W to minimize an error function such as 

K 

Z 
k = l  

i.e., by finding the "least-squares fit." Such an approximation conforms to the spirit of 
traditional function approximation. However, as discussed in the introduction, we do 
not have access to such samples of the optimal cost-to-go vector. To approximate an 
optimal cost-to-go vector, we must adapt dynamic programming algorithms such as the 
value iteration algorithm so that they manipulate parameters of compact representations. 

For instance, we could start with a parameter vector W(0) corresponding to an initial 
cost-to-go vector V(W(0)) ,  and then generate a sequence {W(t)lt = 1, 2, ...} of param- 
eter vectors such that V(W(t + 1)) approximates T(V(W(t))). Hence, each iteration 
approximates a traditional value iteration. The hope is that, by approximating individual 
value iterations in such a way, the sequence of approximations converges to an accurate 
approximation of the optimal cost-to-go vector, which is what value iteration converges 
tO, 

It may seem as though any reasonable approximation scheme could be used to generate 
each approximate value iteration. For instance, the "least-squares fit" is an obvious 
candidate. This involves selecting W(t + 1) by setting 

n 

i=1  

(5) 

However, in this section we will identify subtleties that make the choice of criterion for 
parameter selection crucial. Furthermore, an approximation method that is compatible 
with one type of compact representation may generate poor results when a different 
compact representation is employed. 

We will now develop a counter-example that illustrates the shortcomings of such a 
combination of value iteration and least-squares approximation. This analysis is par- 
ticularly interesting, since the algorithm is closely related to Q-learning (Watkins and 
Dayan, 1992) and temporal-difference learning (TD(A)) (Sutton, 1988), with A set to 
0. The counter-example discussed demonstrates the short-comings of some (but not all) 
variants of Q-learning and temporal-difference learning that are employed in practice. 1 

Bertsekas (1994) described a counter-example to methods like the one defined by 
Equation (5). His counter-example involves a Markov decision problem and a compact 
representation that could generate a close approximation (in terms of Euclidean distance) 
of the optimal cost-to-go vector, but fails to do so when algorithms like the one we 
have described are used. In particular, the parameter vector does converge to some 
W* c ~m, but, unfortunately, this parameter vector generates a poor estimate of the 
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w 2w 

Figure 2. A counter-example. 

optimal cost-to-go vector (in terms of  Euclidean distance), that is, 

ill)(W*) - V*t12 >> min []V(W) - V*II~ , 
WE~R ,~ 

where 1]. II 2 denotes the Euclidean norm. With our upcoming counter-example, we show 
that much worse behavior is possible: even when the compact representation can generate 
a perfect approximation of  the optimal cost-to-go function (i.e., m i n w  Ill)(W) - V* 112 = 
0), the algorithm may diverge. 

Consider the simple Markov decision problem depicted in Figure 2. The state space 
consists of two states, z l  and z2, and at state x t  a transition is always made to z2, which 
is an absorbing state. There are no control decisions involved. All transitions incur 0 
cost. Hence, the optimal cost-to-go function assigns 0 to both states. 

Suppose a feature f is defined over the state space so that f ( z l )  = 1 and f (z2)  = 2, 
and a compact representation of  the form 

~Zi(~l)) = w f ( i ) ,  ~ E { Z 1 , 2 C 2 } ,  

is employed, where w is scalar. When we set w to 0, we get l )(w) = V*, so a perfect 
representation of the optimal cost-to-go vector is possible. 

Let us investigate the behavior of the least-squares value iteration algorithm with the 
Markov decision problem and compact representation we have described. The parameter 
w evolves as follows: 

w(t  + 1) arg min E \ (<(w)  
2 

= -T{(V(w(t))))- 
w 6 ~rn 

iES 

= arg min ( (w -- ~2w(t))  2 + (2w - / 32w( t ) )2~ ,  
w C ~  \ / 

and we obtain 

w(t  + 1) = 6/3w(t). 

Hence, if /3 > ~ and w(0) 

(6) 

Counter-examples involving # 0, the sequence diverges. 
Markov decision problems that allow several control actions at each state can also be 
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produced. In that case, the least-squares approach to value iteration can generate poor 
control strategies even when the optimal cost-to-go vector can be represented. 

The shortcomings of straightforward procedures such as least-squares value iteration 
characterize the challenges involved with combining compact representations and dy- 
namic programming. The remainder of this paper is dedicated to the development of 
approaches that guarantee more graceful behavior. 

5. Value Iterationwith Look-Up Tables 

As a starting point, let us consider what is perhaps the simplest possible type of compact 
representation. This is the feature-based look-up table representation described in Section 
3. In this section, we discuss a variant of the value iteration algorithm that has sound 
convergence properties when used in conjunction with such representations. We provide 
a convergence theorem, which we formally prove in Appendix C. We also point out 
relationships between the presented algorithm and previous work in the fields of dynamic 
programming and reinforcement learning. 

5.1. Algorithmic Model 

As mentioned earlier, the use of a look-up table in feature space is equivalent to state 
aggregation. We choose this latter viewpoint in our analysis. We consider a partition 
of the state space S = { 1 , . . . ,  n} into subsets Sa, $2,. . . ,  Sin; in particular, S = $1 t2 
$2 to -- - u Sm and Si N Sj = 0 if i ¢ j .  Let V : ~m H ~n, the function which maps a 
parameter vector W to a cost-to-go vector V, be defined by: 

~ ( W )  = Wj, Vi ~ Sj. 

Let Af be the set of nonnegative integers. We employ a discrete variable t, taking on 
values in iV', which is used to index successive updates of the parameter vector W. Let 
W(t )  be the parameter vector at time t. Let F j be an infinite subset of iV" indicating 
the set of times at which an update of the j th component of the parameter vector is 
performed. For each set Sj, j = 1 , . . .  ,m,  let pJ(-) be a probability distribution over 
the set Sj. In particular, for every i E Sj, pJ (i) is the probability that a random sample 
from Sj is equal to i. Naturally, we have pJ(i) _> 0 and ~ i e s j  pJ(i) -- 1. 

At each time t, let X(t) be an m-dimensional vector whose j th component is a random 
representative of the set Sj, sampled according to the probability distribution pJ(.). We 
assume that each such sample is generated independently from everything else that takes 
place in the course of the algorithm. 2 

The value iteration algorithm applied at state Xj(t) would update the value VxAt), 
which is represented by Wj, by setting it equal to Txj(t)(V). Given the compact rep- 
resentation that we are using and given the current parameter vector W(t) ,  we actually 
need to set Wj to Tx~(t)(V(W(t))). However, in order to reduce the sensitivity of 
the algorithm to the randomness caused by the random sampling, Wj is updated in that 
direction with a small stepsize. We therefore end up with the following update formula: 
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Wj(t + 1) = (1 - a~(t))Wj(t) + aj(t)Tx~(t)(f(W(t))), t c r j, (7) 

Wi(t + 1) = Wi(t), t ~ F i. (8) 

Here, c~j (t) is a stepsize parameter between 0 and 1. In order to bring Equations (7) and 
(8) into a common format, it is convenient to assume that ~j(t) is defined for every j 
and t, but that c~j (t) = 0 for t ~ F j .  

