
Machine Learning, 22, 59-94 (1996)
© 1996 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Feature-Based Methods
for Large Scale Dynamic Programming

JOHN N. TSITSIKLIS AND BENJAMIN VAN ROY

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology, Cambridge, MA 02139

jnt @mit.edu, bvr@mit.edu

Editor: Leslie Pack Kaelbling

Abstract. We develop a methodological framework and present a few different ways in which dynamic
programming and compact representations can be combined to solve large scale stochastic control problems.
In particular, we develop algorithms that employ two types of feature-based compact representations; that is,
representations that involve feature extraction and a relatively simple approximation architecture. We prove
the convergence of these algorithms and provide bounds on the approximation error. As an example, one of
these algorithms is used to generate a strategy for the game of Tetris. Furthermore, we provide a counter-
example illustrating the difficulties of integrating compact representations with dynamic programming, which
exemplifies the shortcomings of certain simple approaches.

Keywords: Compact representation, curse of dimensionality, dynamic programming, features, function ap-
proximation, neuro-dynamic programming, reinforcement learning.

1. Introduction

Problems of sequential decision making under uncertainty (stochastic control) have been
studied extensively in the operations research and control theory literature for a long
time, using the methodology of dynamic programming (Bertsekas, 1995). The "planning
problems" studied by the artificial intelligence community are of a related nature although,
until recently, this was mostly done in a deterministic setting leading to search or shortest
path problems in graphs (Korf, 1987). In either context, realistic problems have usually
proved to be very difficult mostly due to the large size of the underlying state space
or of the graph to be searched. In artificial intelligence, this issue is usually addressed
by using heuristic position evaluation functions; chess playing programs are a prime
example (Korf, 1987). Such functions provide a rough evaluation of the quality of a
given state (or board configuration in the context of chess) and are used in order to rank
alternative actions.

In the context of dynamic programming and stochastic control, the most important
object is the cost-to-go function, which evaluates the expected future cost to be incurred,
as a function of the current state. Similarly with the artificial intelligence context, cost-
to-go functions are used to assess the consequences of any given action at any particular
state. Dynamic programming provides a variety of methods for computing cost-to-go
functions. Due to the curse of dimensionality, however, the practical applications of
dynamic programming are somewhat limited; they involve certain problems in which

60 J.N. TSITSIKLIS AND B. VAN ROY

the cost-to-go function has a simple analytical form (e.g., controlling a linear system
subject to a quadratic cost) or to problems with a manageably small state space.

In most of the stochastic control problems that arise in practice (control of nonlinear
systems, queueing and scheduling, logistics, etc.) the state space is huge. For example,
every possible configuration of a queueing system is a different state, and the number of
states increases exponentially with the number of queues involved. For this reason, it is
essentially impossible to compute (or even store) the value of the cost-to--go function at
every possible state. The most sensible way of dealing with this difficulty is to generate
a compact parametric representation (compact representation, for brevity), such as an
artificial neural network, that approximates the cost-to-go function and can guide future
actions, much the same as the position evaluators are used in chess. Since a compact
representation with a relatively small number of parameters may approximate a cost-to-
go function, we are required to compute only a few parameter values rather than as many
values as there are states.

There are two important preconditions for the development of an effective approxima-
tion. First, we need to choose a compact representation that can closely approximate
the desired cost-to-go function. In this respect, the choice of a suitable compact repre-
sentation requires some practical experience or theoretical analysis that provides some
rough information on the shape of the function to be approximated. Second, we need
effective algorithms for tuning the parameters of the compact representation. These two
objectives are often conflicting. Having a compact representation that can approximate
a rich set of functions usually means that there is a large number of parameters to be
tuned and/or that the dependence on the parameters is nonlinear, and in either case, there
is an increase in the computational complexity involved.

It is important to note that methods of selecting suitable parameters for standard func-
tion approximation are inadequate for approximation of cost-to-go functions. In function
approximation, we are given training data pairs {(xl, yl),..., (XK, YK)} and must con-
struct a function y = f(x) that "explains" these data pairs. In dynamic programming,
we are interested in approximating a cost-to-go function y = V(x) mapping states to
optimal expected future costs. An ideal set of training data would consist of pairs
{(x~, Ya),..., (xK, YK)}, where each x~ is a state and each Yi is a sample of the future
cost incurred starting at state xi when the system is optimally controlled. However,
since we do not know how to control the system at the outset (in fact, our objective is to
figure out how to control the system), we have no way of obtaining such data pairs. An
alternative way of making the same point is to note that the desirability of a particular
state depends on how the system is controlled, so observing a poorly controlled system
does not help us tell how desirable a state will be when the system is well controlled.
To approximate a cost-to-go function, we need variations of the algorithms of dynamic
programming that work with compact representations.

The concept of approximating cost-to-go functions with compact representations is
not new. Bellman and Dreyfus (1959) explored the use of polynomials as compact
representations for accelerating dynamic programming. Whitt (1978) and Reetz (1977)
analyzed approaches of reducing state space sizes, which lead to compact representa-
tions. Schweitzer and Seidmann (1985) developed several techniques for approximating

FEATURE-BASED METHODS 61

cost-to-go functions using linear combinations of fixed sets of basis functions. More
recently, reinforcement learning researchers have developed a number of approaches, in-
cluding temporal-difference learning (Sutton, 1988) and Q-learning (Watkins and Dayan,
1992), which have been used for dynamic programming with many types of compact
representation, especially artificial neural networks.

Aside from the work of Whitt (1988) and Reetz (1977), the techniques that have
been developed largely rely on heuristics. In particular, there is a lack of formal proofs
guaranteeing sound results. As one might expect from this, the methods have generated
a mixture of success stories and failures. Nevertheless, the success stories - most notably
the world-class backgammon player of Tesauro (1992) - inspire great expectations in the
potential of compact representations and dynamic programming.

The main aim of this paper is to provide a methodological foundation and a rigorous
assessment of a few different ways that dynamic programming and compact represen-
tations can be combined to form the basis of a rational approach to difficult stochastic
control problems. Although heuristics have to be involved at some point, especially in
the selection of a particular compact representation, it is desirable to retain as much
as possible of the non-heuristic aspects of the dynamic programming methodology. A
related objective is to provide results that can help us assess the efficacy of alternative
compact representations.

Cost-to-go functions are generally nonlinear, but often demonstrate regularities similar
to those found in the problems tackled by traditional function approximation. There
are several types of compact representations that one can use to approximate a cost-
to-go function. (a) Artificial neural networks (e.g., multi-layer perceptrons) present one
possibility. This approach has led to some successes, such as Tesauro's backgammon
player which was mentioned earlier. Unfortunately, it is very hard to quantify or analyze
the performance of neural-network-based techniques. (b) A second form of compact
representation is based on the use of feature extraction to map the set of states onto a
much smaller set of feature vectors. By storing a value of the cost-to-go function for
each possible feature vector, the number of values that need to be computed and stored
can be drastically reduced and, if meaningful features are chosen, there is a chance of
obtaining a good approximation of the true cost-to-go function. (c) A third approach is
to choose a parametric form that maps the feature space to cost- to-go values and then
try to compute suitable values for the parameters. If the chosen parametric representation
is simple and structured, this approach may be amenable to mathematical analysis. One
such approach, employing linear approximations, will be studied here.

In this paper, we focus on dynamic programming methods that employ the latter two
types of compact representations, i.e., the feature-based compact representations. We
provide a general framework within which one can reason about such methods. We also
suggest variants of the value iteration algorithm of dynamic programming that can be
used in conjunction with the representations we propose. We prove convergence results
for our algorithms and then proceed to derive bounds on the difference between optimal
performance and the performance obtained using our methods. As an example, one of
the techniques presented is used to generate a strategy for Tetris, the arcade game.

62 J.N. TSITSIKLIS AND B. VAN ROY

This paper is organized as follows. In Section 2, we introduce the Markov decision
problem (MDP), which provides a mathematical setting for stochastic control problems,
and we also summarize the value iteration algorithm and its properties. In Section 3,
we propose a conceptual framework according to which different approximation method-
ologies can be studied. To illustrate some of the difficulties involved with employing
compact representations for dynamic programming, in Section 4, we describe a "natural"
approach for dynamic programming with compact representations and then present a
counter-example demonstrating the shortcomings of such an approach. In Section 5, we
propose a variant of the value iteration algorithm that employs a look-up table in feature
space rather than in state space. We also discuss a theorem that ensures its convergence
and provides bounds on the accuracy of resulting approximations. Section 6 discusses
an application of the algorithm from Section 5 to the game of Tetris. In Section 7, we
present our second approximation methodology, which employs feature extraction and
linear approximations. Again, we provide a convergence theorem as well as bounds on
the performance it delivers. This general methodology encompasses many types of com-
pact representations, and in Sections 8 and 9 we provide two subclasses: interpolative
representations and localized basis function architectures. Two technical results that are
central to our convergence theorems are presented in the Appendices A and B. In partic-
ular, Appendix A proves a theorem involving transformations that preserve contraction
properties of an operator, and Appendix B reviews a result on stochastic approximation
algorithms involving maximum norm contractions. Appendices C and D provide proofs
of the convergence theorems of Sections 5 and 7, respectively.

2. Markov Decision Problems

In this section, we introduce Markov decision problems, which provide a model for
sequential decision making problems under uncertainty (Bertsekas, 1995).

We consider infinite horizon, discounted Markov decision problems defined on a finite
state space S. Throughout the paper, we let n denote the cardinality of S and, for
simplicity, assume that S = { 1 , . . . , n}. For every state i E S, there is a finite set U(i)
of possible control actions and a set of nonnegative scalars pij(u), u E U(i), j E S,
such that ~ j e s p ~ j (u) = 1 for all u E U(i). The scalar pij(u) is interpreted as the
probability o f a transition to state j , given that the current state is i and the control u
is applied. Furthermore, for every state i and control u, there is a random variable ci~
which represents the one-stage cost if action u is applied at state i. We assume that the
variance of ci~ is finite for every i E S and u E U(i). In this paper, we treat only Markov
decision problems for which transition probabilities Pij (u) and expected immediate costs
E[ciu] are known. However, the ideas presented generalize to the context of algorithms
such as Q-learning, which assume no knowledge of transition probabilities and costs.

A stationary policy is a function 7r defined on S such that 7r(i) E U(i) for all i E S.
Given a stationary policy, we obtain a discrete-time Markov chain s~(t) with transition
probabilities

Pr (s~(t + 1) = j [s~(t) = i) = pij(Tr(i)).

