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Statistical Multiplexing of Multiple
Time-Scale Markov Streams

David N. C. Tse, Robert G. Gallager, Fellow, IEEE, and John N. Tsitsiklis

Abstract— We study the problem of statistical multiplexing of
cell streams that have correlations at multiple time-scales. Each
stream is modeled by a singularly perturbed Markov-modulated
process with some state transitions occurring much less fre-
quently than others. One motivation of this model comes from
variable-rate compressed video, where the fast time-scale dy-
namics may correspond to correlations between adjacent frames,
while the slow time-scale dynamics may correspond to corre-
lations within the same scene of a video sequence. We develop
a set of large deviations results to estimate the buffer overflow
probabilities in various asymptotic regimes in the buffer size, rare
transition probabilities, and the number of streams. Using these
results, we characterize the multiplexing gain in both the channel
capacity and the buffering requirements and highlight the impact
of the slow time-scale of the streams.

I. INTRODUCTION

KEY concept behind the emerging asynchronous transfer

mode (ATM) broadband integrated service networks is
the efficient sharing of link capacities through statistical mul-
tiplexing of variable-rate traffic streams. Buffering is required
at the network nodes to absorb traffic fluctuations when the
instantaneous rate of the aggregate incoming stream exceeds
the capacity of the outgoing link. To be able to provide quality-
of-service guarantees to users of the network, it is necessary
to estimate the cell loss probabilities due to buffer overflows
when these traffic streams interact. A better understanding of
this problem is essential for dealing with higher-level network
management issues such as call admissions, call routing,
bandwidth and buffer allocation, and congestion control. The
problem is particularly challenging because the traffic streams
can belong to different classes of services with very different
statistical characteristics.

In this paper, we will focus on the simple scenario when
multiple streams are multiplexed onto a common fixed-
capacity link at a buffered switch. While this is a well-studied
problem in the literature, the novelty here is our model of
the traffic streams as singularly perturbed multiple time-scale
Markov processes. The key characteristic of this class of
models is that some state transitions in the Markov chain
occur much more infrequently than others, and this allows the
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modeling of correlations in the traffic stream arrival rate at
different time-scales.

The motivation for considering this model is three-fold.
First, experimental studies of variable-rate compressed video
traffic (e.g. [15], [20]) have demonstrated that statistical cor-
relations in the bit-rate typically exist at several time-scales,
such as intraframe correlations, correlations between adjacent
frames, and long-range correlations associated with phenom-
ena such as scene changes when the coder adapts to the
characteristics of different scenes. Second, this model enables
us to study situations when dynamics of different traffic
streams occur at different time-scales. Because these networks
will carry traffic from very different classes of services,
this is expected to be a common phenomenon. Third, traffic
management based on a separation between cell level and burst
level congestion has been proposed for ATM networks (see
[18]). This approach can be viewed as a specific example of a
multiple time-scale decomposition of the traffic process, and
our general results here provides a better understanding of
when such a separation is valid.

Recently, the single-link statistical multiplexing problem has
received a lot of attention. In particular, there has been a line
of work suggesting that the nature of the interaction of the
streams is such that, for a given cell loss probability p, it is
possible to assign an effective bandwidth to a traffic stream
depending only on p and the statistics of the stream, with the
property that the loss probability requirement is approximately
satisfied if and only if the sum of the effective bandwidths of
the incoming streams is less than the capacity of the out-going
link (Kelly [13], Guerin et al. [9], Gibbens and Hunt [11],
Elwalid and Mitra [8], Kesidis er al. [14], Whitt [24], Chang
et al. [1], [2]).

While these works differ in the stochastic models for
the traffic streams, they are all essentially based on large
deviations estimates of the loss probability in the asymptotic
regime of large buffers. In this sense, effective bandwidth is
only an approximate notion for finite buffers. One difficulty of
applying these results in practice is that there is little intuition
regarding how large buffers have to be for the asymptotic
estimates to be accurate. A thesis of this paper is that it is
crucial to take into consideration the correlation time-scales
of the streams, particularly in relation to the size of buffer.
By explicitly incorporating this information in our multiple
time-scale models and in our asymptotic estimates, we will
show that while the effective bandwidth concept generalizes
naturally to multiple time-scale streams in some parameter
regimes, in other regimes it breaks down and has to be replaced
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by better estimates. Moreover, the correlation time scales
have a major impact on the amount of statistical multiplexing
gain that can be achieved. Numerical work demonstrating the
inaccuracy of the effective bandwidth approximation in some
regimes has also been reported in Choudhury et al. [10].

Our approach is based on a set of large deviations results
for the cell loss probability in various joint asymptotic regimes
in the buffer size, the correlation time-scale parameter, and
the number of traffic streams sharing the link. The results
not only yield estimates for the loss probability but, equally
importantly, provides insights on the fypical bursting behavior
of the traffic streams that leads to the cell losses. They show
that, depending on the parameter regimes, the dynamics at the
fast time-scale or at the slow time-scale play the major role
in the overflow behavior.

The paper is organized as followed. In Section II, we
review the basic large deviation result underlying the effective
bandwidth concept for single time-scale Markov-modulated
processes. In Section III, we give a derivation of that result
using martingale techniques to clarify the role of the corre-
lation time-scale in the accuracy of the approximation. We
introduce the multiple time-scale Markov models in Section
IV, and present large deviations results for a single multiple
time-scale stream. Using these results, we obtain an expression
for the effective bandwidth of multiple time-scale streams in
Section V. In Section VI, we obtain large deviations results for
the loss probability when a large number of independent and
statistically similar multiple time-scale streams are multiplexed
together, and show that the effective bandwidth approximation
can be overly conservative in this regime. Finally, in Section
VII, we apply these large deviations results to quantify the
statistical multiplexing gain in terms of both link capacity and
buffer requirements. Due to space constraints, we only sketch
proofs of the results. Refer to [21] for the full proofs.