In a simpler version of  this algorithm, we could define a single probability distribution 
p(-) over the entire state space S such that for each subset Sj ,  we have }-~iEsj px(i) > O. 
Then, defining x(t) as a state sampled according to the p(-), updates of  the form 

Wj(t + 1) = (1 - ~3(t))Wj(t) + c~j(t)T~(o(fz(W(t))), if x(t) • Sj, (9) 

Wj(t + 1) = Wy(t) ,  if x(t) ~ Sj, (10) 

can be used. The simplicity of  this version - primarily the fact that samples are taken 
from only one distribution rather than many - makes it attractive for implementation. 
This version has a potential shortcoming, though. It does not involve any adaptive 
exploration of  the feature space; that is, the choice of  the subset Sj to be sampled does 
not depend on past observations. This rules out the possibility of  adapting the distribution 
to concentrate on a region of the feature space that appears increasingly significant as 
approximation of the cos t - to -go  function ensues. Regardless, this simple version is the 
one chosen for application to the Tetris playing problem which is reported in Section 5. 

We view all of  the variables introduced so far, namely, aj(t), Xj(t) ,  and W(t), as 
random variables defined on a common probability space. The reason for c~j (t) being a 
random variable is that the decision whether W 3 will be updated at time t (and, hence, 
whether ay(t) will be zero or not) may depend on past observations. Let U( t )  be the set 
of  all random variables that have been realized up to and including the point at which 
the stepsize c~j (t) is fixed but just before Xj (t) is generated. 

5.2. Convergence Theorem 

Before stating our convergence theorem, we must introduce the following standard as- 
sumption concerning the stepsize sequence: 

Assumpt ion  1 a) For all i, the stepsize sequence satisfies 
o o  

Z o~(t) : oo, w.p.1. (11) 
t=O  

b) There exists some (deterministic) constant C such that 
(2<) 

a~(t)  _< C, w.p.1. (12) 
t=O  

Following is the convergence theorem: 
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THEOREM 1 Let Assumption 1 hold. 
(a) With probability 1, the sequence W ( t )  converges to W*, the unique vector whose 
components solve the following system of equations: 

w ;  = ~ F(g) r~(~(w*)) ,  vj. 
iESj 

(13) 

Define V* as the optimal cost-to-go vector and e E Nm by 

ei = max I~* - vz*t, vi E {1, ...,m}. 
j,IES~ 

Recall that 7rg(w. ) denotes a greedy policy with respect to cost-to-go vector fz(W*),  
i.e., 

7Cg(w.)(i ) = arg min (E[ci~] + t 3 E P i j ( u ) f / j ( W * ) ) .  
~EU('i) jES 

The following hold: 
(b) 

119(w*) - r * l l ~  <- lllell---~'- 

(c) 

iI V ~ < w ' >  - V*l l~  _< (1 - ~)2 ,  

(d) there exists an example for which the bounds in (b) and (c) both hoM with equality. 

A proof of Theorem 1 is provided in Appendix C. We prove the theorem by showing 
that the algorithm corresponds to a stochastic approximation involving a maximum norm 
contraction, and then appeal to a theorem concerning asynchronous stochastic approxi- 
mation due to Tsitsiklis (1994) (see also (Jaakola, Jordan, and Singh, 1994)), which is 
discussed in Appendix B, and a theorem concerning multi-representation contractions 
presented and proven in Appendix A. 

5.3. The Quality of Approximations 

Theorem 1 establishes that the quality of approximations is determined by the quality of 
the chosen features. If the true cost-to-go function V* can be accurately represented in 
the form I~'(W), then the computed parameter values deliver near optimal performance. 
This is a desirable property. 

The distressing aspect of Theorem 1 is the wide margin allowed by the worst-case 
bound. As the discount factor approaches unity, the ~ term explodes. Since discount 
factors close to one are most common in practice, this is a severe weakness. However, 
achieving or nearly achieving the worst-case bound in real world applications may be a 
rare event. These weak bounds are to be viewed as the minimum desired properties for 
a method to be sound. As we have seen in Section 4, even this is not guaranteed by 
some other methods in current practice. 
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5.4. Role of the Sampling Distributions 

The worst-case bounds provided by Theorem 1 are satisfied for any set of state-sampling 
distributions. The distribution of probability among states within a particular partition 
may be arbitrary. Sampling only a single state per partition constitutes a special case 
which satisfies the requirement. For this special case, a decaying stepsize is unnecessary. 
If a constant stepsize of one is used in such a setting, the algorithm becomes an asyn- 
chronous version of the standard value iteration algorithm applied to a reduced Markov 
decision problem that has one state per partition of the original state space; the con- 
vergence of such an algorithm is well known (Bertsekas, 1982; Bertsekas and Tsitsiklis, 
1989). Such a state space reduction is analogous to that brought about by state space dis- 
cretization, which is commonly applied to problems with continuous state spaces. Whitt 
(1978) considered this method of discretization and derived the bounds of Theorem 1, 
for the case where a single state is sampled in each partition. Our result can be viewed 
as a generalization of Whitt's, allowing the use of arbitrary sampling distributions. 

When the state aggregation is perfect in that the true optimal cost-to-go values for all 
states in any particular partition are equal, the choice of sampling function is insignificant. 
This is because, independent of the distribution, the error bound is zero when there is 
no fluctuation of optimal cost-to-go values within any partition. In contrast, when V* 
fluctuates within partitions, the error achieved by a feature-based approximation can 
depend on the sampling distribution. Though the derived bound limits the error achieved 
using any set of state distributions, the choice of distributions may play an important 
role in attaining errors significantly lower than this worst case bound. It often appears 
desirable to distribute the probability among many representative states in each partition. 
If only a few states are sampled, the error can be magnified if these states do not happen 
to be representative of the whole partition. On the other hand, if many states are chosen, 
and their cost-to-go values are in some sense averaged, a cost-to-go value representative 
of the entire partition may be generated. It is possible to develop heuristics to aid in 
choosing suitable distributions, but the relationship between sampling distributions and 
approximation error is not yet clearly understood or quantified. 

5.5. Related Work 

As was mentioned earlier, Theorem 1 can be viewed as an extension to the work of 
Whitt (1978). However, our philosophy is much different. Whitt was concerned with 
discretizing a continuous state space. Our concern here is to exploit human intuition 
concerning useful features and heuristic state sampling distributions to drastically reduce 
the dimensionality of a dynamic programming problem. 

Several other researchers have considered ways of aggregating states to facilitate dy- 
namic programming. Bertsekas and Castafion (1989) developed an adaptive aggregation 
scheme for use with the policy iteration algorithm. Rather than relying on feature ex- 
traction, this approach automatically and adaptively aggregates states during the course 
of an algorithm based on probability transition matrices under greedy policies. 
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The algorithm we have presented in this section is closely related to Q-learning and 
temporal-difference learning (TD(A)) in the case where A is set to 0. In fact, Theorem 1 
can easily be extended so that it applies to TD(0) or Q-learning when used in conjunction 
with feature-based look-up tables. Since the convergence and efficacy of TD(0) and Q- 
learning in this setting have not been theoretically established in the past, our theorem 
sheds new light on these algorithms. 

In considering what happens when applying the Q-learning algorithm to partially ob- 
servable Markov decision problems, Jaakola, Singh and Jordan (1995) prove a conver- 
gence theorem similar to part (a) of Theorem 1. Their analysis involves a scenario where 
the state aggregation is inherent because of incomplete state information - i.e., a policy 
must choose the same action within a group of states because there is no way a controller 
can distinguish between different states within the group - and is not geared towards 
accelerating dynamic programming in general. 