F E A T U R E - B A S E D M E T H O D S 63

Let /3 E [0, 1) be a discount factor. For any stationary policy 7r and initial state i, the
cost-to-go V~ ~ is defined by

t = 0

where c(t) = cs-(t),~(8~(t))- In much of the dynamic programming literature, the map-
ping from states to cost-to-go values is referred to as the cost-to-go function. However,
since the state spaces we consider in this paper are finite, we choose to think of the
mapping in terms of a cost-to-go vector whose components are the cost-to-go values of
various states. Hence, given the cost-to-go vector V ~ of policy 7r, the cost-to-go value
of policy 7r at state i is the ith component of V ~. The optimal cost-to-go vector V* is
defined by

v? = m nV/, i s.

It is well known that the optimal cost-to-go vector V* is the unique solution to Bellman's
equation:

V i*= min (E [e , ~] + / 3 Z p # (u) V f) V i c S. (1)
u 6 U (i) - -

jES

This equation simply states that the optimal cost-toy-go starting from a state i is equal to
the minimum, over all actions u that can be taken, of the immediate expected cost E[c~,~]
plus the suitably discounted expected cost-tot-go Vj* from the next state j , assuming that
an optimal policy will be followed in the future.

The Markov decision problem is to find a policy 7r* such that

v (=v? , v i e s .

This is usually done by computing Vi*, and then choosing 7r* as a function which satisfies

7r*(i) = arg min (E[Ciu] + / 3 ~-~p~j(u)Vj*) Vi C S.
uEU(i) - - jEs

If we can not compute V* but can obtain an approximation V to V*, we might generate
a reasonable control policy 7~v satisfying

uEu(i)
jEs

Intuitively, this policy considers actual immediate costs and uses V to judge future
consequences of control actions. Such a policy is sometimes called a greedy policy with
respect to the cost-to-go vector V, and as V approaches V*, the performance of a greedy
policy 7rv approaches that of an optimal policy 7v*.

There are several algorithms for computing V* but we only discuss the value iteration
algorithm which forms the basis of the algorithms to be considered later on. We start
with some notation. We define Ti : ~n ~ ~ by

64 J . N . T S I T S I K L I S A N D B . V A N R O Y

/

T~(v) : min [E[ci,j + fi) p i j (u) V i) , Vi E S. (2)
~,Eu(i) \ - - z__.., - - - - /

jES

We then define the dynamic programming operator T : ~n H ~ by

T(V) : (T~(V),... ,Tn(V)).

In terms of this notation, Bellman's equation simply asserts that V* = T(V*) and V* is
the unique fixed point of T. The value iteration algorithm is described by

V(t + 1) : T (V(t)) ,

where V(0) is an arbitrary vector in ~ used to initialize the algorithm. Intuitively, each
V(t) is an estimate (though not necessarily a good one) of the true cost-to--go function
V*, which gets replaced by the hopefully better estimate T(V(t)) .

Let]1 . 11~ be the maximum norm defined for every vector x = (Z l , . . . , 2Jn) E ~}~n by
Ilzll~ = m ~ Izd It is well known (Bertsekas, 1995) and easy to check that T is a
contraction with respect to the maximum norm, that is, for all V, V ' E N~,

lIT(V) - T (V ')] t ~ G fl]IV - V'llo~.

For this reason, the sequence V(t) produced by the value iteration algorithm converges
to V*, at the rate of a geometric progression. Unfortunately, this algorithm requires that
we maintain and update a vector V of dimension n and this is essentially impossible
when n is extremely large.

For notational convenience, it is useful to define for each policy 7r the operator T/'r :

T : (V) : E[ci~{{)] + / 3 E p { j (~ - (i)) V j,
jEs

for each i E S. The operator T ~ is defined by

T~(V) : (T [(V) , . . . , Tg (V)) .

It is well known that T ~ is also a contraction of the maximum norm and that V ~r is its
unique fixed point (Bertsekas, 1995). Note that, for any vector V E Nn we have

T (V) : T ~v (V),

since the cost-minimizing control action in Equation (2) is given by the greedy policy.

3. Compact Representations and Features

As mentioned in the introduction, the size of state spaces typically grows exponentially
with the number of variables involved. Because of this, it is often impractical to compute
and store every component of a cost-to-go vector. We set out to overcome this limitation
by using compact representations to approximate cost-to-go vectors. In this section, we

FEATURE-BASED METHODS 65

develop a formal framework for reasoning about compact representations and features
as groundwork for subsequent sections, where we will discuss ways of using compact
representations for dynamic programming. The setting is in many respects similar to that
in (Schweitzer and Seidman, 1985).

A compact representation can be thought of as a scheme for recording a high-
dimensional cost-to-go vector V c ~ using a lower-dimensional parameter vector
W E Nm (m << n). Such a scheme can be described by a mapping V : ~m ~_~ ~n
which to any given parameter vector W E Nr, associates a cost- to-vector V(W) . In
particular, each component I)/(W) of the mapping is the ith component of a cost-to-go
vector represented by the parameter vector W. Note that, although we may wish to
represent an arbitrary vector V in Nn, such a scheme allows for exact representation
only of those vectors V which happen to lie in the range of I).

Let us define a feature f as a function from the state space S into a finite set Q
of feature values. For example, if the state i represents the number of customers in a
queueing system, a possible and often interesting feature f is defined by f (0) = 0 and
f (i) = i if i > 0. Such a feature focuses on whether a queue is empty or not.

Given a Markov decision problem, one may wish to use several features f l , - • -, fK,
each one being a function from the state space S to a finite set Qk, k = 1 , . . . , K. Then,
to each state i C S, we associate the feature vector F(i) = (f l (i) , . . . , fK(i)) . Such a
feature vector is meant to represent the most salient properties of a given state. Note
that the resulting set of all possible feature vectors is the Cartesian product of the sets
Qk and its cardinality increases exponentially with the number of features.

In a feature-based compact representation, each component 1)/ of the mapping Q is a
function of the corresponding feature vector F(i) and the parameter vector W (but not an

K ~m explicit function of the state value i). Hence, for some function g : (~Ik=1 Qk) x

~ (w) = 9(F(i), W). (3)

If each feature takes on real values, we have Qk c ~ for all k, in which case it may be
natural to define the function 9 over all possible real feature values, 9 : NK x Nm ~_~ N,
even though g will only ever be computed over a finite domain. Figure 1 illustrates the
structure of a feature-based compact representation.

In most problems of interest, Yi* is a highly complicated function of i. A representation
like the one in Equation (3) attempts to break the complexity of V* into less complicated
mappings 9 and F. There is usually a trade-off between the complexity of 9 and F and
different choices lead to drastically different structures. As a general principle, the feature
extraction function F is usually hand crafted and relies on whatever human experience
or intelligence is available. The function 9 represents the choice of an architecture used
for approximation and the vector W are the free parameters (or weights) of the chosen
architecture. When a compact representation is used for static function approximation,
the values for the parameters W are chosen using some optimization algorithm, which
could range from linear regression to backpropagation in neural networks. In this pa-
per, however, we will develop parameter selection techniques for dynamic programming
(rather than function approximation). Let us first discuss some alternative architectures.

66 J.N. TSITSIKLIS AND B. VAN ROY

State = F

Feature
Vector

Parameter
Vector

-I0
Feature Approximation

Extraction Architecture

= C o s t - T o - G o

Figure 1. Block structure of a feature-based compact representation.

Look-Up Tables
One possible compact representation can be obtained by employing a look-up table in

feature space, that is, by assigning one value to each point in the feature space. In this
case, the parameter vector W contains one component for each possible feature vector.
The function g acts as a hashing function, selecting the component of W corresponding
to a given feature vector. In one extreme case, each feature vector corresponds to a single
state, there are as many parameters as states, and V becomes the identity function. On
the other hand, effective feature extraction may associate many states with each feature
vector so that the optimal cost-to-go values of states associated to any particular feature
vector are close. In this scenario, the feature space may be much smaller that the state
space, reducing the number of required parameters. Note, however, that the number of
possible feature vectors increases exponentially with the number of features. For this
reason, look-up tables are only practical when there are very few features.

Using a look-up table in feature space is equivalent to partitioning the state space
and then using a common value for the cost-to-go from all the states in any given
partition. In this context, the set of states which map to a particular feature vector
forms one partition. By identifying one such partition per possible feature vector, the
feature extraction mapping F defines a partitioning of the state space. The function g
assigns each component of the parameter vector to a partition. For conceptual purposes,
we choose to view this type of representation in terms of state aggregation, rather than
feature-based look-up tables. As we will see in our formulation for Tetris, however, the
feature-based look-up table interpretation is often more natural in applications.

We now develop a mathematical description of state aggregation. Suppose that the state
space S = {1, ..., n} has been partitioned into m disjoint subsets $1 , - . . , S,~, where m
is the same as the dimension of the parameter vector W. The compact representations
we consider take on the following form:

9 (w) = wj,

for any i c Sj.

FEATURE-BASED METHODS 67

There are no inherent limitations to the representational capability of such an archi-
tecture. Whatever limitations this approach may have are actually connected with the
availability of useful features. To amplify this point, let us fix some e > 0 and let us
define, for all j ,

Sy = {i I je _< V~* < (j + 1)¢}.

Using this particular partition, the function V* can be approximated with an accuracy of
¢. The catch is of course that since V* is unknown, we are unable to form the sets Sj.
A different way of making the same point is to note that the most useful feature of a
state is its optimal cost- to-go but, unfortunately, this is what we are trying to compute
in the first place.

Linear Architectures

With a look-up table, we need to store one parameter for every possible value of
the feature vector F(i), and, as already noted, the number of possible values increases
exponentially with the number of features. As more features are deemed important,
look-up tables must be abandoned at some point and a different kind of parametric
representation is now called for. For instance, a representation of the following form can
be used:

K

= w k A (i) .
k = l

(4)

This representation approximates a cost-to-go function using a linear combination of
features. This simplicity makes it amenable to rigorous analysis, and we will develop an
algorithm for dynamic programming with such a representation. Note that the number
of parameters only grows linearly with the number of features. Hence, unlike the case
of look-up tables, the number of features need not be small. However, it is important to
choose features that facilitate the linear approximation.