II. EFFECTIVE BANDWIDTH OF SINGLE
TIME-SCALE MARKOV STREAM

Consider a time-slotted model with X; being the number of
cells! arriving at the multiplexer in time slot ¢. The multiplexer
is served by a fixed-rate channel of capacity ¢ cells per time
slot. Cells that cannot be immediately transmitted on the
outgoing channel are queued up in a buffer of size B. Excess
cells arriving at a full buffer are considered lost.

We consider a Markov-modulated model for the arrival
stream. Specifically let {H;} be a discrete-time, finite-state,
irreducible, stationary Markov chain with state space S, and
let (p;;) be its transition matrix. We shall call {H,} the source
state process. The arrival stream {X,} is modulated by the
Markov chain {H;}, such that the distribution of X; at time
t depends only on the source state H, at time ¢, and given a
realization of the chain { H;}, the X,’s are independent. Since
{H,} is stationary, so is the cell arrival process {X;}. The
source state H; can be thought of as modeling the burstiness
of the stream at time ¢; the Markov structure models the
correlation in the cell arrival statistics over time. For stability,
we assume that the average number of cells arriving per time

1 X could equally be the number of bits, bytes, etc.
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slot is less than the channel capacity, F(X1) < c. We will also
assume there is a peak rate constraint Py on the cell arrival
rate, i.e., X; < Po.

We are interested in the regime where cell loss is a rare
event (of the order 10~% to 1079). The effective bandwidth
of the arrival stream is based on certain large deviations
approximation of the cell loss probability p(B) when the
buffer size B is large. Let g;(r) = Elexp(rX¢)|H: = i
be the generating function (which we assume to exist and
be differentiable for all r) of the conditional distribution of
X, given the source state H; = i. Consider the matrix A(r)
whose entries are a;;(r) = pi;gi(r). i,j € S. Since the given
chain is irreducible, the matrix A(r) is also irreducible for
any r. By the Perron-Frobenius theorem, the matrix A(r) has
a largest positive simple eigenvalue p(r) (the spectral radius
of A(r)) with a strictly positive right eigenvector 7,., unique
up to scaling

A(r)n. = p(r)0,- (D

It can be shown (see for example [7]) that the log spectral
radius function A(r) = log p(r) is convex and differentiable
for all 7 € R, and that A(0) = 0 and A'(0) = E(X;). It
follows that if E(X1) < ¢, then the equation

A(r)y—cr=0

has a unique positive root 7* > 0.2 The key result underlying
the effective bandwidth concept is that in the asymptotic
regime of large buffer sizes, the loss probability decays ex-
ponentially with B, with the exponent given by r™; i.e.

Bli_r*n00 % logp(B) = —r~. )

Less formally, this result means that for large buffer size B,
the loss probability is approximately

p(B) ~ exp(—r"B). 3)

The result (2) is essentially a consequence of a more general
theorem of de Veciana and Walrand [6], which makes precise a
more heuristic argument presented earlier by Kesidis,Walrand
and Chang [14]. A similar large deviations result was proved
by Dembo and Karlin [5] but in a slightly different setting.
Analogous results for continuous-time Markov fluid models
were obtained by Gibbens and Hunt [11] and by Elwalid and
Mitra [8] via spectral expansions.

Now consider the situation when the channel is shared
by N independent Markov modulated streams with possibly
different statistics. Let A; be the log spectral radius function
of the jth stream, as defined earlier. Note that the aggregate
arrival stream is also a Markov-modulated process, and by
direct computation, its log spectral radius function is simply
E?’:l A;. Using result (2) and the convexity of the log spectral
radius function, we see that if the loss probability requirement
is such that for some prescribed § > 0, the loss probability
satisfies

1
im — < -é
Jim 2 logp(B) <

2We take r* = oo when there are no roots. This only happens in the
uninteresting case when the overflow probability is 0.
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then a necessary and sufficient condition for meeting this
requirement is that

N

> A6 —es<0.

=1

Hence, one can assign an effective bandwidth

e;(6) = ) @

to each stream, and the loss probability requirement is satisfied
iff 3°,e;(8) < c

III. HOw LARGE IS LARGE?

The validity of the effective bandwidth formula (4) depends
critically on the accuracy of the large deviations approximation
(3) of the loss probability. It is imperative therefore to have a
better understanding of what the assumption of “large buffers”
really means in terms of the statistics of the arrival stream
(i.e., large with respect to what?). This is not only helpful in
having a better sense of when this effective bandwidth formula
is applicable in practice, but also motivates the multiple time-
scale models to be introduced in the sequel. Here, we will use
martingale techniques to shed some insight on this issue.

Let us first consider the simplest case where the time-
slotted arrival stream {X.} is an ii.d. process. Using a
reasonably standard reduction by means of renewal theory (see
for example [17]), the cell loss probability in this case can be
well approximated by the probability that, starting from an
empty buffer, the buffer becomes full before emptying it out
again. This is a barrier-hitting probability for the negative-
drift random walk Sy = 0,S; = 30 _ (X, — c), and can
be analysed using Wald’s martingale M;(r) = exp{rS; —
t(A(r) — cr)}, where A(r) = log Elexp(rX;)] is the log
moment generating function of the number of cells arriving
per time slot. (For details on this approach, see for example
[19].) Defining the stopping time 7' = min{t > 1 : S; >
B or S; < 0}, and applying the optional stopping theorem?
on the martingale M.(r*) (where A(r*) — er* = 0,7* > 0),
we get

Elexp(r*St)] = 1. (5)

(This is also known as Wald’s Identity.) Note that when the
random walk {S,} first hits a barrier, there may be overshoots.
However, if we make the assumption that the overshoots are
small compared to the buffer size, then (5) implies that

P(St > B) ~ exp(—7*B).