6. Example: Playing Tetris 

As an example, we used the algorithm from the previous section to generate a strategy 
for the game of Tetris. In this section we discuss the process of formulating Tetris as a 
Markov decision problem, choosing features, and finally, generating and assessing a game 
strategy. The objective of this exercise was to verify that feature-based value iteration 
can deliver reasonable performance for a rather complicated problem. Our objective was 
not to construct the best possible Tetris player, and for this reason, no effort was made 
to construct and use sophisticated features. 

6.1. Problem Formulation 

We formulated the game of Tetris as a Markov decision problem, much in the same spirit 
as the Tetris playing programs of Lippman, Kukolich and Singer (1993). Each state of 
the Markov decision problem is recorded using a two--hundred-dimensional binary vector 
(the wall vector) which represents the configuration of the current wall of bricks and a 
seven-dimensional binary vector which identifies the current falling piece. 3 The Tetris 
screen is twenty squares high and ten squares wide, and each square is associated with 
a component of the wall vector. The component corresponding to a particular square is 
assigned 1 if the square is occupied by a brick and 0 otherwise. All components of the 
seven-dimensional vector are assigned 0 except for the one associated with the piece 
which is currently falling (there are seven types of pieces). 

At any time, the set of possible decisions includes the locations and orientations at 
which we can place the falling piece on the current wall of bricks. The subsequent state 
is determined by the resulting wall configuration and the next random piece that appears. 
Since the resulting wall configuration is deterministic and there are seven possible pieces, 
there are seven potential subsequent states for any action, each of which occurs with 
equal probability. An exception is when the wall is higher than sixteen rows. In this 
circumstance, the game ends, and the state is absorbing. 
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Each time an entire row of squares is filled with bricks, the row vanishes, and the 
portion of the wall previously supported falls by one row. The goal in our version of 
Tetris is to maximize the expected number of rows eliminated during the course of a 
game. Though we generally formulate Markov decision problems in terms of minimizing 
costs, we can think of Tetris as a problem of maximizing rewards, where rewards are 
negative costs. The reward of a transition is the immediate number of rows eliminated. 
To ensure that the optimal cost-to-go from each state is finite, we chose a discount factor 
of/3 = 0.9999. 

In the vast majority of states, there is no scoring opportunity. In other words, given 
a random wall configuration and piece, chances are that no decision will lead to an im- 
mediate reward. When a human being plays Tetris, it is crucial that she makes decisions 
in anticipation of long-term rewards. Because of this, simple policies that play Tetris 
such as those that make random decisions or even those that make greedy decisions (i.e., 
decisions that maximize immediate rewards with no concern for the future) rarely score 
any points in the course of a game. Decisions that deliver reasonable performance reflect 
a degree of "foresight." 

6.2. Some Simple Features 

Since each combination of wall configuration and current piece constitute a separate state, 
the state space of Tetris is huge. As a result, classical dynamic programming algorithms 
are inapplicable. Feature-based value iteration, on the other hand, can be used. in order 
to demonstrate this, we chose some simple features and applied the algorithm. 

The two features employed in our experiments were the height of the current wall and 
the number of holes (empty squares with bricks both above and below) in the wall. Let 
us denote the set of possible heights by H = {0, ..., 20}, and the set of possible numbers 
of holes by L = {0, ..., 200}. We can then think of the feature extraction process as the 
application of a function F : S ~ H x L. 

Note that the chosen features do not take into account the shape of the current falling 
piece. This may initially seem odd, since the decision of where to place a piece relies 
on knowledge of its shape. However, the cost-to-go function actually only needs to 
enable the assessment of alternative decisions. This would entail assigning a value to 
each possible placement of the current piece on the current wall. The cost-to-go function 
thus needs only to evaluate the desirability of each resulting wall configuration. Hence, 
features that capture salient characteristics of a wail configuration are sufficient. 

6.3. A Heur is t ic  Eva lua t ion  F u n c t i o n  

As a baseline Tetris-playing program, we produced a simple Tetris player that bases 
state assessments on the two features. The player consists of a quadratic function 9 : 
H x L ~-~ ~ which incorporates some heuristics developed by the authors. Then, although 
the composition of feature extraction and the rule based system's evaluation function, 
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9 o F ,  is not necessarily an estimate of the optimal cost-to-go vector, the expert player 
follows a greedy policy based on the composite function. 

The average score of  this Tetris player on a hundred games was 31 (rows eliminated). 
This may seem low since arcade versions of  Tetris drastically inflate scores. To gain 
perspective, though, we should take into account the fact that an experienced human 
Tetris player would take about three minutes to eliminate thirty rows. 

6.4. Value Iteration with a Feature-Based Look-Up Table 

We synthesized two Tetris playing programs by applying the feature-based value iteration 
algorithm. These two players differed in that each relied on different state-sampling 
distributions. 

The first Tetris player used the states visited by the heuristic player as sample states 
for value iterations. After convergence, the average score of this player on a hundred 
games was 32. The fact that this player does not do much better than the heuristic player 
is not surprising given the simplicity of  the features on which both players base position 
evaluations. This example reassures us, nevertheless, that feature-based value iteration 
converges to a reasonable solution. 

We may consider the way in which the first player was constructed unrealistic, since 
it relied on a pre-existing heuristic player for state sampling. The second Tetris player 
eliminates this requirement by uses an ad hoc state sampling algorithm. In sampling 
a state, the sampling algorithm begins by sampling a maximum height for the wall of 
bricks from a uniform distribution. Then, for each square below this height, a brick is 
placed in the square with probability -34. Each unsupported row of bricks is then allowed 
to fall until every row is supported. The player based on this sampling function gave an 
average score of 11 (equivalent to a human game lasting about one and a half minutes). 

The experiments performed with Tetris provide some assurance that feature-based value 
iteration produces reasonable control policies. In some sense, Tetris is a worst-case sce- 
nario for the evaluation of automatic control algorithms, since humans excel at Tetris. 
The goal of algorithms that approximate dynamic programming is to generate reason- 
able control policies for large scale stochastic control problems that we have no other 
reasonable way of addressing. Such problems would not be natural to humans, and any 
reasonable policy generated by feature-based value iteration would be valuable. Further- 
more, the features chosen for this study were very crude; perhaps with the introduction 
of  more sophisticated features, feature-based value iteration would excel in Tetris. As a 
parting note, an additional lesson can be drawn from the fact that two strategies generated 
by feature-based value iteration were of  such disparate quality. This is that the sampling 
distribution plays an important role. 

7. Value Iteration with Linear Architectures 

We have discussed the use of  feature-based look-up tables with value iteration, and found 
that their use can significantly accelerate dynamic programming. However, employing a 
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look-up table with one entry per feature vector is viable only when the number of feature 
vectors is reasonably small. Unfortunately, the number of possible feature vectors grows 
exponentially with the dimension of the feature space. When the number of features 
is fairly large, alternative compact representations, requiring fewer parameters, must be 
used. In this section, we explore one possibility which involves a linear approximation 
architecture. More formally, we consider compact representations of the form 

K 

~ ( W )  = E Wkfk( i )  = W T  F(i) ,  
k = l  

Vi E S, (14) 

where W E R K is the parameter vector, F(i) = ( f l ( i ) , . . . ,  f n ( i ) )  E Ng  is the feature 
vector associated with state i, and the superscript T denotes transpose. This type of 
compact representation is very attractive since the number of parameters is equal to the 
number of dimensions of, rather than the number of elements in, the feature space. 

We will describe a variant of the value iteration algorithm that, under certain assump- 
tions on the feature mapping, is compatible with compact representations of this form, 
and we will provide a convergence result and bounds on the quality of approximations. 
Formal proofs are presented in Appendix D. 