Many popular function approximation architectures fall in the class captured by Equa-
tion (4). Among these are radial basis functions, wavelet networks, polynomials, and
more generally all approximation methods that involve a fixed set of basis functions. In
this paper, we will discuss two types of these compact representations that are compatible
with our algorithm - a method based on linear interpolation and localized basis functions.

Nonlinear Architectures

The architecture, as described by g, could be a nonlinear mapping such as a feedfor-
ward neural network (multi-layer perceptron) with parameters W. The feature extraction
mapping F could be either entirely absent or it could be included to facilitate the job
of the neural network. Both of these options were used in the backgammon player of
Tesauro and, as expected, the inclusion of features led to improved performance. Un-
fortunately, as was mentioned in the introduction, there is not much that can be said
analytically in this context.

68 J.N. TSITSIKLIS AND B. VAN ROY

4. Least-Squares Value Iteration: A Counter-Example

Given a set of k samples {(il,V/~),(i2, V:*), (iK,V/~c) } of an optimal cost-to-go

vector V*, we could approximate the vector with a compact representation ~" by choosing
parameters W to minimize an error function such as

K

Z
k = l

i.e., by finding the "least-squares fit." Such an approximation conforms to the spirit of
traditional function approximation. However, as discussed in the introduction, we do
not have access to such samples of the optimal cost-to-go vector. To approximate an
optimal cost-to-go vector, we must adapt dynamic programming algorithms such as the
value iteration algorithm so that they manipulate parameters of compact representations.

For instance, we could start with a parameter vector W(0) corresponding to an initial
cost-to-go vector V(W(0)) , and then generate a sequence {W(t)lt = 1, 2, ...} of param-
eter vectors such that V(W(t + 1)) approximates T(V(W(t))). Hence, each iteration
approximates a traditional value iteration. The hope is that, by approximating individual
value iterations in such a way, the sequence of approximations converges to an accurate
approximation of the optimal cost-to-go vector, which is what value iteration converges
tO,

It may seem as though any reasonable approximation scheme could be used to generate
each approximate value iteration. For instance, the "least-squares fit" is an obvious
candidate. This involves selecting W(t + 1) by setting

n

i=1

(5)

However, in this section we will identify subtleties that make the choice of criterion for
parameter selection crucial. Furthermore, an approximation method that is compatible
with one type of compact representation may generate poor results when a different
compact representation is employed.

We will now develop a counter-example that illustrates the shortcomings of such a
combination of value iteration and least-squares approximation. This analysis is par-
ticularly interesting, since the algorithm is closely related to Q-learning (Watkins and
Dayan, 1992) and temporal-difference learning (TD(A)) (Sutton, 1988), with A set to
0. The counter-example discussed demonstrates the short-comings of some (but not all)
variants of Q-learning and temporal-difference learning that are employed in practice. 1

Bertsekas (1994) described a counter-example to methods like the one defined by
Equation (5). His counter-example involves a Markov decision problem and a compact
representation that could generate a close approximation (in terms of Euclidean distance)
of the optimal cost-to-go vector, but fails to do so when algorithms like the one we
have described are used. In particular, the parameter vector does converge to some
W* c ~m, but, unfortunately, this parameter vector generates a poor estimate of the

F E A T U R E - B A S E D M E T H O D S 69

w 2w

Figure 2. A counter-example.

optimal cost-to-go vector (in terms of Euclidean distance), that is,

ill)(W*) - V*t12 >> min []V(W) - V*II~ ,
WE~R ,~

where 1]. II 2 denotes the Euclidean norm. With our upcoming counter-example, we show
that much worse behavior is possible: even when the compact representation can generate
a perfect approximation of the optimal cost-to-go function (i.e., m i n w Ill)(W) - V* 112 =
0), the algorithm may diverge.

Consider the simple Markov decision problem depicted in Figure 2. The state space
consists of two states, z l and z2, and at state x t a transition is always made to z2, which
is an absorbing state. There are no control decisions involved. All transitions incur 0
cost. Hence, the optimal cost-to-go function assigns 0 to both states.

Suppose a feature f is defined over the state space so that f (z l) = 1 and f (z2) = 2,
and a compact representation of the form

~Zi(~l)) = w f (i) , ~ E { Z 1 , 2 C 2 } ,

is employed, where w is scalar. When we set w to 0, we get l)(w) = V*, so a perfect
representation of the optimal cost-to-go vector is possible.

Let us investigate the behavior of the least-squares value iteration algorithm with the
Markov decision problem and compact representation we have described. The parameter
w evolves as follows:

w(t + 1) arg min E \ (<(w)
2

= -T{(V(w(t))))-
w 6 ~rn

iES

= arg min ((w -- ~2w(t)) 2 + (2w - / 32w(t))2~ ,
w C ~ \ /

and we obtain

w(t + 1) = 6/3w(t).

Hence, if /3 > ~ and w(0)

(6)

Counter-examples involving # 0, the sequence diverges.
Markov decision problems that allow several control actions at each state can also be

70 J.N. TSITSIKLIS AND B. VAN ROY

produced. In that case, the least-squares approach to value iteration can generate poor
control strategies even when the optimal cost-to-go vector can be represented.

The shortcomings of straightforward procedures such as least-squares value iteration
characterize the challenges involved with combining compact representations and dy-
namic programming. The remainder of this paper is dedicated to the development of
approaches that guarantee more graceful behavior.

5. Value Iterationwith Look-Up Tables

As a starting point, let us consider what is perhaps the simplest possible type of compact
representation. This is the feature-based look-up table representation described in Section
3. In this section, we discuss a variant of the value iteration algorithm that has sound
convergence properties when used in conjunction with such representations. We provide
a convergence theorem, which we formally prove in Appendix C. We also point out
relationships between the presented algorithm and previous work in the fields of dynamic
programming and reinforcement learning.

5.1. Algorithmic Model

As mentioned earlier, the use of a look-up table in feature space is equivalent to state
aggregation. We choose this latter viewpoint in our analysis. We consider a partition
of the state space S = { 1 , . . . , n} into subsets Sa, $2,. . . , Sin; in particular, S = $1 t2
$2 to -- - u Sm and Si N Sj = 0 if i ¢ j . Let V : ~m H ~n, the function which maps a
parameter vector W to a cost-to-go vector V, be defined by:

~ (W) = Wj, Vi ~ Sj.

Let Af be the set of nonnegative integers. We employ a discrete variable t, taking on
values in iV', which is used to index successive updates of the parameter vector W. Let
W(t) be the parameter vector at time t. Let F j be an infinite subset of iV" indicating
the set of times at which an update of the j th component of the parameter vector is
performed. For each set Sj, j = 1 , . . . ,m, let pJ(-) be a probability distribution over
the set Sj. In particular, for every i E Sj, pJ (i) is the probability that a random sample
from Sj is equal to i. Naturally, we have pJ(i) _> 0 and ~ i e s j pJ(i) -- 1.

At each time t, let X(t) be an m-dimensional vector whose j th component is a random
representative of the set Sj, sampled according to the probability distribution pJ(.). We
assume that each such sample is generated independently from everything else that takes
place in the course of the algorithm. 2

The value iteration algorithm applied at state Xj(t) would update the value VxAt),
which is represented by Wj, by setting it equal to Txj(t)(V). Given the compact rep-
resentation that we are using and given the current parameter vector W(t) , we actually
need to set Wj to Tx~(t)(V(W(t))). However, in order to reduce the sensitivity of
the algorithm to the randomness caused by the random sampling, Wj is updated in that
direction with a small stepsize. We therefore end up with the following update formula:

FEATURE-BASED METHODS 71

Wj(t + 1) = (1 - a~(t))Wj(t) + aj(t)Tx~(t)(f(W(t))), t c r j, (7)

Wi(t + 1) = Wi(t), t ~ F i. (8)

Here, c~j (t) is a stepsize parameter between 0 and 1. In order to bring Equations (7) and
(8) into a common format, it is convenient to assume that ~j(t) is defined for every j
and t, but that c~j (t) = 0 for t ~ F j .

In a simpler version of this algorithm, we could define a single probability distribution
p(-) over the entire state space S such that for each subset Sj , we have }-~iEsj px(i) > O.
Then, defining x(t) as a state sampled according to the p(-), updates of the form

Wj(t + 1) = (1 - ~3(t))Wj(t) + c~j(t)T~(o(fz(W(t))), if x(t) • Sj, (9)

Wj(t + 1) = Wy(t) , if x(t) ~ Sj, (10)

can be used. The simplicity of this version - primarily the fact that samples are taken
from only one distribution rather than many - makes it attractive for implementation.
This version has a potential shortcoming, though. It does not involve any adaptive
exploration of the feature space; that is, the choice of the subset Sj to be sampled does
not depend on past observations. This rules out the possibility of adapting the distribution
to concentrate on a region of the feature space that appears increasingly significant as
approximation of the cos t - to -go function ensues. Regardless, this simple version is the
one chosen for application to the Tetris playing problem which is reported in Section 5.

We view all of the variables introduced so far, namely, aj(t), Xj(t) , and W(t), as
random variables defined on a common probability space. The reason for c~j (t) being a
random variable is that the decision whether W 3 will be updated at time t (and, hence,
whether ay(t) will be zero or not) may depend on past observations. Let U(t) be the set
of all random variables that have been realized up to and including the point at which
the stepsize c~j (t) is fixed but just before Xj (t) is generated.

5.2. Convergence Theorem

Before stating our convergence theorem, we must introduce the following standard as-
sumption concerning the stepsize sequence:

Assumpt ion 1 a) For all i, the stepsize sequence satisfies
o o

Z o~(t) : oo, w.p.1. (11)
t=O

b) There exists some (deterministic) constant C such that
(2<)

a~(t) _< C, w.p.1. (12)
t=O

Following is the convergence theorem:

72 J.N, TSITSIKLIS AND B. VAN ROY

THEOREM 1 Let Assumption 1 hold.
(a) With probability 1, the sequence W (t) converges to W*, the unique vector whose
components solve the following system of equations:

w ; = ~ F(g) r~(~(w*)) , vj.
iESj

(13)

Define V* as the optimal cost-to-go vector and e E Nm by

ei = max I~* - vz*t, vi E {1, ...,m}.
j,IES~

Recall that 7rg(w.) denotes a greedy policy with respect to cost-to-go vector fz(W*),
i.e.,

7Cg(w.)(i) = arg min (E[ci~] + t 3 E P i j (u) f / j (W *)) .
~EU('i) jES

The following hold:
(b)

119(w*) - r * l l ~ <- lllell---~'-

(c)

iI V ~ < w ' > - V*l l~ _< (1 - ~)2 ,

(d) there exists an example for which the bounds in (b) and (c) both hoM with equality.