Thus in this i.i.d case, one should expect the large deviations
loss probability approximation (3) to be accurate when the
fluctuations of the net number of cell arrivals per time slot
are small relative to the buffer size B. Using the martingale
approach, one can also show that, conditional on filling the

3The optional stopping theorem says that under appropriate regularity
condition, E(M7) = E(Mo) for any martingale { M } and random stopping
time T. If M, is interpreted as a gambler’s fortune after the ¢th game, this

essentially says that one cannot win in a sequence of fair games without
looking ahead.
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buffer before emptying out again, the expected time to fill the
buffer starting from an empty buffer is proportional to the size
of the buffer [19].

For the general case when the arrival process is modulated
by a Markov chain {H.} with log spectral radius function
A(r), we can use a martingale generalized from Wald’s
martingale in the i.i.d. case

nr(Ht)
nT(HO)

where 7, is a right eigenvector defined in (1). A more
insightful approach, however, is to essentially transform the
problem back to the i.i.d. case by imposing a regenerative
structure on the process {S;}. (This approach is used by Ney
and Nummelin [16] in their study of general large deviations
properties of Markov additive processes.) Specifically, let
To = 0 and 7; (4 > 1) be the ith time the chain {H,} returns
to the state Hy. Define Yo =0,Y; = S, =S, _, —c(ri—7i—1)
for ¢ > 1. Note that {Y;} is an i.i.d. process, and if we define
a stopping time 7 as the smallest ¢ such that the first barrier
crossing occurs in the interval (7;_;.7;], then

Elexp(rySt)] =1

M,(r) = exp{rS; — t(A(r) —cr)} 6)

where ry is the unique positive root of the equation Ay (r) =
0, Ay(r) = logE[exp(rY1)]. The parameter ry can be
expressed in terms of the statistics of the original Markov-
modulated process. It can be shown that the optional stopping
theorem is also applicable to the martingale M, in (6) and the
return time 7;. This yields

Elexp{rY1 — ni(A(r) —er)}] = 1.

Hence, the unique positive root 7* of the equation A(r)—cr =
0 also satisfies the equation Ay (r) = log Elexp(rY1)] = 0.
By the uniqueness of ry, this implies that ry is in fact the
unique positive root of the equation A(r) —rc = 0.

Hence we can reinterpret the estimate (3) of the loss
probability for Markov-modulated arrivals as that of the loss
probability of the embedded i.i.d. arrival process {Sr.,, — S, }
with a channel of varying capacity {(7;+1 — 7;)c}. In this
sense, the large deviations behavior underlying the result for
Markov-modulated arrivals is qualitatively not too different
from the large deviations behavior for i.i.d. arrivals. In the
regime where one can expect the estimate to be accurate,
the typical route to buffer overflow would be through a large
number of regeneration epochs (proportional to the size of
the buffer), with the overshoot small compared to the buffer
size. Here, the overshoot is the net number of cells that arrive
in the period between the time the buffer first overflows
and the next regeneration epoch. (See Fig. 1.) This holds
when the fluctuations in the number of cells arrived in a
regeneration period is small compared to the buffer size. When
the calculations are done using the martingale (6), the term
involving the right eigenvector accounts for this overshoot.

IV. LARGE DEVIATIONS OF MULTIPLE
TIME-SCALE MARKOV STREAMS

When the traffic stream has only fast time-scale correlation,
the time it takes to return to any one source state is small, and
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the above qualitative picture for the large deviations behavior
holds rather accurately. On the other hand, when the stream
has slow time-scale dynamics as well, the qualitative picture
is not so appropriate since the regeneration time has a much
wider fluctuation. Thus, the large deviations approximation
may not be justified. In the next few sections, we will explicitly
model the multiple time-scale dynamics and derive a set of
large deviations results for this model, together with qualitative
pictures of the typical manner in which buffer overflows
occur in the multiple time-scale setting. These large deviations
results will form a basis for understanding bandwidth and
buffer allocation issues for multiple time-scale streams, as well
as the statistical multiplexing gain achievable. We will discuss
these issues in Section VII

As before, the traffic stream is modeled by a station-
ary Markov-modulated process (H;, X;), with the underlying
Markov chain having a finite state space S. The multiple time-
scale aspect is modeled by imposing an asymptotic structure
on the underlying Markov chain. Specifically, we index the
process by a small parameter o and let (p;;(«)) be the
transition matrix of the modulating chain, where the transition
probabilities are assumed to be differentiable functions of the
parameter o. For o # 0, the Markov chain is irreducible. As
a — 0, the probabilities of some of the transitions go to zero.
These are the rare transitions which govern the slow time-
scale dynamics. Let R = {(¢,7) : p;;(0) = 0} be the set of
such rare transitions. When o = 0, the chain is decomposed
into K irreducible component subchains with state spaces
81,82, -, Sk. They model the fast time-scale dynamics in
the different regimes of the source. Thus, for small & > 0,
the source would typically spend a long time in a subchain,
and then occasionally jump to a different subchain through a
transition in R.

This multiple time-scale model is similar to the singular-
perturbed or e-decomposable Markov models (see for example
[3]), although here there is no restriction that the rare transition
probabilities must be integral powers of «.

We introduce the asymptotic structure on the rare transition
probabilities to model the fact that the process remains in
each subchain for a long time before switching to another
subchain. However, we assume that the process spends a
significant fraction of time in each subchain. More precisely,
for each o # 0, let m, be the steady-state distribution of
the entire ergodic chain. We make the assumption that for
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each subchain &
lin{)ﬂa(sk) = m(Sk) > 0.