7.1. Algorithmic Model 

The iterative algorithm we propose is an extension to the standard value iteration al- 
gorithm. At the outset, K representative states il ,  . . . ,  iK are chosen, where K is the 
dimension of the parameter vector. Each iteration generates an improved parameter vec- 
tor W ( t +  1) from a parameter vector W(t)  by evaluating Tt( f / (W(t ) )  ) at states il ,  ..., iK 
and then computing W ( t  + 1) so that Vi(W(t  + 1)) = Ti (V(W( t ) ) )  for i C {il ,  ..., iK}. 
In other words, the new cost-to-go estimate is constructed by fitting the compact repre- 
sentation to T(V) ,  where V is the previous cost-to-go estimate, by fixing the compact 
representation at il ,  ...,iK. If suitable features and representative states are chosen, 
V ( W ( t ) )  may converge to a reasonable approximation of the optimal cost-to-go vec- 
tor V*. Such an algorithm has been considered in the literature (Bellman (1959), Reetz 
(1977), Morin (1979)). Of these references, only (Reetz (1977)), establishes convergence 
and error bounds. However, Reetz's analysis is very different from what we will present 
and is limited to problems with one-dimensional state spaces. 

If  we apply an algorithm of this type to the counter-example of Section 4, with K = 1 
t the algorithm diverges. Thus, and il = xl ,  we obtain w(t + 1) = 2/3w(t), and if/3 > ~, 

an algorithm of this type is only guaranteed to converge for a subclass of the compact 
representations described by Equation (14). To characterize this subclass, we introduce 
the following assumption which restricts the types of features that may be employed: 

Assumption 2 Let il,  ..., iK E S be the pre-selected states used by the algorithm. 
(a) The vectors F( i l ) ,  ..., F( iK ) are linearly independent. 
(b) There exists a value /3' E [/3, 1) such that for any state i E S there exist 01(i), ..., 
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OK(i) E ~ with 

and 

K 

~'~ IOk(i)l ~ 1, 
k = l  

/71 K 
= EOk( i )F( ik ) .  F(i) -~ 

k = l  

In order to understand the meaning of  this condition, it is useful to think about the fea- 
ture space defined by {F(i)]i C S} and its convex hull. In the special case where/7 = / 7 '  

K 
and under the additional restrictions ~ k = l  Ok(i) = 1 for all i, and Ok(i) >_ O, the feature 
space is contained in the (K  - 1)-dimensional simplex with vertices F( i l ) , . . . ,  F(ig).  
Allowing fl' to be strictly greater than /7 introduces some slack and allows the fea- 
ture. space to extend a bit beyond that simplex. Finally, if we only have the condition 
Ek=l lek(i)l _< 1, the feature space is contained in the convex hull of  the vectors 

~, ~, , 
: t : -KF(i l ) ,  : h ~ - F ( i 2 ) , . . . ,  ~@F(iK).  

The significance of  the geometric interpretation lies in the fact that the extrema of  a 
linear function within a convex polyhedron must be located at the corners. Formally, 
Assumption 2 ensures that 

/7 ! 

The upcoming convergence proof capitalizes on this property. 
To formally define our algorithm, we need to define a few preliminary notions. First, 

the representation described by Equation (14) can be rewritten as 

~'(W) = MW, (15) 

where M 6 N~xK is a matrix with the ith row equal to F(i) T. Let L E ~KxK be a 
matrix with the kth row being F(ik) T. Since the rows of L are linearly independent, 
there exists a unique matrix inverse L -1 C ~KxK. We define M t C NKxn as follows. 
For k C {1, ..., K},  the ikth column is the same as the kth column of  L - z ;  all other 
entries are zero. Assuming, without loss of  generality, that i l  = 1, ...,/k = K, we have 

L ] = L - 1 L =  [, M t M  = [L - 1 0 ]  G 

where I C NKxK is the identity matrix and G represents the remaining rows of  M. 
Hence, M t is a left inverse of M.  

Our algorithm proceeds as follows. We start by selecting a set of  K states, il, ..., iK, 
and an initial parameter vector W(0) .  Then, defining T '  as M t o T o M,  successive 
parameter vectors are  generated using the following update rule: 

W(t + 1) = T'(W(t)).  (16) 
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7.2. Computational Considerations 

We will prove shortly that the operation T t applied during each iteration of our algorithm 
is a contraction in the parameter space. Thus, the difference between an intermediate 
parameter vector W(t) and the limit W* decays exponentially with the time index t. 
Hence, in practice, the number of iterations required should be reasonable. 4 

The reason for using a compact representation is to alleviate the computational time and 
space requirements of dynamic programming, which traditionally employs an exhaustive 
look-up table, storing one value per state. Even when the parameter vector is small and 
the approximate value iteration algorithm requires few iterations, the algorithm would 
be impractical if the computation of T ~ required time or memory proportional to the 
number of states. Let us determine the conditions under which T r can be computed in 
time polynomial in the number of parameters K rather than the number of states n. 

The operator T t is defined by 

T ' ( W ) =  MtT(MW). 

Since M t only has K nonzero columns, only K components of T(MW) must be 
computed: we only need to compute Ti(MW) for / = / 1 ,  .-., ik. Each iteration of our 
algorithm thus takes time O(K2tT) where tT is the time taken to compute Ti(MW) for 
a given state/.  For any state i, Ti(MW) takes on the form 

min (E[ei~] + ~-~pij(u)WTF(i)). ~Eu(i) jEs 

The amount of time required to compute ~ j e s  Pij (u)WTF(i) is O(NsK), where Ns is 
the maximum number of possible successor states under any control action (i.e., states j 
such that pij(u) > 0). By considering all possible actions u E U(i) in order to perform 
the required minimization, Ti(MW) can be computed in time O(N~NsK) where N~ is 
maximum number of control actions allowed at any state. The computation of T ~ thus 
takes time O(N~,N~K3). 

Note that for many control problems of practical interest, the number of control actions 
allowed at a state and the number of possible successor states grow exponentially with 
the number of state variables. For problems in which the number of possible successor 
states grows exponentially, methods involving Monte-Carlo simulations may be coupled 
with our algorithm to reduce the computational complexity to a manageable level. We 
do not discuss such methods in this paper since we choose to concentrate on the issue 
of compact representations. For problems in which the number of control actions grows 
exponentially, on the other hand, there is no satisfactory solution, except to limit choices 
to a small subset of allowed actions (perhaps by disregarding actions that seem "bad" a 
priori). In summary, our algorithm is suitable for problems with large state spaces and 
can be modified to handle cases where an action taken at a state can potentially lead 
to any of a large number of successor states, but the algorithm is not geared to solve 
problems where an extremely large number of control actions is allowed. 
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7.3. Convergence Theorem 

Let us now proceed with our convergence result for value iteration with linear architecturesfi 

THEOREM 2 Let Assumption 2 hold. 
(a) There exists a vector W* E ~ K  such that W ( t )  converges to W*. 
(b) T '  is a contraction, with contraction coefficient/3', with respect to a norm ]l " l[ on 
~ :  defined by 

Ilwll :-IfMWll~. 
Let V* be the optimal cost-to-go vector, and define e by letting 

e =  inf [ i V * - 9 ( W ) ] l o o  , 
WC~ K 

where V* is the optimal cost-to-go vector. Recall that rc~/(w. ) denotes a greedy policy 

with respect to cost-to-go vector I7(W*), i.e., 

ueu(i) 
j c s  

The following hold: 
( c )  

(d) 

IIV* - 9 ( w * ) t l ~  _< 
/3+/3 '  

/3(1 - /3 , )  e, 

2(/~ + 5') ][V'~r~(w*> - V*]]~  < 
(1 - /3)(1 - /3')  e, 

(e) there exists an example for which the bounds of (c) and (d) hold with equality. 