A proof of Theorem 1 is provided in Appendix C. We prove the theorem by showing
that the algorithm corresponds to a stochastic approximation involving a maximum norm
contraction, and then appeal to a theorem concerning asynchronous stochastic approxi-
mation due to Tsitsiklis (1994) (see also (Jaakola, Jordan, and Singh, 1994)), which is
discussed in Appendix B, and a theorem concerning multi-representation contractions
presented and proven in Appendix A.

5.3. The Quality of Approximations

Theorem 1 establishes that the quality of approximations is determined by the quality of
the chosen features. If the true cost-to-go function V* can be accurately represented in
the form I~'(W), then the computed parameter values deliver near optimal performance.
This is a desirable property.

The distressing aspect of Theorem 1 is the wide margin allowed by the worst-case
bound. As the discount factor approaches unity, the ~ term explodes. Since discount
factors close to one are most common in practice, this is a severe weakness. However,
achieving or nearly achieving the worst-case bound in real world applications may be a
rare event. These weak bounds are to be viewed as the minimum desired properties for
a method to be sound. As we have seen in Section 4, even this is not guaranteed by
some other methods in current practice.

PEATURE-BASED METHODS 73

5.4. Role of the Sampling Distributions

The worst-case bounds provided by Theorem 1 are satisfied for any set of state-sampling
distributions. The distribution of probability among states within a particular partition
may be arbitrary. Sampling only a single state per partition constitutes a special case
which satisfies the requirement. For this special case, a decaying stepsize is unnecessary.
If a constant stepsize of one is used in such a setting, the algorithm becomes an asyn-
chronous version of the standard value iteration algorithm applied to a reduced Markov
decision problem that has one state per partition of the original state space; the con-
vergence of such an algorithm is well known (Bertsekas, 1982; Bertsekas and Tsitsiklis,
1989). Such a state space reduction is analogous to that brought about by state space dis-
cretization, which is commonly applied to problems with continuous state spaces. Whitt
(1978) considered this method of discretization and derived the bounds of Theorem 1,
for the case where a single state is sampled in each partition. Our result can be viewed
as a generalization of Whitt's, allowing the use of arbitrary sampling distributions.

When the state aggregation is perfect in that the true optimal cost-to-go values for all
states in any particular partition are equal, the choice of sampling function is insignificant.
This is because, independent of the distribution, the error bound is zero when there is
no fluctuation of optimal cost-to-go values within any partition. In contrast, when V*
fluctuates within partitions, the error achieved by a feature-based approximation can
depend on the sampling distribution. Though the derived bound limits the error achieved
using any set of state distributions, the choice of distributions may play an important
role in attaining errors significantly lower than this worst case bound. It often appears
desirable to distribute the probability among many representative states in each partition.
If only a few states are sampled, the error can be magnified if these states do not happen
to be representative of the whole partition. On the other hand, if many states are chosen,
and their cost-to-go values are in some sense averaged, a cost-to-go value representative
of the entire partition may be generated. It is possible to develop heuristics to aid in
choosing suitable distributions, but the relationship between sampling distributions and
approximation error is not yet clearly understood or quantified.

5.5. Related Work

As was mentioned earlier, Theorem 1 can be viewed as an extension to the work of
Whitt (1978). However, our philosophy is much different. Whitt was concerned with
discretizing a continuous state space. Our concern here is to exploit human intuition
concerning useful features and heuristic state sampling distributions to drastically reduce
the dimensionality of a dynamic programming problem.

Several other researchers have considered ways of aggregating states to facilitate dy-
namic programming. Bertsekas and Castafion (1989) developed an adaptive aggregation
scheme for use with the policy iteration algorithm. Rather than relying on feature ex-
traction, this approach automatically and adaptively aggregates states during the course
of an algorithm based on probability transition matrices under greedy policies.

74 J.N. TSITSIKLIS AND B. VAN ROY

The algorithm we have presented in this section is closely related to Q-learning and
temporal-difference learning (TD(A)) in the case where A is set to 0. In fact, Theorem 1
can easily be extended so that it applies to TD(0) or Q-learning when used in conjunction
with feature-based look-up tables. Since the convergence and efficacy of TD(0) and Q-
learning in this setting have not been theoretically established in the past, our theorem
sheds new light on these algorithms.

In considering what happens when applying the Q-learning algorithm to partially ob-
servable Markov decision problems, Jaakola, Singh and Jordan (1995) prove a conver-
gence theorem similar to part (a) of Theorem 1. Their analysis involves a scenario where
the state aggregation is inherent because of incomplete state information - i.e., a policy
must choose the same action within a group of states because there is no way a controller
can distinguish between different states within the group - and is not geared towards
accelerating dynamic programming in general.

6. Example: Playing Tetris

As an example, we used the algorithm from the previous section to generate a strategy
for the game of Tetris. In this section we discuss the process of formulating Tetris as a
Markov decision problem, choosing features, and finally, generating and assessing a game
strategy. The objective of this exercise was to verify that feature-based value iteration
can deliver reasonable performance for a rather complicated problem. Our objective was
not to construct the best possible Tetris player, and for this reason, no effort was made
to construct and use sophisticated features.

6.1. Problem Formulation

We formulated the game of Tetris as a Markov decision problem, much in the same spirit
as the Tetris playing programs of Lippman, Kukolich and Singer (1993). Each state of
the Markov decision problem is recorded using a two--hundred-dimensional binary vector
(the wall vector) which represents the configuration of the current wall of bricks and a
seven-dimensional binary vector which identifies the current falling piece. 3 The Tetris
screen is twenty squares high and ten squares wide, and each square is associated with
a component of the wall vector. The component corresponding to a particular square is
assigned 1 if the square is occupied by a brick and 0 otherwise. All components of the
seven-dimensional vector are assigned 0 except for the one associated with the piece
which is currently falling (there are seven types of pieces).

At any time, the set of possible decisions includes the locations and orientations at
which we can place the falling piece on the current wall of bricks. The subsequent state
is determined by the resulting wall configuration and the next random piece that appears.
Since the resulting wall configuration is deterministic and there are seven possible pieces,
there are seven potential subsequent states for any action, each of which occurs with
equal probability. An exception is when the wall is higher than sixteen rows. In this
circumstance, the game ends, and the state is absorbing.

FEATURE-BASED METHODS 75

Each time an entire row of squares is filled with bricks, the row vanishes, and the
portion of the wall previously supported falls by one row. The goal in our version of
Tetris is to maximize the expected number of rows eliminated during the course of a
game. Though we generally formulate Markov decision problems in terms of minimizing
costs, we can think of Tetris as a problem of maximizing rewards, where rewards are
negative costs. The reward of a transition is the immediate number of rows eliminated.
To ensure that the optimal cost-to-go from each state is finite, we chose a discount factor
of/3 = 0.9999.

In the vast majority of states, there is no scoring opportunity. In other words, given
a random wall configuration and piece, chances are that no decision will lead to an im-
mediate reward. When a human being plays Tetris, it is crucial that she makes decisions
in anticipation of long-term rewards. Because of this, simple policies that play Tetris
such as those that make random decisions or even those that make greedy decisions (i.e.,
decisions that maximize immediate rewards with no concern for the future) rarely score
any points in the course of a game. Decisions that deliver reasonable performance reflect
a degree of "foresight."

6.2. Some Simple Features

Since each combination of wall configuration and current piece constitute a separate state,
the state space of Tetris is huge. As a result, classical dynamic programming algorithms
are inapplicable. Feature-based value iteration, on the other hand, can be used. in order
to demonstrate this, we chose some simple features and applied the algorithm.

The two features employed in our experiments were the height of the current wall and
the number of holes (empty squares with bricks both above and below) in the wall. Let
us denote the set of possible heights by H = {0, ..., 20}, and the set of possible numbers
of holes by L = {0, ..., 200}. We can then think of the feature extraction process as the
application of a function F : S ~ H x L.

Note that the chosen features do not take into account the shape of the current falling
piece. This may initially seem odd, since the decision of where to place a piece relies
on knowledge of its shape. However, the cost-to-go function actually only needs to
enable the assessment of alternative decisions. This would entail assigning a value to
each possible placement of the current piece on the current wall. The cost-to-go function
thus needs only to evaluate the desirability of each resulting wall configuration. Hence,
features that capture salient characteristics of a wail configuration are sufficient.

6.3. A Heur is t ic Eva lua t ion F u n c t i o n

As a baseline Tetris-playing program, we produced a simple Tetris player that bases
state assessments on the two features. The player consists of a quadratic function 9 :
H x L ~-~ ~ which incorporates some heuristics developed by the authors. Then, although
the composition of feature extraction and the rule based system's evaluation function,

76 J.N. TSITSIKLIS AND B. VAN ROY

9 o F , is not necessarily an estimate of the optimal cost-to-go vector, the expert player
follows a greedy policy based on the composite function.

The average score of this Tetris player on a hundred games was 31 (rows eliminated).
This may seem low since arcade versions of Tetris drastically inflate scores. To gain
perspective, though, we should take into account the fact that an experienced human
Tetris player would take about three minutes to eliminate thirty rows.

6.4. Value Iteration with a Feature-Based Look-Up Table

We synthesized two Tetris playing programs by applying the feature-based value iteration
algorithm. These two players differed in that each relied on different state-sampling
distributions.

The first Tetris player used the states visited by the heuristic player as sample states
for value iterations. After convergence, the average score of this player on a hundred
games was 32. The fact that this player does not do much better than the heuristic player
is not surprising given the simplicity of the features on which both players base position
evaluations. This example reassures us, nevertheless, that feature-based value iteration
converges to a reasonable solution.

We may consider the way in which the first player was constructed unrealistic, since
it relied on a pre-existing heuristic player for state sampling. The second Tetris player
eliminates this requirement by uses an ad hoc state sampling algorithm. In sampling
a state, the sampling algorithm begins by sampling a maximum height for the wall of
bricks from a uniform distribution. Then, for each square below this height, a brick is
placed in the square with probability -34. Each unsupported row of bricks is then allowed
to fall until every row is supported. The player based on this sampling function gave an
average score of 11 (equivalent to a human game lasting about one and a half minutes).