Also, let u; = E[X;|H; = i] be the number of arrivals per
time slot (arrival rate) when the chain is in state ¢, and let

e = Z @),

Hi
1€ESK W(Sk)

be the average arrival rate (per time slot) conditional on being
in subchain & (in the limit as a — 0). For brevity, we will
refer to fi; as the average rate of subchain k.

We also assume that the transition probabilities within each
subchain remain fixed, independent of . More formally, for
all 1 < k < K and for all 7,5 € S, the probability of a
transition from state 4 to j conditional on the process staying
within subchain k
_ pijl)
pz.ﬂk(a) = Zsesk pis(a) pl](o)

is fixed independent of o.*

For the kth subchain of the stream (k = 1,2---, K), we
can compute the spectral radius function pg(r), and the log
spectral radius function Ag(r) = log px(r), of the matrix

Ap(r) = (pij(o)gi(r)){i,jesk} Q)]
where g;(r) = E(exp(rX1)|Hy = i).

Also, let [7*(1),---,n5(|Sk|)]t be a (positive) right eigen-
vector of the matrix Ag(r) corresponding to the eigenvalue
px(T).

We define

Amax(r) = max Ax(r).

pmax(T) = max pk(T)’ e

1<k<K

We are interested in obtaining estimates of the loss prob-
ability in the regime where the buffer size is large with
respect to the fast time-scale dynamics, but not necessarily
with respect to the slow time-scale dynamics. To capture this
mathematically, we take the joint limit as both the buffer size
B becomes large and the slow time-scale parameter o goes
to zero.’

We use a combination of martingale techniques and large
deviations theory to obtain our results. The main result we need
from large deviations theory is the Girtner-Ellis Theorem.
Here is a special case which suffices for our purposes. For
a proof of the general result, see [7].

Theorem 1: Let Zy,Z,,--- be a sequence of real-valued
random variables, possibly dependent, and define for each n

An(r) = ;L—log Elexp(rnZ,)]

Suppose that the Z,,’s have asymptotically the same mean,
lim, o E(Z,) = p, and the asymptotic log moment generat-
ing function, defined as A(r) = lim,— 00 An(r), exists and is

4This assumption is not necessary, and in general all our asymptotic results
can instead be expressed in terms of the limiting conditional probabilities (as
a — 0). The assumption simplifies the notations in the paper.

5 From now on, we will denote the loss probability by p(B. ) to emphasize
its dependence on the slow time-scale parameter «.
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differentiable for all r. Then, for all u >
1
lim —logP(Z, > pu) = —A*(p)
n—oc N,
where A* is the Legendre transform of A, defined by
A (p) = sgg[;w — A(r)]. (8)

In the main case of interest, the random variables Z,,’s
are given by Z, = 1Y X, where {X,} is a Markov-
modulated process. It can be shown that in this case, the
asymptotic log moment generating function is in fact equal
to the log spectral radius function [7]

1 n
lim ElogE[exp(r E X)) = log p(r) 9)
t=1

where p(r) is the spectral radius function for the process { X;}.
The following is the first major result of the section.
Theorem 2: Suppose the multiple time-scale stream { X, }is

served by a channel of constant rate ¢, and let B be the buffer

size. If the average rate fiy of each subchain is less than e,

then the steady-state loss probability p(B, ) in the regime of

large buffers B and small « is

lim
B—o0o,a—

1
0B logp(B,a) = —r

where 7* is the unique positive root of
Amax(r) —rc = 0.

Alternatively, v* = min{r},--- ,r}(}, where 7} is the unique
positive root of Ax(r) — re = 0.

That the two characterizations of r* are equivalent follows
from the convexity of the functions Aj’s.

We have seen that if the stream is a single time-scale
Markov-modulated process with log spectral radius function
A(r), then the exponent for the loss probability is just the
positive root of the equation A(r) — rc = 0. Hence, Theorem
2 is a generalization of this result to multiple time-scale pro-
cesses. The theorem essentially says that the loss probability
is determined by the "worst" subchain, the one with the largest
loss probability when regarded as a single time-scale process.
Note that maxy, Ax(r) is also a convex function, we can view
this as a generalized log spectral radius function.

It should be emphasized that the limit for the loss probability
is uniform in the two asymptotic parameters, and is indepen-
dent of the relative rates of approach of B and « to their
respective limits. In particular, it shows that the approximation
is valid in the regime when & >> B >> 1, i.e., the buffer
is large with respect to the fast time-scale dynamics but small
with respect to the slow time-scale dynamics.

Sketch of Proof:

Upper bound: Suppose the system is in steady-state. Let
B > 0. We first upper bound the probability of the event Fj4
that the buffer is full at time 0 and the buffer was last empty at
time —BB. A necessary condition for this event to happen is
that more than B¢+ B cells have arrived in the time interval
[-BDB,0]. Let Ng be the number of rare transitions (jumps
from one subchain to another) in this time interval. We show
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that with high probability, N; = o(B),° and that when there
are that few transitions, we can get a good large deviations
upper bound on P(Eg). Specifically

0
P(Es) <P( Y (Xe—c)> B)
t=—03B

0
<P( Y (Xe=c)>B & Ng<m)
t=—pAB
+P(Ng > m) (10)

for any m < BB. It can be shown that

PNy > m) < (22

m

where d(a) = maxies 3 (; jyer Pij(@) and d(a) — 0 as
a — 0. This follows from a standard combinatorial bound
on the sum of Bernoulli random variables and a coupling
argument.