This result is analogous to Theorem 1. The algorithm is guaranteed to converge and, 
when the compact representation can perfectly represent the optimal cost-to-go vector, 
the algorithm converges to it. Furthermore, the accuracy of approximations generated 
by the algorithm decays gracefully as the propriety of the compact representation dimin- 
ishes. The proof of this Theorem involves a straightforward application of Theorem 3 
concerning multi-representation contractions, which is presented in Appendix D. 

Theorem 2 provides some assurance of reasonable behavior when feature-based linear 
architectures are used for dynamic programming. However, the theorem requires that the 
chosen representation satisfies Assumption 2, which seems very restrictive. In the next 
two sections, we discuss two types of compact representations that satisfy Assumption 2 
and may be of practical use. 

8. Example: Interpolative Representations 

One possible compact representation can be produced by specifying values of K states 
in the state space, and taking weighted averages of these K values to obtain values of 
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other states. This approach is most natural when the state space is a grid of points in 
a Euclidean space. Then, if cost-to-go values at states sparsely distributed in the grid 
are computed, values at other points can be generated via interpolation. Other than the 
case where the states occupy a Euclidean space, interpolation-based representations may 
be used in settings where there seems to be a small number of  "prototypical" states that 
capture key features. Then, if cost-to-go values are computed for these states, cost-to-go 
values at other states can be generated as weighted averages of cost-to-go values at the 
"prototypicar '  states. 

For a more formal presentation of  interpolation-based representations, let S = { 1, . . . ,  n} 
be the states in the original state space and let i l , . . .  , iK C S be the states for which 
values are specified. The kth component of  the parameter vector W E NK stores the 
cost-to-go value of  state ik. We are then dealing with the representation 

~(W) = { Wi, if i e { i l , . . . , i K } ,  
wT F( i), otherwise,  (17) 

where F(i) E ~K is a vector used to interpolate at state i. For any i C S, the vector 
F(i) is fixed; it is a part of  the interpolation architecture, as opposed to the parameters 
W which are to be adjusted by an algorithm. The choice of the components fk(i) of 
F(i) is generally based on problem-specific considerations. For the representations we 
consider in this section, we require that each component fk(i) of F(i) be nonnegative 

K and ~-~k=l fk(i) = 1 for any state i. 
In relation to feature-based methods, we could view the vector F(i) as the feature 

vector associated with state i. To bring Equation (17) into a uniform format, let us 
define v e c t o r s  { F ( i l )  , . . . ,  F(iK)} as the usual basis vectors of  ~m so that we have 

9 (w) = vi  s .  

To apply the algorithm from Section 6, we should show that Assumption 2 of  Theorem 
2 is satisfied. Assumption 2(a) is satisfied by the fact that F ( i l ) ,  ..., F ( i K )  are the basis 

vectors of  Rr, .  This fact also implies that F(i) K = ~k=x Ok(i)t?(ik) for Ok(i) = fk(i). 
Since the components of  F(i) sum to one, Assumption 2(b) is satisfied with /3' = ft. 
Hence, this interpolative representation is compatible with the algorithm of Section 6. 

9. Example: Localized Basis Functions 

Compact representations consisting of  linear combinations of  localized basis functions 
have attracted considerable interest as general architectures for function approximation. 
Two examples are radial basis function (Poggio and Girosi, 1990) and wavelet networks 
(Bakshi and Stephanopoulos, 1993). With these representations, states are typically 
contained in a Euclidean space Nd (typically forming a finite grid). Let us continue 
to view the state space as S = {1, ..., n}. Each state index is associated with a point 
x ~ E ~d. With a localized basis function architecture, the cost-to-go value of  state i E S 
takes on the following form: 
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K 

= Z 
k = l  

(18) 

where W E N d  is the parameter vector, and the function q5 : Nd x Nd x N ~ ~ is the 
chosen basis function. In the case of  radial basis functions, for instance, ~b is a Ganssian, 
and the second and third arguments, #k E ~d and ak E N, specify the center and dilation, 
respectively. More formally, 

Vz, # E ~d, cr E N, 

where tl" [[2 denotes the Euclidean norm and a c ~ is a normalization factor. Without loss 
of  generality, we assume that the height at the center of  each basis function is normalized 
to one. In the case of  radial basis functions, this means a = 1. For convenience, we will 
assume that #k = x i~ for k E { 1 , . . . ,  K } ,  where i l , . . . ,  iK are preselected states in S. 
In other words, each basis function is centered at a point that corresponds to some state. 

Architectures employing localized basis functions are set apart from other compact 
representations by the tendency for individual basis functions to capture only local char- 
acteristics of  the function to be approximated. This is a consequence of  the fact that 
¢(x,  #, or) generates a significant value only when x is close to #. Otherwise, ¢(x,  #,  a)  
is extremely small. Intuitively, each basis function captures a feature that is local in 
Euclidean space. More formally, we use locality to imply that a basis function, 9, has 
maximum magnitude at the center, so ¢(# ,  #, ~7) = 1 while [¢(x, #, ~7)1 < 1 for x ¢ #. 
Furthermore, I~b(x, #, cr) [ generally decreases as I Iz  - ~112 increases, and the dilation pa- 
rameter controls the rate of  this decrease. Hence, as the dilation parameter is decreased, 
[qS(z, c, a)l becomes increasingly localized, and formally, for all x # #, we have 

lim ¢(x,  #, ~7) = 0 .  
o'----~0 

In general, when a localized basis function architecture is used for function approxima- 
tion, the centers and dilations are determined via some heuristic method which employs 
data and any understanding about the problem at hand. Then, the parameter vector W 
is determined, usually via solving a least-squares problem. In this section, we explore 
the use of  localized basis functions to solve dynamic programming, rather than func- 
tion approximation, problems. In particular, we show that, under certain assumptions, 
the algorithm of Section 6 may be used to generate parameters for approximation of a 
cost-to-go function. 

To bring localized basis functions into our feature-based representation framework, we 
can view an individual basis function, with specified center and dilation parameter, as 
a feature. Then, given a basis function architecture which linearly combines K basis 
functions, we can define 

and a feature mapping F ( i )  = ( f l ( i ) , . . .  f~.( i )) .  The architecture becomes a special 
case of  the familiar feature-based representation from Section 6: 
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K 

9 ( w )  = g(F(i) ,  w )  = WkA(0, 
k = l  

Vi E S. (19) 

We now move on to show how the algorithm introduced in Section 6 may be applied 
in conjunction with localized basis function architectures. To do this, we will provide 
conditions on the architecture that are sufficient to ensure satisfaction of Assumption 2. 
The following formal assumption summarizes the sufficient condition we present. 

Assumption 3 (a) For all k c { 1 , . . . ,  K}, 

(b) For all j E { 1 , . . . , K } ,  

(c) With 6 defined by 

fk(ik) = 1. 