The experiments performed with Tetris provide some assurance that feature-based value
iteration produces reasonable control policies. In some sense, Tetris is a worst-case sce-
nario for the evaluation of automatic control algorithms, since humans excel at Tetris.
The goal of algorithms that approximate dynamic programming is to generate reason-
able control policies for large scale stochastic control problems that we have no other
reasonable way of addressing. Such problems would not be natural to humans, and any
reasonable policy generated by feature-based value iteration would be valuable. Further-
more, the features chosen for this study were very crude; perhaps with the introduction
of more sophisticated features, feature-based value iteration would excel in Tetris. As a
parting note, an additional lesson can be drawn from the fact that two strategies generated
by feature-based value iteration were of such disparate quality. This is that the sampling
distribution plays an important role.

7. Value Iteration with Linear Architectures

We have discussed the use of feature-based look-up tables with value iteration, and found
that their use can significantly accelerate dynamic programming. However, employing a

FEATURE-BASED METHODS 77

look-up table with one entry per feature vector is viable only when the number of feature
vectors is reasonably small. Unfortunately, the number of possible feature vectors grows
exponentially with the dimension of the feature space. When the number of features
is fairly large, alternative compact representations, requiring fewer parameters, must be
used. In this section, we explore one possibility which involves a linear approximation
architecture. More formally, we consider compact representations of the form

K

~ (W) = E Wkfk(i) = W T F(i) ,
k = l

Vi E S, (14)

where W E R K is the parameter vector, F(i) = (f l (i) , . . . , f n (i)) E Ng is the feature
vector associated with state i, and the superscript T denotes transpose. This type of
compact representation is very attractive since the number of parameters is equal to the
number of dimensions of, rather than the number of elements in, the feature space.

We will describe a variant of the value iteration algorithm that, under certain assump-
tions on the feature mapping, is compatible with compact representations of this form,
and we will provide a convergence result and bounds on the quality of approximations.
Formal proofs are presented in Appendix D.

7.1. Algorithmic Model

The iterative algorithm we propose is an extension to the standard value iteration al-
gorithm. At the outset, K representative states il , . . . , iK are chosen, where K is the
dimension of the parameter vector. Each iteration generates an improved parameter vec-
tor W (t + 1) from a parameter vector W(t) by evaluating Tt(f / (W(t))) at states il , ..., iK
and then computing W (t + 1) so that Vi(W(t + 1)) = Ti (V(W(t))) for i C {il , ..., iK}.
In other words, the new cost-to-go estimate is constructed by fitting the compact repre-
sentation to T(V) , where V is the previous cost-to-go estimate, by fixing the compact
representation at il , ...,iK. If suitable features and representative states are chosen,
V (W (t)) may converge to a reasonable approximation of the optimal cost-to-go vec-
tor V*. Such an algorithm has been considered in the literature (Bellman (1959), Reetz
(1977), Morin (1979)). Of these references, only (Reetz (1977)), establishes convergence
and error bounds. However, Reetz's analysis is very different from what we will present
and is limited to problems with one-dimensional state spaces.

If we apply an algorithm of this type to the counter-example of Section 4, with K = 1
t the algorithm diverges. Thus, and il = xl , we obtain w(t + 1) = 2/3w(t), and if/3 > ~,

an algorithm of this type is only guaranteed to converge for a subclass of the compact
representations described by Equation (14). To characterize this subclass, we introduce
the following assumption which restricts the types of features that may be employed:

Assumption 2 Let il, ..., iK E S be the pre-selected states used by the algorithm.
(a) The vectors F(i l) , ..., F(iK) are linearly independent.
(b) There exists a value /3' E [/3, 1) such that for any state i E S there exist 01(i), ...,

78 J.N. TSITSIKLIS AND B. VAN ROY

OK(i) E ~ with

and

K

~'~ IOk(i)l ~ 1,
k = l

/71 K
= EOk(i)F(ik) . F(i) -~

k = l

In order to understand the meaning of this condition, it is useful to think about the fea-
ture space defined by {F(i)]i C S} and its convex hull. In the special case where/7 = / 7 '

K
and under the additional restrictions ~ k = l Ok(i) = 1 for all i, and Ok(i) >_ O, the feature
space is contained in the (K - 1)-dimensional simplex with vertices F(i l) , . . . , F(ig).
Allowing fl' to be strictly greater than /7 introduces some slack and allows the fea-
ture. space to extend a bit beyond that simplex. Finally, if we only have the condition
Ek=l lek(i)l _< 1, the feature space is contained in the convex hull of the vectors

~, ~, ,
: t : -KF(i l) , : h ~ - F (i 2) , . . . , ~@F(iK).

The significance of the geometric interpretation lies in the fact that the extrema of a
linear function within a convex polyhedron must be located at the corners. Formally,
Assumption 2 ensures that

/7 !

The upcoming convergence proof capitalizes on this property.
To formally define our algorithm, we need to define a few preliminary notions. First,

the representation described by Equation (14) can be rewritten as

~'(W) = MW, (15)

where M 6 N~xK is a matrix with the ith row equal to F(i) T. Let L E ~KxK be a
matrix with the kth row being F(ik) T. Since the rows of L are linearly independent,
there exists a unique matrix inverse L -1 C ~KxK. We define M t C NKxn as follows.
For k C {1, ..., K}, the ikth column is the same as the kth column of L - z ; all other
entries are zero. Assuming, without loss of generality, that i l = 1, ...,/k = K, we have

L] = L - 1 L = [, M t M = [L - 1 0] G

where I C NKxK is the identity matrix and G represents the remaining rows of M.
Hence, M t is a left inverse of M.

Our algorithm proceeds as follows. We start by selecting a set of K states, il, ..., iK,
and an initial parameter vector W(0) . Then, defining T ' as M t o T o M, successive
parameter vectors are generated using the following update rule:

W(t + 1) = T'(W(t)). (16)

FEATURE-BASED METHODS 79

7.2. Computational Considerations

We will prove shortly that the operation T t applied during each iteration of our algorithm
is a contraction in the parameter space. Thus, the difference between an intermediate
parameter vector W(t) and the limit W* decays exponentially with the time index t.
Hence, in practice, the number of iterations required should be reasonable. 4

The reason for using a compact representation is to alleviate the computational time and
space requirements of dynamic programming, which traditionally employs an exhaustive
look-up table, storing one value per state. Even when the parameter vector is small and
the approximate value iteration algorithm requires few iterations, the algorithm would
be impractical if the computation of T ~ required time or memory proportional to the
number of states. Let us determine the conditions under which T r can be computed in
time polynomial in the number of parameters K rather than the number of states n.

The operator T t is defined by

T ' (W) = MtT(MW).

Since M t only has K nonzero columns, only K components of T(MW) must be
computed: we only need to compute Ti(MW) for / = / 1 , .-., ik. Each iteration of our
algorithm thus takes time O(K2tT) where tT is the time taken to compute Ti(MW) for
a given state/. For any state i, Ti(MW) takes on the form

min (E[ei~] + ~-~pij(u)WTF(i)). ~Eu(i) jEs

The amount of time required to compute ~ j e s Pij (u)WTF(i) is O(NsK), where Ns is
the maximum number of possible successor states under any control action (i.e., states j
such that pij(u) > 0). By considering all possible actions u E U(i) in order to perform
the required minimization, Ti(MW) can be computed in time O(N~NsK) where N~ is
maximum number of control actions allowed at any state. The computation of T ~ thus
takes time O(N~,N~K3).

Note that for many control problems of practical interest, the number of control actions
allowed at a state and the number of possible successor states grow exponentially with
the number of state variables. For problems in which the number of possible successor
states grows exponentially, methods involving Monte-Carlo simulations may be coupled
with our algorithm to reduce the computational complexity to a manageable level. We
do not discuss such methods in this paper since we choose to concentrate on the issue
of compact representations. For problems in which the number of control actions grows
exponentially, on the other hand, there is no satisfactory solution, except to limit choices
to a small subset of allowed actions (perhaps by disregarding actions that seem "bad" a
priori). In summary, our algorithm is suitable for problems with large state spaces and
can be modified to handle cases where an action taken at a state can potentially lead
to any of a large number of successor states, but the algorithm is not geared to solve
problems where an extremely large number of control actions is allowed.

8 0 J . N TSITSIKLIS AND B. VAN ROY

7.3. Convergence Theorem

Let us now proceed with our convergence result for value iteration with linear architecturesfi

THEOREM 2 Let Assumption 2 hold.
(a) There exists a vector W* E ~ K such that W (t) converges to W*.
(b) T ' is a contraction, with contraction coefficient/3', with respect to a norm]l " l[on
~ : defined by

Ilwll :-IfMWll~.
Let V* be the optimal cost-to-go vector, and define e by letting

e = inf [i V * - 9 (W)] l o o ,
WC~ K

where V* is the optimal cost-to-go vector. Recall that rc~/(w.) denotes a greedy policy

with respect to cost-to-go vector I7(W*), i.e.,

ueu(i)
j c s

The following hold:
(c)

(d)

IIV* - 9 (w *) t l ~ _<
/3+/3 '

/3(1 - /3 ,) e,

2(/~ + 5')][V'~r~(w*> - V*]]~ <
(1 - /3)(1 - /3') e,

(e) there exists an example for which the bounds of (c) and (d) hold with equality.

This result is analogous to Theorem 1. The algorithm is guaranteed to converge and,
when the compact representation can perfectly represent the optimal cost-to-go vector,
the algorithm converges to it. Furthermore, the accuracy of approximations generated
by the algorithm decays gracefully as the propriety of the compact representation dimin-
ishes. The proof of this Theorem involves a straightforward application of Theorem 3
concerning multi-representation contractions, which is presented in Appendix D.

Theorem 2 provides some assurance of reasonable behavior when feature-based linear
architectures are used for dynamic programming. However, the theorem requires that the
chosen representation satisfies Assumption 2, which seems very restrictive. In the next
two sections, we discuss two types of compact representations that satisfy Assumption 2
and may be of practical use.

8. Example: Interpolative Representations

One possible compact representation can be produced by specifying values of K states
in the state space, and taking weighted averages of these K values to obtain values of

F E A T U R E - B A S E D M E T H O D S 8]

other states. This approach is most natural when the state space is a grid of points in
a Euclidean space. Then, if cost-to-go values at states sparsely distributed in the grid
are computed, values at other points can be generated via interpolation. Other than the
case where the states occupy a Euclidean space, interpolation-based representations may
be used in settings where there seems to be a small number of "prototypical" states that
capture key features. Then, if cost-to-go values are computed for these states, cost-to-go
values at other states can be generated as weighted averages of cost-to-go values at the
"prototypicar ' states.