We can upper bound the second term in (10) using Cher-
noff’s bound: for any » > 0

0
P> (Xe—¢)>B & Ny<m)
t=—pB
0

<Elexp{r > (Xe=0)} Iy <m) | exp{-rB}
t=—pB

where [, is the characteristic function on a set A. To bound
the expectation term above, consider first the simple case when
each subchain has only one state (i.e., an i.i.d. process). Then,
since conditional on each source state sequence, {X,} is an
i.i.d. process

0
E |exp{r z (Xe =)} Iing<m}
t=— 8B
6B
< mkaxgk(r) exp{—cr}

where g, is the generating function of the kth subchain.
To tackle the general case when each subchain has multiple
states, we use use the idea discussed in Section IIT on the
reduction of Markov-modulated processes to i.i.d. processes
using regenerative constructions. Specifically, if it were true
that for each subchain k, there is a state s, such that the
process always enters and leaves the subchain through sy,
then we can just "sample" the process at the time instants it is
in one of the s1, s2,- - -, Sk, and we are essentially back in the
case when each subchain has a single state with corresponding
generating function p;(#). However, if the process enters and
leaves a subchain in different states, then we have to introduce
a “correction term” each time this happens, analogous to the
overshoot term described earlier. One can implement this idea

Sa, = o(by) if limy oo =0
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by making use of martingales of the type (6), and it can be
shown that

0
Elexp{r Y (X:=0)} ny<m)
t=—p8B
BB

s[m,gxpm)exp{—cr} By

where h(r) > 0 is an upper bound on the overshoot terms
(h(r) can be obtained terms of the components of the right
eigenvectors corresponding to the spectral radius functions of
the subchains.) Putting all this together in (10), we have

P(Ep) < pmax(r)*Ph(r)™*!
~exp{—rB(1+¢3)} + (M>

m

where pmax(r) = maxy p(r). One can choose m as a func-
tion of B and « such that as B — oo and a — O,
limp . c0,0—0 m(B:®) — ) and the second term above goes
to zero faster than exponentially in B. Hence

lim sup %log'P(Eg) < BAmax(r) = (1 + ¢f).

B—oo,a—0

Optimizing over all 7 > 0 to get the tightest bound, we get

1 1
lim sup Elog'P(Eﬁ) < =BAL(c+ )

B—oo,a—0 ﬂ

where A7, is the Legendre transform of Anax as defined in
(8). Note that P(UgsoFp) is the steady-state probability that
the buffer is full. This can be related to the steady-state cell
loss probability p(«, B) by noting that

E(X1)p(a, B) < PyP(Us>0Ep)

where Py is the peak arrival rate. It can be shown, using
techniques similar to those in [6] and [4], that in the large
deviations regime

1 1
limsup —logp(B,a) <sup limsup —logP(Es)
B—oo,a—0 B B>0 B—oo,a—0 B

e 1
S —ég%ﬂj\max(c_*' 5) (1])

This is essentially an example of Laplace’s principle, that the
probability of a rare event is of the same order of magnitude as
the probability of the most likely way that the rare event can
happen. The optimization problem in (11) has a nice geometric
interpretation (see Fig. 2); solving it gives

lim sup
B—oo,a—0

1
B logp(B, o) < —r*, Amax(r*) —cr* = 0.
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Amax(r) —cr

! Bhua(c+ ) T

™

tangent of slope 4

~AL,

-

Fig. 2. Geometric interpretation of optimization problem.

Lower bound: Fix 3 > 0. A sufficient condition for
cells to be lost some time during the interval [—3B,0] is
E?:aﬁBqtl(Xt —¢) > B. Now

E(X1)p(B,a)
> P(cells are lost at time 0)
S P(cells are lost during the interval{—3B, 0])

12)

> i
(union bound)
0
1
> =P > (Xi—¢)>B). (13)
t=—8B+1

The probability of the event Fy, that the stream stays in the
same subchain k throughout the interval [—3B,0] is at least
7o (Sk)(1 — d())?B Hence, for each k

0
P( Y (Xi— ) > B) > ma(Sk)(L — d(a)’?
t=—8B+1
0
Pl D> (Xi—c) > BIF
t=—pBB+1

(14)

This second probability can be estimated by the Gértner-Ellis
Theorem, applied to a Markov-modulated process correspond-
ing to subchain &

0
> (Xi—c¢)> B|F: :—ﬁAZ(H_%).

t=—3B+1

1
lim — I
BLIgo B ogP

Using this in (14) and since as @ — 0 and B — o0, d(a) — 0
and the term (1 — d(«))?B does not go to zero as fast as
exponentially in B, we get

1 1
BE}&}}}LOE logp(B, @) > —BAk(c+ B)
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But this holds for all 8 > 0 and for all subchains

1 1

e e e i int fAs (et

plimint , 7 ogp(B,0) 2 —min o AL+ )
:—mkinr,’z. O

The above proof provides not only an estimate of the loss
probability but also the typical way that the buffer gets filled.
First, the stream enters the subchain with the smallest root
7} (slow time-scale dynamics). Then, starting from an empty
buffer, the buffer gets filled due to a burst of arrivals while
the stream remains in that subchain (fast time-scale dynamics).
Hence, the above result implies a clean separation of time-
scales in the typical way of overflowing the buffer.

Such separation of time-scale phenomenon needs not hold in
all large deviations rare events associated with multiple time-
scale processes. See [22] for an example in which there is a
tight coupling between the slow and fast time-scale dynamics
in the typical way leading to the rare event.

Theorem 2 covers only the case when the average rates of
all the subchains are less than the channel capacity. We now
turn to the case when some of the subchains have average
rates greater than the channel capacity.