IA(ia)t < 1. 
k#] 

_~ max ~ I A ( / j ) I ,  
j e { 1 , . . , K }  k=fij 

there exists a ,9' E [/9, 1) such that, for all i E S, 

K 

l f k ( O I  _< - 

Intuitively, 6 is a bound on the influence of other basis functions on the cost-to-go 
value at the center of a particular basis function. By decreasing the dilation parameters 
of the basis functions, we can make (5 arbitrarily small. Combined with the fact that 

K 
max~es ~ k = l  F(i)  approaches unity as the dilation parameter diminishes, this implies 
that we can ensure satisfaction of Assumption 3 by choosing sufficiently small dilation 
parameters. In practice, a reasonable size dilation parameter may be desirable, and 
Assumption 3 may often be overly restrictive. 

We will show that Assumption 3 guarantees satisfaction of Assumption 2 of Theorem 2. 
This will imply that, under the given restrictions, localized basis function architectures are 
compatible with the algorithm of Section 6. We start by choosing the states {il, • •., iK } 
to be those corresponding to node centers. Hence, we have x ~ = #k for all k. 

Define/3 E ~ ; x K  as a matrix whose kth column is the feature vector F(ik) .  Define 
[ l l l l  : ~K H ~ a s  the ll norm on NK. Suppose we choose a vector 0 ~ NK with 
II0111 = 1. Using Assumptions 3(a) and 3(b), we obtain 

K 

LL/3olll : Z ojF(ij) 1 
j = l  

K K 

:  ojf (ij) 
k=l j:l 
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_> 
K 

Z 
k = l  

1 - 

> 1 -  

> 0. 

jCk 
K 

}--~ lOjl }-]~ lA(ij)l 
j = l  kCj 

K 

~10 j16  
j = l  

5 

Hence, B is nonsingular. It follows that the columns of  /3, which are the vectors 
F ( i l ) , . . . ,  F(ik), are linearly independent. Thus, Assumption 2(a) is satisfied. 

We now place an upper bound on liB-Ill1, the /1- induced norm o n / 3 - 1 :  

liB-1111 = 

< 

IlB-lzlll  
m a x  

x ~ K  I I z l l l  

r a i n  I l e l l l  
0e~K [[BOII1 

1 

1 - 5  

Let us define O(i) = B - 1 F ( i )  so that 

K 

F(i)  = Z 0k(i)F(ik)  
k = l  

For any i, we can put a bound on II0(i)lll as follows: 

II0(i)111 = IIB-1F(i)II1 

_< IIB-XlllllF(i)lla 
< IIF(i)II~ 
- 1 - 6  
< /3t. 
- 

Hence, Assumption 2(b) is satisfied. It follows that the algorithm of Section 6 may be 
applied to localized basis function architectures that satisfy Assumption 3. 

1 0 .  C o n c l u s i o n  

We have proved convergence and derived error bounds for two algorithms that employ 
feature-based compact representations to approximate cos t - to-go  functions. The use of 
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compact representations can potentially lead to the solution of many stochastic control 
problems that are computationally intractable to classical dynamic programming. 

The algorithms described in this paper rely on the use of features that summarize the 
most salient characteristics of a state. These features are typically hand-crafted using 
available experience and intuition about the underlying Markov decision problem. If 
appropriate features are chosen, the algorithms lead to good solutions. When it is not 
clear what features are appropriate, several choices may be tried in order to arrive at a set 
of features that enables satisfactory performance. However, there is always a possibility 
that a far superior choice of features exists but has not been considered. 

The approximation architectures we have considered are particularly simple. More 
complex architectures such as polynomials or artificial neural networks may lead to 
better approximations. Unfortunately, the algorithms discussed are not compatible with 
such architectures. The development of algorithms that guarantee sound behavior when 
used with more complex architectures is an area of open research. 
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Appendix A 

Multi-Representation Contractions 

Many problems requiring numerical computation can be cast in the abstract framework 
of fixed point computation. Such computation aims at finding a fixed point V* E N~ 
of a mapping T : N~ ~ ~n;  that is, solving the equation V = T(V). One typical 
approach involves generating a sequence {V(t)lt  = 0, 1,2,...} using the update rule 
V(t + 1) = T(V(t)) with the hope that the sequence will converge to V*. In the context 
of dynamic programming, the function T could be the value iteration operator, and the 
fixed point is the optimal cost-to-go vector. 

In this appendix, we deal with a simple scenario where the function T is a contraction 
mapping - that is, for some vector norm I f  tl, we have lIT(V) - T(V')I[ _</3HV - VII 
for all V, V'  E Nn and some/3 E [0, 1). Under this assumption, the fixed point of T is 
unique, and a proof of convergence for the iterative method is trivial. 

When the number of components n is extremely large (n often grows exponentially with 
the number of variables involved in a problem), the computation of T is inherently slow. 
One potential way to accelerate the computation is to map the problem onto a smaller 
space ~'~ (m << n), which can be thought of as a parameter space. This can be done by 
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defining a mapping V : ~ m  ~ Nn and a pseudo-inverse f / f  : ~n  ~ ~m.  The mapping 
V can be thought of  as a compact  representation. A solution can be approximated by 
finding the fixed point  of  a mapping T ~ : i}~m ~ ~}q~rn defined by T ~ = le't o T o f/ .  The 

hope is that f / ( W * )  is close to a fixed point  o f T  if  W* is a fixed point of  TC Ideally, if  
the compact  representation can exactly represent a fixed point V* E Nn of  T - that is, if  
there exists a W E ~ m  such that ~ ' ( W )  = V* - then W should be a fixed point of  T ~. 
Furthermore, if the compact  representation cannot exactly, but can closely, represent the 
fixed point V* E ~n. of  T then W* should be close to V*. Clearly, choosing a mapping 
f / f o r  which I ) ( W )  may closely approximate fixed points of  T requires some intuition 
about where fixed points should generally be found in ~n .  

A.1. Formal Framework 

Though the theorem we will prove generalizes to arbitrary metric spaces, to promote 
readability, we only treat normed vector spaces. We are given the mappings T : ~R '~ ~-+ 
5}~n, f /  : ~rn e--+ l}~n, and V-f : ~ n  ~ ~m.  We employ a vector norm on ~ n  and a 

vector norm on ~m,  denoting both by H" II- We have m < n, so the norm being used in 
a particular expression can be determined by the dimension of  the argument. Define a 
mapping T '  : ~m ~_+ ~,~ by T t = ~ t  o T o f / .  We make two sets of assumptions. The 

first concerns the mapping T. 

Assumption 4 The mapping T is a contraction with contraction coefficient/3 E [0, 1) 
with respect to I[ " ]]- Hence, for all V, V '  c ~R n, 

I I ~ ( V )  - T ( V ' ) l l  ~ / 3 1 I V  - V ' l l .  

Our second assumption defines the relationships between V and Qt .  

Assumption 5 The following hold for the mappings f~ and f/f  : 
(a) For all W E ~R "~, 

W = 9 t ( 9 ( W ) ) .  

(b) There exists a/3' E [/3, 1) such that, for all W, W '  C ~R m, 

/3' l l g ( W )  - 9 (W' ) l l  <_ ~ l i w  - W'll. 

(c) For all V, V'  E T¢ n, 

l l v t ( v )  - v t ( v ' ) l l  ~ I IV  - V ' l l -  

Intuitively, part (a) ensures that Qf is a pseudo-inverse of  V. Part (b) forces points that 
are close in ~ '~  to map to points that are close in ~ ,  and part (c) ensures the converse, 
nearby points in ~n  must project onto points in ~R m that are close. 



FEATURE-BASED METHODS 87 

A.2. Theorem and Proof 

Since T is a contraction mapping, it has a unique fixed point V*. Let 

= inf IlK* - f ~ ( w ) l l .  
W E ~  m 

THEOREM 3 
(a) We have 

Let Assumptions 4 and 5 hold. 