For a more formal presentation of interpolation-based representations, let S = { 1, . . . , n}
be the states in the original state space and let i l , . . . , iK C S be the states for which
values are specified. The kth component of the parameter vector W E NK stores the
cost-to-go value of state ik. We are then dealing with the representation

~(W) = { Wi, if i e { i l , . . . , i K } ,
wT F(i), otherwise, (17)

where F(i) E ~K is a vector used to interpolate at state i. For any i C S, the vector
F(i) is fixed; it is a part of the interpolation architecture, as opposed to the parameters
W which are to be adjusted by an algorithm. The choice of the components fk(i) of
F(i) is generally based on problem-specific considerations. For the representations we
consider in this section, we require that each component fk(i) of F(i) be nonnegative

K and ~-~k=l fk(i) = 1 for any state i.
In relation to feature-based methods, we could view the vector F(i) as the feature

vector associated with state i. To bring Equation (17) into a uniform format, let us
define v e c t o r s { F (i l) , . . . , F(iK)} as the usual basis vectors of ~m so that we have

9 (w) = vi s .

To apply the algorithm from Section 6, we should show that Assumption 2 of Theorem
2 is satisfied. Assumption 2(a) is satisfied by the fact that F (i l) , ..., F (i K) are the basis

vectors of Rr, . This fact also implies that F(i) K = ~k=x Ok(i)t?(ik) for Ok(i) = fk(i).
Since the components of F(i) sum to one, Assumption 2(b) is satisfied with /3' = ft.
Hence, this interpolative representation is compatible with the algorithm of Section 6.

9. Example: Localized Basis Functions

Compact representations consisting of linear combinations of localized basis functions
have attracted considerable interest as general architectures for function approximation.
Two examples are radial basis function (Poggio and Girosi, 1990) and wavelet networks
(Bakshi and Stephanopoulos, 1993). With these representations, states are typically
contained in a Euclidean space Nd (typically forming a finite grid). Let us continue
to view the state space as S = {1, ..., n}. Each state index is associated with a point
x ~ E ~d. With a localized basis function architecture, the cost-to-go value of state i E S
takes on the following form:

82 J .N . T S I T S I K L I S A N D B. V A N R O Y

K

= Z
k = l

(18)

where W E N d is the parameter vector, and the function q5 : Nd x Nd x N ~ ~ is the
chosen basis function. In the case of radial basis functions, for instance, ~b is a Ganssian,
and the second and third arguments, #k E ~d and ak E N, specify the center and dilation,
respectively. More formally,

Vz, # E ~d, cr E N,

where tl" [[2 denotes the Euclidean norm and a c ~ is a normalization factor. Without loss
of generality, we assume that the height at the center of each basis function is normalized
to one. In the case of radial basis functions, this means a = 1. For convenience, we will
assume that #k = x i~ for k E { 1 , . . . , K } , where i l , . . . , iK are preselected states in S.
In other words, each basis function is centered at a point that corresponds to some state.

Architectures employing localized basis functions are set apart from other compact
representations by the tendency for individual basis functions to capture only local char-
acteristics of the function to be approximated. This is a consequence of the fact that
¢(x, #, or) generates a significant value only when x is close to #. Otherwise, ¢(x, #, a)
is extremely small. Intuitively, each basis function captures a feature that is local in
Euclidean space. More formally, we use locality to imply that a basis function, 9, has
maximum magnitude at the center, so ¢(# , #, ~7) = 1 while [¢(x, #, ~7)1 < 1 for x ¢ #.
Furthermore, I~b(x, #, cr) [generally decreases as I Iz - ~112 increases, and the dilation pa-
rameter controls the rate of this decrease. Hence, as the dilation parameter is decreased,
[qS(z, c, a)l becomes increasingly localized, and formally, for all x # #, we have

lim ¢(x, #, ~7) = 0 .
o'----~0

In general, when a localized basis function architecture is used for function approxima-
tion, the centers and dilations are determined via some heuristic method which employs
data and any understanding about the problem at hand. Then, the parameter vector W
is determined, usually via solving a least-squares problem. In this section, we explore
the use of localized basis functions to solve dynamic programming, rather than func-
tion approximation, problems. In particular, we show that, under certain assumptions,
the algorithm of Section 6 may be used to generate parameters for approximation of a
cost-to-go function.

To bring localized basis functions into our feature-based representation framework, we
can view an individual basis function, with specified center and dilation parameter, as
a feature. Then, given a basis function architecture which linearly combines K basis
functions, we can define

and a feature mapping F (i) = (f l (i) , . . . f~.(i)) . The architecture becomes a special
case of the familiar feature-based representation from Section 6:

FEATURE-BASED METHODS 83

K

9 (w) = g(F(i) , w) = WkA(0,
k = l

Vi E S. (19)

We now move on to show how the algorithm introduced in Section 6 may be applied
in conjunction with localized basis function architectures. To do this, we will provide
conditions on the architecture that are sufficient to ensure satisfaction of Assumption 2.
The following formal assumption summarizes the sufficient condition we present.

Assumption 3 (a) For all k c { 1 , . . . , K},

(b) For all j E { 1 , . . . , K } ,

(c) With 6 defined by

fk(ik) = 1.

IA(ia)t < 1.
k#]

_~ max ~ I A (/ j) I ,
j e { 1 , . . , K } k=fij

there exists a ,9' E [/9, 1) such that, for all i E S,

K

l f k (O I _< -

Intuitively, 6 is a bound on the influence of other basis functions on the cost-to-go
value at the center of a particular basis function. By decreasing the dilation parameters
of the basis functions, we can make (5 arbitrarily small. Combined with the fact that

K
max~es ~ k = l F(i) approaches unity as the dilation parameter diminishes, this implies
that we can ensure satisfaction of Assumption 3 by choosing sufficiently small dilation
parameters. In practice, a reasonable size dilation parameter may be desirable, and
Assumption 3 may often be overly restrictive.

We will show that Assumption 3 guarantees satisfaction of Assumption 2 of Theorem 2.
This will imply that, under the given restrictions, localized basis function architectures are
compatible with the algorithm of Section 6. We start by choosing the states {il, • •., iK }
to be those corresponding to node centers. Hence, we have x ~ = #k for all k.

Define/3 E ~ ; x K as a matrix whose kth column is the feature vector F(ik) . Define
[l l l l : ~K H ~ a s the ll norm on NK. Suppose we choose a vector 0 ~ NK with
II0111 = 1. Using Assumptions 3(a) and 3(b), we obtain

K

LL/3olll : Z ojF(ij) 1
j = l

K K

: ojf (ij)
k=l j:l

84 J.N. T S I T S I K L I S AND B. VAN ROY

_>
K

Z
k = l

1 -

> 1 -

> 0.

jCk
K

}--~ lOjl }-]~ lA(ij)l
j = l kCj

K

~10 j16
j = l

5

Hence, B is nonsingular. It follows that the columns of /3, which are the vectors
F (i l) , . . . , F(ik), are linearly independent. Thus, Assumption 2(a) is satisfied.

We now place an upper bound on liB-Ill1, the /1- induced norm o n / 3 - 1 :

liB-1111 =

<

IlB-lzlll
m a x

x ~ K I I z l l l

r a i n I l e l l l
0e~K [[BOII1

1

1 - 5

Let us define O(i) = B - 1 F (i) so that

K

F(i) = Z 0k(i)F(ik)
k = l

For any i, we can put a bound on II0(i)lll as follows:

II0(i)111 = IIB-1F(i)II1

_< IIB-XlllllF(i)lla
< IIF(i)II~
- 1 - 6
< /3t.
-

Hence, Assumption 2(b) is satisfied. It follows that the algorithm of Section 6 may be
applied to localized basis function architectures that satisfy Assumption 3.

1 0 . C o n c l u s i o n

We have proved convergence and derived error bounds for two algorithms that employ
feature-based compact representations to approximate cos t - to-go functions. The use of

FEATURE-BASED METHODS 85

compact representations can potentially lead to the solution of many stochastic control
problems that are computationally intractable to classical dynamic programming.

The algorithms described in this paper rely on the use of features that summarize the
most salient characteristics of a state. These features are typically hand-crafted using
available experience and intuition about the underlying Markov decision problem. If
appropriate features are chosen, the algorithms lead to good solutions. When it is not
clear what features are appropriate, several choices may be tried in order to arrive at a set
of features that enables satisfactory performance. However, there is always a possibility
that a far superior choice of features exists but has not been considered.

The approximation architectures we have considered are particularly simple. More
complex architectures such as polynomials or artificial neural networks may lead to
better approximations. Unfortunately, the algorithms discussed are not compatible with
such architectures. The development of algorithms that guarantee sound behavior when
used with more complex architectures is an area of open research.

Acknowledgments

The use of feature extraction to aggregate states for dynamic programming was in-
spired by Dimitri Bertsekas. We thank Rich Sutton for clarifying the relationship of
the counter-example of Section 4 with TD(0). The choice of Tetris as a test-bed was
motivated by earlier developments of Tetris learning algorithms by Richard Lippman and
Linda Kukolich at Lincoln Laboratories. Early versions of this paper benefited from the
proofreading of Michael Branicky and Peter Marbach. This research was supported by
the NSF under grant ECS 9216531 and by EPRI under contract 8030-10.

Appendix A

Multi-Representation Contractions

Many problems requiring numerical computation can be cast in the abstract framework
of fixed point computation. Such computation aims at finding a fixed point V* E N~
of a mapping T : N~ ~ ~n; that is, solving the equation V = T(V). One typical
approach involves generating a sequence {V(t)lt = 0, 1,2,...} using the update rule
V(t + 1) = T(V(t)) with the hope that the sequence will converge to V*. In the context
of dynamic programming, the function T could be the value iteration operator, and the
fixed point is the optimal cost-to-go vector.

In this appendix, we deal with a simple scenario where the function T is a contraction
mapping - that is, for some vector norm I f tl, we have lIT(V) - T(V')I[_</3HV - VII
for all V, V' E Nn and some/3 E [0, 1). Under this assumption, the fixed point of T is
unique, and a proof of convergence for the iterative method is trivial.