In this case, the situation depends critically on the rela-
tionship between the slow time-scale and the buffer size.
Specifically, if pi;(e)B = 0 for all rare transitions (4, ]),
then the probability of cell loss is significant while the traffic
stream is in a subchain with average rate greater than the
channel rate. This is because with high probability, the time the
stream spends in that subchain (proportional to the reciprocal
of the rare transition probabilities) will be larger than the
time it takes to fill the buffer with the average rate of the
subchain (proportional to the buffer size). On the other hand,
if p;j(a)B >> 0 for all rare transitions (4, j), then the buffer
is large with respect to the slow time scale. In this regime, the
loss probability can still be made small, as long as the overall
average rate of the stream is less than the channel capacity.
Intuitively, the expected time to fill the buffer in this regime
is proportional to the buffer size, so that there is still sufficient
time to average between the high-rate and low-rate subchains
in the path leading to buffer overflow.

The situation in the first regime is made precise by the
following theorem.

Theorem 3: Suppose there is a subchain k& whose average
rate fi, is greater than the channel capacity c. Then

lim inf p(B,a) > 0.

B — >
pij(@)B =0 V(i,j) €R

To derive an estimate for the loss probability in the regime
where p;;(a)B >> 0, we need to make a regularity as-
sumption on the rare transition probabilities. We assume that
the probabilities of all the rare transitions are linear in the
parameter a, so that they are of the same order of magnitude.
We are interested in the regime where the product aB is large.
The key result is that in this regime, the loss probability can be
well approximated by the situation when the arrival process
is a certain continuous-time, continuous-space Markov fluid
and when the buffer size is scaled to be aB. The states of
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the Markov fluid are obtained by appropriately averaging the
subchains of the original multiple time-scale process. The fast
time-scale dynamics of the individual subchains are irrelevant,
and the slow time-scale dynamics essentially take on the role
of the fast time-scale dynamics in the scaled picture.

Recall that 7 is the steady-state distribution of the entire
modulating chain, and i, is the average rate of subchain .

Theorem 4: Assume that the overall average arrival rate
(per time-slot) of the multiple time-scale stream is less than
the channel rate ¢, but at least one of the fix’s is greater than
¢. Then the loss probability in the asymptotic regime of small
o and large aB is given by

1
—1 B = —r}
a—0,aB—o0 aB ng( ’a) Tf
where 7% is the unique positive root of the equation A;(r) —
rc = 0 and Ay(r) is the largest eigenvalue of the matrix
Q + rM, where

Q=] Y. #@pi,0)

1ESK,JESI ki=1.K

M = diag(f1, fi2, -+ BK)-

;;(0) is the derivative of pi;(@) with respect to a evaluated
at a = 0.)

The exponent r'} is the same as the large deviations exponent
of the loss probability when the buffer size is aB and
the arrival stream is a continuous-time Markov fluid with
infinitesimal generator @ and rate matrix M ([81, [11D). This
result shows that the fluid model is appropriate for estimating
the large deviations loss probability when the sojourn time
in one source state is long compared to the fluctuations of
the arrival process about its drift, but small compared to the
buffer size. (This is essentially a result on the robustness of the
idealized Markov fluid model. While it is quite obvious that
the Markov fluid model would be rather robust with respect
to average quantities such as average delays or average buffer
occupancy, it is not a priori clear that it is also robust with
respect to small large deviations probabilities of rare events
such as buffer overflow.)

We note that although the loss probability goes to zero in
this asymptotic regime, it only goes to zero exponentially in
the product oB, whereas in the regime where the average
rates of all subchains are less than the channel capacity, the
loss probability goes to zero exponentially in the buffer size B.

Sketch of Proof: As in the proof of Theorem 2, one can
show that the loss probability can be estimated by first fixing
a 8 > 0 and estimating 'P(E?Z_ga(Xt —¢) > B), and then
maximize over all 3 (a la Laplace’s Principle). We estimate
this former probability by applying the Girtner-Ellis Theorem
to an appropriately scaled process. Specifically

0
> aXt>c+%).

—=—8B
(15)
Define n = o8B and Z, = aﬁ;BZL—ﬁB aX;. To apply
the Girtner-Ellis Theorem to estimate (15), we compute the

0
PCY (Xt—c)>B)=P(aﬁ
t=—03B t



TSE et al.: MULTIPLEXING OF MARKOV STREAMS

asymptotic log moment generating function and find that
. 1
(l)lm - log Elexp(rnZ,)] = Ag(r).
To show this, we make use of the martingale (6) to convert
the problem into that of computing limits of the spectral radii
and right eigenvectors of irreducible matrices, and then use
perturbation techniques together with the properties of the
spectral radius of irreducible matrices to compute the limit.
Since Ay is differentiable for all r

1 1
a_}}fln_’w " logP(Z, > ¢+ ) = —Aj(c+ E)
Optimizing over 3 > 0 gives us the desued result. |

V. EFFECTIVE BANDWIDTH FOR
MULTIPLE TIME-SCALE STREAMS

Let us now consider the multiplexing of Nindependent
multiple time-scale Markov-modulated streams. Suppose the
jth stream has K ; subchains, with log spectral radius functions
Aje,k =1, K. Let Aj max = maxy Ajj be the general-
ized spectral radius function of stream j. It can be seen that
the superposition of these streams is also a multiple time-scale
Markov- modulated stream, and its generalized spectral radius
function is E 1 Aj max-

One can derlve an expression for the effective bandwidth of
multiple time-scale streams, in analogy to the formula (4) for
single time-scale streams. As before, suppose the requirement
on the loss probability is such that

Jim % logp(B) < —6.

It follows from the results of the previous section and the
convexity of E;Ll Ajmax(r) — rc that this requirement is
satisfied if and only if

N
A
Z J,maX(5) <e
=0
Thus, one can assign an effective bandwidth

o;(6) = Limesl®)
to the jth stream such that the loss probability requirement is
satisfied if and only if the sum of the effective bandwidths of
the streams does not exceed the shared capacity of the out-
going link. Rewriting this in terms of the log spectral radius
functions of the subchains of the jth stream, we obtain
Aji(8)
e (8) = 1<1c<K 5
Thus, the effective bandwidth of a multiple time-scale source
is the maximum of the effective bandwidths of its component
subchains when regarded as single time-scale streams.