I IT ' (W) - T ' (W' ) I I  ~</3'llW - W'l l ,  

for all W, W'  e ~m. 
(b) If W* is the fixed point of T', then 

/ 3 + / 3 '  
I l V * - 9 ( W * ) l l  _< /3(1- - /3 ' )  e" 

This theorem basically shows that T '  is a contraction mapping, and if V* can be closely 
approximated by the compact representation then W* provides a close representation of 
V * .  

Proof of Theorem 3 (a) Take arbitrary W, W '  c ~m. Then, 

I IT ' (W) - T ' (W' ) I ]  = 

< 

_< 

_< 

I1 f , t  ( T ( f ~ ( W ) ) )  - 9 t  ( T ( 9 ( W ' ) ) ) I I  

I l T ( f ' ( W ) )  - T ( V ( W ' ) ) I I  

/311f~(w) - f~(W')l l  

/~'llW - W'll. 

Hence, T '  is a contraction mapping with contraction coefficient j3'. 
(b) Let e' = e + 6 for some 6 > 0. Choose Wopt E Nm such that tlV* -V(Wopt)l] < c'. 
T h e n ,  

IlWopt - T'(Wopt)l l  = [[Vt (P(Wopt ) )  - f ' t (T (V(Wop t ) ) ) [ t  

<_ l l9(Wopt)  - T ( 9 ( W o p t ) ) l l  

<_ IIf~(Wopt) - V*ll + IIT(f~(Wopt)) - V*ll 

< c' + /3c '  

= (1 + fl) , ' .  

Now we can place a bound on [IW* - Woptll: 

llW* - Wo,,,ll <_ IlW* - T'(Wop,)l l  + IlT'(Wop~) - Wo,,,ll 

< ;~'llW* - Wo,,,IL + (1 +/3)~', 

and it follows that 
1 + / 3  t 

IIw* -Wop~ll < ~ . 
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Next, a bound can be put on [IV* - I)(W*)II :  

IIV* - ? ( W * ) l l  _ IIV* - ? ( W o ~ d l l  + IlfZ(wo~t) - # ( W * ) l l  

-}11 < d + wop~ - w *  I1 

3' / 1 +  /3"~ , 
< + 

~ + 3 '  , 

- : 5 , ) , .  

Since 5 can be arbitrarily small, the proof  is complete. [] 

Appendix B 

Asynchronous Stochastic Approximation 

Consider an algorithm that performs noisy updates of  a vector V E ~n ,  for the purpose 
of solving a system of equations of  the form T ( V )  : V. Here T is a mapping from ~n 
into itself. Let T 1 , . . . ,  T~ : ~ ~ ~ be the corresponding component mappings; that is, 
T ( V )  = ( T I ( V ) , . . .  , Tn (V) )  for all V E ~ .  

Let Af be the set of  nonnegative integers, let V( t )  be the value of the vector V at time 
t, and let V/(t) denote its ith component. Let F ~ be an infinite subset of  A c indicating 
the set of times at which an update of  Vi is performed. We assume that 

Vi(t + 1) = Vi(t), t ¢ r / .  (B.1) 

and 

V/(t + 1) = V/(t) + c~i( t ) (Ti(V(t ) )  - Vi(t) + ~i ( t ) ) ,  t E F i. (B.2) 

Here, a i ( t )  is a stepsize parameter between 0 and 1, and r/i(t) is a noise term. In order 
to bring Equations (B.1) and (B.2) into a unified form, it is convenient to assume that 
c~(t) and ~ ( t )  are defined for every i and t, but that a i ( t )  = 0 for t ~ F ~. 

Let U( t )  be the set of  all random variables that have been realized up to and including 
the point at which the stepsizes c~i(t) for the tth iteration are selected, but just before 
the noise term rli(t) is generated. As in Section 2, II" ll~ denotes the maximum norm. 
The following assumption concerns the statistics of  the noise. 

Assumpt ion  6 (a) For ever), i and t, we have E[rh(t ) [ -)c(t)] = 0. 
(b) There exist (deterministic) constants A and B such that 

E[rj]( t )  I F ( t ) ]  <_ A + BNV(t)I[~,  Vi, t. 

We then have the following result (Tsitsiklis, 1994) (related results are obtained in 
(Jaakola, Jordan, and Singh, 1994)): 
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THEOREM 4 Let Assumption 6 and Assumption 1 of Section 5 on the stepsizes ai(t) 
hold and suppose that the mapping T is a contraction with respect to the maximum norm. 
Then, V(t) converges to the unique fixed point V* ofT,  with probability 1. 

Appendix C 

Proof of Theorem 1 

(a) To prove this result, we will bring the aggregated state value iteration algorithm into 
a form to which Theorems 3 and 4 (from the Appendices A and B) can be applied and 
we will then verify that the assumptions of  these theorems are satisfied. 

Let us begin by defining a function T r : Nrn ~ Nm, which in some sense is a noise- 
free version of  our update procedure on W(t). In particular, the j th  component T~ of 
T '  is defined by 

iES# 

The update equations (7) and (8) can be then rewritten as 

W#(t + 1) = (1 - a#(t))W#(t) + a#(t)(T~(W) + ~#(t)). (C.2) 

where the random variable ~?j (t) is defined by 

( t )  = - E l . 

Given that each Xj (t) is a random sample from Sj whose distribution is independent of 
~ ( t )  we obtain 

E[vj(t) I ~( t ) ]  = E[~j(t)] = O. 

Our proof consists of  two parts. First, we use Theorem 3 to establish that T '  is a 
maximum norm contraction. Once this is done, the desired convergence result follows 
from Theorem 4. 

Let us verify the assumptions required by Theorem 3. First, let us define a function 
Q t : ~ - ~ a s  

ic s# 

This function is a pseudo-inverse of  V since, for any W E ~M, 

= = w j .  

iESj 

We can express T r as T r = ~-t o T o V, to bring it into the form of Theorem 3. In this 
context, the vector norm we have in mind for both ~n and ~}~m is the maximum norm, 

I -112. 



90 J.N. TSITSIKLIS AND B. VAN ROY 

Assumption 4 is satisfied since T is a contraction mapping. We will now show that lS't  
I),  and T,  satisfy Assumption 5. Assumption 5(a) is satisfied since ~ t  is a pseudo-inverse 
of  V. Assumption 5(b) is satisfied wi th /3 '  = / 3  since 

119(w) - 9 ( w ' ) l l ~  = max~ES ~ ( W )  - ~ ( W ' )  

= m a x  Iwj- w;I 
jE(1 . . . . . .  } 

= I I w -  w'lloo. 

Assumption 5(c) is satisfied because 

119*(v) - 9 t ( y ' ) l l o o  -- m a x  E p J ( i ) ( V / -  V/') 
/E{1 ..... m} 

iESj 

<__ m a x  m a x  ]Vi - -  V/'] 
jG{1,...,m} i 6 S  5 

= IIY-  r ' t l~ .  

Hence, Theorem 3 applies, and T t must be a maximum norm contraction with contraction 
coefficient/3. 

Since T '  is a maximum norm contraction, Theorem 4 now applies as long as its 
assumptions hold. We have already shown that 

E[wj(t)  ] F ( t ) ]  = 0, 

so Assumption 6(a) is satisfied. As for Assumption 6(b) on the variance of fly (t), the 
conditional variance of our noise term satisfies 

_< 8max(E[c ,~ ] )  2 + SllWCt)ll . 