When the number of components n is extremely large (n often grows exponentially with
the number of variables involved in a problem), the computation of T is inherently slow.
One potential way to accelerate the computation is to map the problem onto a smaller
space ~'~ (m << n), which can be thought of as a parameter space. This can be done by

86 J.N. TSITSIKLIS AND B. VAN ROY

defining a mapping V : ~ m ~ Nn and a pseudo-inverse f / f : ~n ~ ~m. The mapping
V can be thought of as a compact representation. A solution can be approximated by
finding the fixed point of a mapping T ~ : i}~m ~ ~}q~rn defined by T ~ = le't o T o f/ . The

hope is that f / (W *) is close to a fixed point o f T if W* is a fixed point of TC Ideally, if
the compact representation can exactly represent a fixed point V* E Nn of T - that is, if
there exists a W E ~ m such that ~ ' (W) = V* - then W should be a fixed point of T ~.
Furthermore, if the compact representation cannot exactly, but can closely, represent the
fixed point V* E ~n. of T then W* should be close to V*. Clearly, choosing a mapping
f / f o r which I) (W) may closely approximate fixed points of T requires some intuition
about where fixed points should generally be found in ~n .

A.1. Formal Framework

Though the theorem we will prove generalizes to arbitrary metric spaces, to promote
readability, we only treat normed vector spaces. We are given the mappings T : ~R '~ ~-+
5}~n, f / : ~rn e--+ l}~n, and V-f : ~ n ~ ~m. We employ a vector norm on ~ n and a

vector norm on ~m, denoting both by H" II- We have m < n, so the norm being used in
a particular expression can be determined by the dimension of the argument. Define a
mapping T ' : ~m ~_+ ~,~ by T t = ~ t o T o f / . We make two sets of assumptions. The

first concerns the mapping T.

Assumption 4 The mapping T is a contraction with contraction coefficient/3 E [0, 1)
with respect to I["]]- Hence, for all V, V ' c ~R n,

I I ~ (V) - T (V ') l l ~ / 3 1 I V - V ' l l .

Our second assumption defines the relationships between V and Qt .

Assumption 5 The following hold for the mappings f~ and f/f :
(a) For all W E ~R "~,

W = 9 t (9 (W)) .

(b) There exists a/3' E [/3, 1) such that, for all W, W ' C ~R m,

/3' l l g (W) - 9 (W') l l <_ ~ l i w - W'll.

(c) For all V, V' E T¢ n,

l l v t (v) - v t (v ') l l ~ I IV - V ' l l -

Intuitively, part (a) ensures that Qf is a pseudo-inverse of V. Part (b) forces points that
are close in ~ '~ to map to points that are close in ~ , and part (c) ensures the converse,
nearby points in ~n must project onto points in ~R m that are close.

FEATURE-BASED METHODS 87

A.2. Theorem and Proof

Since T is a contraction mapping, it has a unique fixed point V*. Let

= inf IlK* - f ~ (w) l l .
W E ~ m

THEOREM 3
(a) We have

Let Assumptions 4 and 5 hold.

I IT ' (W) - T ' (W') I I ~</3'llW - W'l l ,

for all W, W' e ~m.
(b) If W* is the fixed point of T', then

/ 3 + / 3 '
I l V * - 9 (W *) l l _< /3(1- - /3 ') e"

This theorem basically shows that T ' is a contraction mapping, and if V* can be closely
approximated by the compact representation then W* provides a close representation of
V * .

Proof of Theorem 3 (a) Take arbitrary W, W ' c ~m. Then,

I IT ' (W) - T ' (W') I] =

<

_<

_<

I1 f , t (T (f ~ (W))) - 9 t (T (9 (W '))) I I

I l T (f ' (W)) - T (V (W ')) I I

/311f~(w) - f~(W')l l

/~'llW - W'll.

Hence, T ' is a contraction mapping with contraction coefficient j3'.
(b) Let e' = e + 6 for some 6 > 0. Choose Wopt E Nm such that tlV* -V(Wopt)l] < c'.
T h e n ,

IlWopt - T'(Wopt)l l = [[Vt (P(Wopt)) - f ' t (T (V(Wop t))) [t

<_ l l9(Wopt) - T (9 (W o p t)) l l

<_ IIf~(Wopt) - V*ll + IIT(f~(Wopt)) - V*ll

< c' + /3c '

= (1 + fl) , ' .

Now we can place a bound on [IW* - Woptll:

llW* - Wo,,,ll <_ IlW* - T'(Wop,)l l + IlT'(Wop~) - Wo,,,ll

< ;~'llW* - Wo,,,IL + (1 +/3)~',

and it follows that
1 + / 3 t

IIw* -Wop~ll < ~ .

88 J.N. TSITSIKLIS AND B. VAN ROY

Next, a bound can be put on [IV* - I)(W*)II :

IIV* - ? (W *) l l _ IIV* - ? (W o ~ d l l + IlfZ(wo~t) - # (W *) l l

-}11 < d + wop~ - w * I1

3' / 1 + /3"~ ,
< +

~ + 3 ' ,

- : 5 ,) , .

Since 5 can be arbitrarily small, the proof is complete. []

Appendix B

Asynchronous Stochastic Approximation

Consider an algorithm that performs noisy updates of a vector V E ~n , for the purpose
of solving a system of equations of the form T (V) : V. Here T is a mapping from ~n
into itself. Let T 1 , . . . , T~ : ~ ~ ~ be the corresponding component mappings; that is,
T (V) = (T I (V) , . . . , Tn (V)) for all V E ~ .

Let Af be the set of nonnegative integers, let V(t) be the value of the vector V at time
t, and let V/(t) denote its ith component. Let F ~ be an infinite subset of A c indicating
the set of times at which an update of Vi is performed. We assume that

Vi(t + 1) = Vi(t), t ¢ r / . (B.1)

and

V/(t + 1) = V/(t) + c~i(t) (Ti(V(t)) - Vi(t) + ~i (t)) , t E F i. (B.2)

Here, a i (t) is a stepsize parameter between 0 and 1, and r/i(t) is a noise term. In order
to bring Equations (B.1) and (B.2) into a unified form, it is convenient to assume that
c~(t) and ~ (t) are defined for every i and t, but that a i (t) = 0 for t ~ F ~.

Let U(t) be the set of all random variables that have been realized up to and including
the point at which the stepsizes c~i(t) for the tth iteration are selected, but just before
the noise term rli(t) is generated. As in Section 2, II" ll~ denotes the maximum norm.
The following assumption concerns the statistics of the noise.

Assumpt ion 6 (a) For ever), i and t, we have E[rh(t) [-)c(t)] = 0.
(b) There exist (deterministic) constants A and B such that

E[rj](t) I F (t)] <_ A + BNV(t)I[~, Vi, t.

We then have the following result (Tsitsiklis, 1994) (related results are obtained in
(Jaakola, Jordan, and Singh, 1994)):

FEATURE-BASED METHODS 89

THEOREM 4 Let Assumption 6 and Assumption 1 of Section 5 on the stepsizes ai(t)
hold and suppose that the mapping T is a contraction with respect to the maximum norm.
Then, V(t) converges to the unique fixed point V* ofT, with probability 1.

Appendix C

Proof of Theorem 1

(a) To prove this result, we will bring the aggregated state value iteration algorithm into
a form to which Theorems 3 and 4 (from the Appendices A and B) can be applied and
we will then verify that the assumptions of these theorems are satisfied.

Let us begin by defining a function T r : Nrn ~ Nm, which in some sense is a noise-
free version of our update procedure on W(t). In particular, the j th component T~ of
T ' is defined by

iES#

The update equations (7) and (8) can be then rewritten as

W#(t + 1) = (1 - a#(t))W#(t) + a#(t)(T~(W) + ~#(t)). (C.2)

where the random variable ~?j (t) is defined by

(t) = - E l .

Given that each Xj (t) is a random sample from Sj whose distribution is independent of
~ (t) we obtain

E[vj(t) I ~(t)] = E[~j(t)] = O.

Our proof consists of two parts. First, we use Theorem 3 to establish that T ' is a
maximum norm contraction. Once this is done, the desired convergence result follows
from Theorem 4.

Let us verify the assumptions required by Theorem 3. First, let us define a function
Q t : ~ - ~ a s

ic s#

This function is a pseudo-inverse of V since, for any W E ~M,

= = w j .

iESj

We can express T r as T r = ~-t o T o V, to bring it into the form of Theorem 3. In this
context, the vector norm we have in mind for both ~n and ~}~m is the maximum norm,

I -112.

90 J.N. TSITSIKLIS AND B. VAN ROY

Assumption 4 is satisfied since T is a contraction mapping. We will now show that lS't
I), and T, satisfy Assumption 5. Assumption 5(a) is satisfied since ~ t is a pseudo-inverse
of V. Assumption 5(b) is satisfied wi th /3 ' = / 3 since

119(w) - 9 (w ') l l ~ = max~ES ~ (W) - ~ (W ')

= m a x Iwj- w;I
jE(1 }

= I I w - w'lloo.

Assumption 5(c) is satisfied because

119*(v) - 9 t (y ') l l o o -- m a x E p J (i) (V / - V/')
/E{1 m}

iESj

<__ m a x m a x]Vi - - V/']
jG{1,...,m} i 6 S 5

= IIY- r ' t l~ .

Hence, Theorem 3 applies, and T t must be a maximum norm contraction with contraction
coefficient/3.

Since T ' is a maximum norm contraction, Theorem 4 now applies as long as its
assumptions hold. We have already shown that

E[wj(t)] F (t)] = 0,

so Assumption 6(a) is satisfied. As for Assumption 6(b) on the variance of fly (t), the
conditional variance of our noise term satisfies

_< 8max(E[c ,~]) 2 + SllWCt)ll .

Hence, Theorem 4 applies and our proof is complete.
(b) If the maximum fluctuation of V* within a particular partition is ei then the mini-

mum error that can be attained using a single constant to approximate the cost-to-go of
every state within the partition is ~ . This implies that m i n w I IV(W) - V * lion, the min-

imum error that can be attained by an aggregated state representation, is ~ . Hence,

by substituting e with --,rle~ and recalling that we have/3~ = /3 , the result follows from
Theorem 3(b).

(c) Now that we have a bound on the maximum norm between the optimal cost-to-go
estimate and the true optimal cost-to-go vector, we can place a bound on the maximum
norm between the cost of a greedy policy with respect to V (W *) and the optimal policy
as follows:

]IV ~'2~w*~ - v*ll~o < IIv ~ ' ~ * ~ - T(V(W*)) l loo ÷] IT(V(W*)) - v*Hoo.