(16)

VI. MULTIPLEXING OF LARGE NUMBER OF STREAMS

The effective bandwidth formula (16) for multiple time-
scale streams is based on the large deviations estimate of
the loss probability in Theorem 2. The qualitative picture
for the typical overflow path associated with this estimate
is that, first, the streams enter into a certain worst-case
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combination of subchains and, second, there is an unlikely
burst of cell arrivals to fill the buffer while the streams remain
in this combination of subchains. The asymptotic estimate is
essentially an estimate of the probability of the second event
while ignoring the probability that the streams are in that
worst-case combination of subchains. This is because for a
fixed number of streams and fixed steady-state statistics of the
streamns, this latter probability is constant and therefore gets
washed out in the asymptotics of large buffers. However, if the
number of streams is large and their statistics are similar, this
probability of being in the worst-case combination may in fact
be very small and should not be neglected in approximating the
loss probability. We will look at the joint asymptotic regime
where there are many streams, in addition to a large buffer and
rare transition probabilities, and derive better estimates of the
loss probability which in turn yields a formula for the effective
bandwidth less conservative than (16). The asymptotic regime
where there are large number of sources has also been analysed
in [23] and [12] for single time-scale sources.

As a base case for comparison, consider first the problem
of approximating the loss probability when a large number of
statistically identical and independent single (fast) nme scale
streams are multiplexed together. Each stream {X }(] =
1,2,---,N) is a stationary Markov-modulated process. Let
A(r) be the (common) spectral radius function, and p be
the steady-state average cell arrival rate for each stream. Let
Nc and NB be the capacity of the out-going link and the
buffer size respectively, scaled so that the capacity and buffer
per incoming stream remains fixed. Let p(B, N) be the loss
probability, as a function of both the buffer size and the
number of streams. We are interested in the asymptotic regime
where both the number of streams N and the buffer per stream
are large.

Theorem 5: If ¢ > [ then the loss probability p(B,N)
decays exponentially with the product N B, with the exponent
given by

B—»olgyr%—'oo ﬁ 1ng(B, N) -
where 7* is the unique positive root of the equation A(r)—rc =
0.

The above result says that if the channel capacity is linearly
scaled as the number of streams N increases, the exponential
rate of decrease of the loss probability in the total buffer size
(INB) can be kept fixed at r*. This means that the effective
bandwidth of fast time-scale streams remains additive even
when a large number of them are multiplexed together. There
is also no qualitative change in the typical behavior leading to
cell loss as the number of streams increase. Namely, typical
losses are due to simultaneous bursting of all the streams, each
bursting at a rate equal to that leading to typical cell losses
in the case when the stream is served alone by a channel of
capacity c.

The situation is more interesting when a large number of
multiple time-scale streams are multiplexed together. Suppose
now each stream consists of K subchains between which there
are rare transitions in the set R. Let Aq(r), -+, Ax(r) and
1, -, b be the log spectral radius functions and the average



1036

rates of the subchains, respectively, and let ji be the overall
average rate of each stream. Also, let gy, - - -, gk be the steady-
state probabilities that the stream is in each of the subchains,
in the limit of small a.

We focus on the situation when the slow time-scale is long
compared to the buffer size. Recall the corresponding situation
for a single stream using a dedicated channel. Theorem 3
basically says that when the slow time-scale is long compared
to the buffer size, i (the maximum of the average rates of the
subchains) cannot be greater than the channel capacity if the
buffer fullness probability is to be small. However, when we
multiplex a large number of sources, the situation is different.
We will show that if the number of streams are large, then one
can satisfy a small loss probability requirement even with a
channel capacity per stream less than fi.

Let Y be a random variable which takes on value fix with
probability g, k = 1,---, K. Let Ay (r) be the log moment
generating function of Y. We have the following result.

Theorem 6:

1) If i > ¢ > [ then the loss probability decays exponen-
tially with N

lim L g p(B, N, a) = A% (c)
I
pij(@)B —0,(i,j) €R

2) If ¢ > [, then the loss probability decays exponentially
with the product N B, with exponent given by

1
lim ——logp(B,N,a) = —r"
N - o00,B— o0 NB
a—0

where 7* is the unique positive root of Apax(r) —rc = 0.
Recall that the effective bandwidth formula for multiple
time-scale streams assigns a bandwidth corresponding to the
maximum of the effective bandwidths of the subchains of
a stream, and this bandwidth is at least 4. The additivity
of the effective bandwidth means that it predicts a required
bandwidth of at least Nj for the aggregate stream. The
previous theorem however says that one can in fact get
by with a bandwidth of less than Nj, if the number of
streams is sufficiently large. Hence, the effective bandwidth
of multiple time-scale streams is actually subadditive as the
number of streams become large. This is the fundamental
difference between multiplexing of fast time-scale streams and
multiplexing of streams with a slow time-scale component.
In the first case of Theorem 6, the loss probability is
approximated by the Chernoff’s estimate for the probability
’P(Ef\;l Y; > Nc), where Yy, -+, Yy arei.i.d. copies of Y. In
this case, the typical behavior leading to cell losses is no longer
entering into a certain worst-case combination of subchains
and then bursting at unusually high cell arrival rates while
staying in that worst-case combination. Rather, the typical
behavior leading to cell losses is entering into combinations
of subchains such that the total average cell arrival rate is
greater than the capacity of the out-going link. Once such
a combination is entered upon, cell losses will likely occur
because the time spent in this combination will with high
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probability be significantly longer than the time it takes to
fill the buffer. Thus, in this case, the fast time-scale dynamics
have little role to play in the typical behavior leading to cell
losses. Also, the cell loss probability is approximately the same
as that for an unbuffered multiplexing system, as derived by
Hui [12].