Hence, Theorem 4 applies and our proof is complete. 
(b) If  the maximum fluctuation of V* within a particular partition is ei then the mini- 

mum error that can be attained using a single constant to approximate the cost-to-go of 
every state within the partition is ~ .  This implies that m i n w  I IV(W)  - V *  lion, the min- 

imum error that can be attained by an aggregated state representation, is ~ .  Hence, 

by substituting e with --,rle~ and recalling that we have/3~ = /3 ,  the result follows from 
Theorem 3(b). 

(c) Now that we have a bound on the maximum norm between the optimal cost-to-go 
estimate and the true optimal cost-to-go vector, we can place a bound on the maximum 
norm between the cost of a greedy policy with respect to V ( W * )  and the optimal policy 
as follows: 

]IV ~'2~w*~ - v*ll~o < IIv ~ ' ~ * ~  - T(V(W*)) l loo  ÷ ] IT(V(W*))  - v*Hoo. 
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Wl, 2 w3,4 

0 " 

'.. 0 i  ".. 

C -C 

Figure C.1. An example for which the bound holds with equality. 

I I V  ~ < w ' >  - V*lloo _< 
< 

_< 

I t  fo l lows that 

Since T ( V )  = T Try (V)  for all V ¢ R ~, we have 

II v ~ ( ' ' )  - T'~'~(w*) (l?(W*))l]o~ + lIT(IT(W*)) - V*l l~  

/3II v ~ ( W ' )  - ? ( w * ) I l o o  + ~ l l ? ( W * )  - V*l loo 

~ l l V  ~<w '~  - V * l l ~ ( 1  + ~ ) l lV *  - ~7(W*)lloo. 

- v*ll~ _< 12~911~7(w * ) _  - v*ll~ 

-< ( 1 2 ~ / )  2 ]lell~" 

(d) Consider the four-state Markov decision problem shown in Figure C. 1. The states 
are z l ,  3:2, 3:3, and 3:4, and we form two partitions, the first consisting of  3:1 and :r2, 
and the second containing the remaining two states. All  transition probabil i t ies are one. 
No control decisions are made at states 3:1, 3:2, or 3:4- State 3:1 is a zero-cost absorbing 
state. In state z2 a transition to state z l  is inevitable, and, likewise, when in state 3:4, 
a transition to state z3 always occurs. In state z3 two actions are allowed: move and 

stay. The transition cost for each s tate-act ion pair is deterministic, and the arc labels in 
Figure C. 1 represent the values. Let c be an arbitrary positive constant and, let b, the 
cost of  staying in state z3, be defined as b 2;~c-6 - 1-~ , with 5 < 2/3c. Clearly, the optimal 

cost-to-go values at z l ,  3:2, z3 ,  and :c4 are 0, c, 0, - c ,  respectively, and Ilell = c. 
Now, let us define sampling distributions, within each partition, that will be used with 

the algorithm. In the first partition, we always sample :r2 and in the second partition, we 
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always sample x4. Consequently, the algorithm will converge to partition values w* 1,2 
and w~, 4 satisfying the following equations: 

~'1,2 = c + /7w~,2  

* = - c + f l w ~ , 4 .  2/33, 4 

It is not hard to see that the unique solution is 

C 
Wl,2 1 - / 7  

--C 

W3'4 ~ 1-----'~" 

The bound of  part (b) is therefore satisfied with equality. 
Consider the greedy policy with respect to w. For 6 > 0, the stay action is chosen 

2flc--6 at state x3, and the total discounted cost incurred starting at state x3 is (1_~)2. When 

8 = 0, both actions, stay and move, are legitimate choices. If  stay is chosen, the bound 
of  part (c) holds with equality. [] 

Appendix D 

Proof  of  Theorem 2 

(a) By defining V t ( V )  = MtV,  we have T t = I I t  o T o  T/, which fits into the framework 
of  multi-representation contractions. Our proof  consists of  a straightforward applica- 
tion of Theorem 3 from Appendix A (on multi-representation contractions). We must 
show that the technical assumptions of Theorem 3 are satisfied. To complete the multi- 
representation contraction framework, we must define a norm in our space of cost-to-go 
vectors and a norm in the parameter space. In this context, as a metric for parameter 
vectors, let us define a norm I1 II by 

IIWII = ~ I I M W I t ~ .  

Since M has full column rank, tl " II has the standard properties of  a vector norm. For 
cost-to-go vectors, we employ the maximum norm in Nn as our metric. 

We know that T is a maximum norm contraction, so Assumption 4 is satisfied. As- 
sumption 5(a) is satisfied since, for all W E ~K,  

~ t ( v ( w ) )  = M f M W  

= W. 

Assumption 5(b) follows from our definition of II - II and the fact that /3 '  E [/3, 1): 

IIW - W' l l  = -~t lMW - MW'[I~ 

- /3 l l g ( w )  - 9 ( w ' ) l l ~ .  
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Showing that Assumption 2 implies Assumption 5(c) is the heart of this proof. To do 
this, we must show that, for arbitrary cost-to-go vectors V and W, 

iI V _ V,  iioo > I lVt (w ) _ v t ( w ' ) l f .  (D.1) 

Define m = ~ M ( V t ( V )  - Vf(Vr)).  Then, for arbitrary i E S we have 

ID{I = -~lFX(i)(V¢(V) - Vt(V'))l - 

Under Assumption 2 there exist positive constants 0 1 ( i ) ,  . . . ,  OK(i) @ ~, with 
K Ek=x f0k(i)[ -< 1, such that F(i) = ~ E K I  Ok(i)F(ik). It follows that, for such 

01 ( / ) ,  ...,OK(i ) E ~}~, 

3 3 , ' ~  
IDol _< ~ l ( ~  ~ Ok(i)FT(ik))(Vt(V) - Vt(V'))l  

k = l  

_< m ~  IF= ' ( ik ) (V~(V)  - V~t(V'))l 
k 

_< I D ~  t 

= IV~ - Y--' I 
7, k 

_< I I V  - V ' l l o o .  

Inequality (D.1) follows. Hence, Theorem 3 applies, implying parts (a), (b), and (c), of 
Theorem 2. 

Part (d) can be proven using the same argument as in the proof of Theorem 1 (c). For 
part (e), we can use the same example as that used to prove part (d) of Theorem 1. 

[] 

Notes 

1. To those familiar with Q-learning or temporal-difference learning: the counter-example applies to cases 
where temporal-difference or Q-learning updates are perfoimed at states that are sampled uniformly from 
the entire state space. Often times, however, temporal-difference methods assume that sample states are 
generated by following a randomly produced complete trajectory. In our example, this would correspond 
to starting at state x l ,  moving to state x2, and then doing an infinite number of self-transitions from state 
xz to itself. If this mechanism is used, our example is no longer divergent, in agreement with results of 

Dayan (1992). 
2. We take the point of view that each of these samples is independently generated from the same probability 

distribution. If the samples were generated by a simulation experiment, as Monte-Carlo simulation under 
some fixed policy, independence would fail to hold. This would complicate somewhat the convergence 
analysis, but can be handled as in (Jaakola, Singh and Jordan, 1995). 

3. The way in which state is recorded is inconsequential, so we have made no effort to minimize the number 
of vector components required. 

4. To really ensure a reasonable order of growth for the number of required iterations, we would have to 
characterize a probability distribution for the difference between the initial parameter vector W(0)  and the 
goal W* as well as how close to the goal W* the parameter vector W(t) must be in order for the error 

bounds to hold. 

5. Related results have been obtained independently by Gordon (1995). 
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