FEATURE-BASED METHODS 91

Wl, 2 w3,4

0 "

'.. 0 i "..

C -C

Figure C.1. An example for which the bound holds with equality.

I I V ~ < w ' > - V*lloo _<
<

_<

I t fo l lows that

Since T (V) = T Try (V) for all V ¢ R ~, we have

II v ~ (' ') - T'~'~(w*) (l?(W*))l]o~ + lIT(IT(W*)) - V*l l~

/3II v ~ (W ') - ? (w *) I l o o + ~ l l ? (W *) - V*l loo

~ l l V ~<w '~ - V * l l ~ (1 + ~) l lV * - ~7(W*)lloo.

- v*ll~ _< 12~911~7(w *) _ - v*ll~

-< (1 2 ~ /) 2]lell~"

(d) Consider the four-state Markov decision problem shown in Figure C. 1. The states
are z l , 3:2, 3:3, and 3:4, and we form two partitions, the first consisting of 3:1 and :r2,
and the second containing the remaining two states. All transition probabil i t ies are one.
No control decisions are made at states 3:1, 3:2, or 3:4- State 3:1 is a zero-cost absorbing
state. In state z2 a transition to state z l is inevitable, and, likewise, when in state 3:4,
a transition to state z3 always occurs. In state z3 two actions are allowed: move and

stay. The transition cost for each s tate-act ion pair is deterministic, and the arc labels in
Figure C. 1 represent the values. Let c be an arbitrary positive constant and, let b, the
cost of staying in state z3, be defined as b 2;~c-6 - 1-~ , with 5 < 2/3c. Clearly, the optimal

cost-to-go values at z l , 3:2, z3 , and :c4 are 0, c, 0, - c , respectively, and Ilell = c.
Now, let us define sampling distributions, within each partition, that will be used with

the algorithm. In the first partition, we always sample :r2 and in the second partition, we

92 J.N. TSITSIKLIS AND B. VAN ROY

always sample x4. Consequently, the algorithm will converge to partition values w* 1,2
and w~, 4 satisfying the following equations:

~'1,2 = c + /7w~,2

* = - c + f l w ~ , 4 . 2/33, 4

It is not hard to see that the unique solution is

C
Wl,2 1 - / 7

--C

W3'4 ~ 1-----'~"

The bound of part (b) is therefore satisfied with equality.
Consider the greedy policy with respect to w. For 6 > 0, the stay action is chosen

2flc--6 at state x3, and the total discounted cost incurred starting at state x3 is (1_~)2. When

8 = 0, both actions, stay and move, are legitimate choices. If stay is chosen, the bound
of part (c) holds with equality. []

Appendix D

Proof of Theorem 2

(a) By defining V t (V) = MtV, we have T t = I I t o T o T/, which fits into the framework
of multi-representation contractions. Our proof consists of a straightforward applica-
tion of Theorem 3 from Appendix A (on multi-representation contractions). We must
show that the technical assumptions of Theorem 3 are satisfied. To complete the multi-
representation contraction framework, we must define a norm in our space of cost-to-go
vectors and a norm in the parameter space. In this context, as a metric for parameter
vectors, let us define a norm I1 II by

IIWII = ~ I I M W I t ~ .

Since M has full column rank, tl " II has the standard properties of a vector norm. For
cost-to-go vectors, we employ the maximum norm in Nn as our metric.

We know that T is a maximum norm contraction, so Assumption 4 is satisfied. As-
sumption 5(a) is satisfied since, for all W E ~K,

~ t (v (w)) = M f M W

= W.

Assumption 5(b) follows from our definition of II - II and the fact that /3 ' E [/3, 1):

IIW - W' l l = -~t lMW - MW'[I~

- /3 l l g (w) - 9 (w ') l l ~ .

FEATURE-BASED METHODS 93

Showing that Assumption 2 implies Assumption 5(c) is the heart of this proof. To do
this, we must show that, for arbitrary cost-to-go vectors V and W,

iI V _ V, iioo > I lVt (w) _ v t (w ') l f . (D.1)

Define m = ~ M (V t (V) - Vf(Vr)). Then, for arbitrary i E S we have

ID{I = -~lFX(i)(V¢(V) - Vt(V'))l -

Under Assumption 2 there exist positive constants 0 1 (i) , . . . , OK(i) @ ~, with
K Ek=x f0k(i)[-< 1, such that F(i) = ~ E K I Ok(i)F(ik). It follows that, for such

01 (/) , ...,OK(i) E ~}~,

3 3 , ' ~
IDol _< ~ l (~ ~ Ok(i)FT(ik))(Vt(V) - Vt(V'))l

k = l

_< m ~ IF= ' (ik) (V~(V) - V~t(V'))l
k

_< I D ~ t

= IV~ - Y--' I
7, k

_< I I V - V ' l l o o .

Inequality (D.1) follows. Hence, Theorem 3 applies, implying parts (a), (b), and (c), of
Theorem 2.

Part (d) can be proven using the same argument as in the proof of Theorem 1 (c). For
part (e), we can use the same example as that used to prove part (d) of Theorem 1.

[]

Notes

1. To those familiar with Q-learning or temporal-difference learning: the counter-example applies to cases
where temporal-difference or Q-learning updates are perfoimed at states that are sampled uniformly from
the entire state space. Often times, however, temporal-difference methods assume that sample states are
generated by following a randomly produced complete trajectory. In our example, this would correspond
to starting at state x l , moving to state x2, and then doing an infinite number of self-transitions from state
xz to itself. If this mechanism is used, our example is no longer divergent, in agreement with results of

Dayan (1992).
2. We take the point of view that each of these samples is independently generated from the same probability

distribution. If the samples were generated by a simulation experiment, as Monte-Carlo simulation under
some fixed policy, independence would fail to hold. This would complicate somewhat the convergence
analysis, but can be handled as in (Jaakola, Singh and Jordan, 1995).

3. The way in which state is recorded is inconsequential, so we have made no effort to minimize the number
of vector components required.

4. To really ensure a reasonable order of growth for the number of required iterations, we would have to
characterize a probability distribution for the difference between the initial parameter vector W(0) and the
goal W* as well as how close to the goal W* the parameter vector W(t) must be in order for the error

bounds to hold.

5. Related results have been obtained independently by Gordon (1995).

94 J.N. TSITSIKLIS AND B. VAN ROY

References

Bakshi, B. R. & Stephanopoulos G., (1993)."Wave-Net: A Multiresolution, Hierarchical Neural Network with
Localized Learning," AIChE Journal, vol. 39, no. 1, pp. 57-81.

Barto, A. G., Bradtke, S. J., & Singh, S. P., (1995). "Real-time Learning and Control Using Asynchronous
Dynamic Programming," Aritificial Intelligence, vol. 72, pp. 81-138.

Bellman, R. E. & Dreyfus, S. E., (1959)."Functional Approximation and Dynamic Programming," Math. Tables
and Other Aids Comp., Vol. 13, pp. 247-251.

Bertsekas, D. P., (1995).Dynamic Programming and Optimal Control, Athena Scientific, Bellmont, MA.
Bertsekas, D, P,, (1994)?'A Counter-Example to Temporal Differences Learning," Neural Computation, vol. 7,

pp. 270-279.
Bertsekas D. P. & Castafion, D. A., (1989). "Adaptive Aggregation for Infinite Horizon Dynamic Program-

ming," IEEE Transactions on Automatic Control, Vol. 34, No. 6, pp. 589-598.
Bertsekas, D. P. & Tsitsiklis, J. N., (1989). Parallel and Distributed Computation: Numerical Methods,

Prentice Hall, Englewood Cliffs, NJ.
Dayan, P. D., (1992). "The Convergence of TD(A) for General A," Machine Learning, vol. 8, pp. 341-362.
Gordon, G. J., (1995)."Stable Function Approximation in Dynamic Programming," Technical Report: CMU-

CS-95-103, Carnegie Mellon University.
Jaakola, T., Jordan M. I., & Singh, S. P., (1994)."On the Convergence of Stochastic Iterative Dynamic Pro-

gramming Algorithms," Neural Computation, Vol. 6, No. 6.
Jaakola T., Singh, S. P., & Jordan, M. I., (1995). "Reinforcement Learning Algorithms for Partially Observable

Markovian Decision Processes," in Advances in Neural Information Processing Systems 7, J. D. Cowan, G.
Tesauro, and D. Touretzky, editors, Morgan Kaufmann.

Korf, R. E., (1987). "Planning as Search: A Quantitative Approach," Artificial Intelligence, vol. 33, pp. 65-88.
Lippman, R. P., Kukolich, L. & Singer, E., (1993). "LNKnet: Neural Network, Machine-Learning, and

Statistical Software for Pattern Classification," The Lincoln Laboratory Journal, vol. 6, no. 2, pp. 249-268.
Morin, T. L., (1987). "Computational Advances in Dynamic Programming," in Dynamic Programming and Its

Applications, edited by Puterman, M.L., pp. 53-90.
Poggio, T. & Girosi, F., (1990). "Networks for Approximation and Learning," Proceedings of the IEEE, vol.

78, no. 9, pp. 1481-1497.
Reetz, D., (1977). "Approximate Solutions of a Discounted Markovian Decision Process," Banner Mathema-

tische Schriften, vol. 98: Dynamische Optimiernng, pp. 77-92.
Schweitzer, E J., & Seidmann, A., (1985). "Generalized Polynomial Approximations in Markovian Decision

Processes," Journal of Mathematical Analysis and Applications, vol. 110, pp. 568-582.
Sutton, R. S., (1988). "Learning to Predict by the Method of Temporal Differences," Machine Learning, vol.

3, pp. 9-44.
Tesauro, G., (1992). "Practical Issues in Temporal Difference Learning," Machine Learning, vol. 8, pp. 257-

277.
Tsitsiklis, J. N., (1994). "Asynchronous Stochastic Approximation and Q-Learning," Machine Learning, vol.

16, pp. 185-202.
Watkins, C. J. C. H., Dayan, E, (1992). "Q-learning," Machine Learning, vol. 8, pp. 279-292.
Whitt, W., (1978). Approximations of Dynamic Programs I. Mathematics of Operations Research, vol. 3, pp.

231-243.

Received Decmeber 2, 1994
Accepted March 29, 1995
Final Manuscript October 13, 1995