Sketch of Proof- To show the upper bound, we decompose
each arrival stream into a superposition of fast and slow time-
scale components. For each stream j, let Gﬁf ) be the index
of the subchain that stream j is in at time ¢. Fix ¢ > 0 and
define processes

Ut(J) = Xt(]) - ﬁagj) — €, Vt(]) = ﬂGEJ) + e
Using an argument based on the union bound, it can be shown
that

p(B, N, ) —PO—)[P(W,u > NB)+P(WY > 0)] (17)
1

<
= E(X
where {W*} and {W} are stationary processes satisfying

N
S = (WY _Vi=No)*.

i=1

N
L= (WEY_UDT,
j=1
W7 is the queue length process when the fast-time scale
component is removed from the original stream (the slow
system). W is the queue length process of a fictitious
system with arrival process consists of only the fast time-scale
component of the original stream but the channel has capacity
0 (but note that the number of “arrivals” in a time slot can
be negative!).
Using techniques similar to the proof of Theorem 2, one
can show that

1
lim —— logP(W* > NB) = —r.
N—>oo,B—>ooNB ’

a—0

where 7, is the unique positive root of max;<k< Kk[Ak(r) =
jigr] —er = 0.

Consider now the second term. Using Little’s Law, one
can relate the probability that the slow system is busy to
the probability that the instantaneous arrival rate of the slow
system is greater than the channel capacity, which can then be
estimated by the Chernoff’s bound. It can be shown that

lim sup
N —x,B— x

—lelogP(Wt” > 0) < A (c—2e).

a—0

Thus the first term decays exponentially in the product N B
and hence is negligible compared to the upper bound for the
second term. hence
lim sup ]i\/' logp(B, N,a) < —Aj (¢ — 2¢).
N — 00,B —
a—0

Taking ¢ — O gives us the desired upper bound.
To show the lower bound, one argues that as long as the
arrival streams enter into a combination of subchains such
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Fig. 3. Graphical illustration of multiplexing gain.

that the total average rates of the subchains is greater than
the channel capacity, then with high probability there will be
cell losses. This is because the slow time-scale is significantly
longer than the time-scale dictated by the buffer size. Hence,
the loss probability is essentially lower bounded by the steady-
state probability that the instantancous total average rate of
the subchains exceeds the channel capacity, and it is fairly
standard to estimate this probability using large deviations
techniques. O

VII. STATISTICAL MULTIPLEXING GAIN:
BANDWIDTH AND BUFFER REQUIREMENTS

Here, we will look into the effect of the presence of a
slow time-scale on the gain achievable by multiplexing a
large number of independent and statistically identical Markov
streams. We will evaluate the gain in terms of both bandwidth
and the buffering required for the same loss probability.
Specifically, given the total available buffer space, how much
bandwidth can one save by multiplexing rather than allocating
a dedicated channel and buffer to each stream? And given the
same total channel capacity, how much buffering can be saved
by using a shared buffer and channel?

Suppose p is the desired loss probability. First let us fixed
the amount of buffer to be B cells per stream. For single
fast time-scale streams with log spectral radius function A,
Theorem 5 tells us that the channel capacity per stream we
need if the N streams are multiplexed and share a buffer of
size N B is approximately

NB

_ —logp
 —logp ( )-

cm(p, B, N) NB

If each stream is given a dedicated buffer of size B and a
dedicated channel, then the capacity of the dedicated channel
needed to achieve the same loss probability is

B —logp

Cd(p»B) = *1ngA( B )

It can be seen that since A(0) = 0 and A(r) is increasing and
convex for > 0 (the mean rate of the stream being positive),
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user

ca(p, B)

em(py B N)

N=1 N

Fig. 4. Channel capacity requirements for given loss probability p and buffer
size B per stream.

there is always a multiplexing gain. (See Fig. 3.) As N — oo,
¢m(p, B, N) approaches the mean arrival rate of each stream.

Consider now the analogous calculations for independent
and statistically identical multiple time-scale streams, whose
slow time-scale is significantly longer than the time-scale
dictated by the buffer. Let Ay, Ag, - -, Ax be the log spectral
radius functions of the subchains of a stream. Using Theorem
2, one can compute the channel capacity required per stream
in the dedicated scenario

B
ca(p, B) = “logp max Ax(—

In the multiplex scenario, one can use Theorem 6 to compute
the channel capacity required per stream

—logp

N )

As N — oo, ¢m(p, B, N) approaches the mean rate of
each stream. Fig. 4 shows ca(p, B), cm(p, B, N) and also the
capacity requirement c.s(p, B, N) predicted by the effective
bandwidth formula (16). It can be seen that the latter is overly
conservative for large N.

The differences between multiplexing of fast time-scale
streams and multiplexing of multiple time-scale streams be-
come more striking when one looks at the gain in the amount
of buffering required for a given capacity ¢ per stream.
Consider first the multiplexing of fast time-scale streams.
Using Theorem 5, it can be seen that if B is the size of the
buffer for each stream in the dedicated channel scenario, the
amount of buffering needed in a shared buffer would also be
approximately B to achieve the same loss probability. This
means there is a multiplexing gain of a factor of % in the
buffering needed per stream.

Consider now the case of muliiplexing of multiple time-
scale streams, where the channel capacity allocated per stream
¢ is less than fi, the maximum of the average rates of the
subchains, but greater than fi, the average rate of the entire
stream. In the situation when each stream has a dedicated
channel of capacity ¢, it follows from Theorems 3 and 4 that to

cm(pv B, N) = (A;'>~_l(
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have small loss probability, one needs B to be large (« is the
order of the rare transition probabilities) so that the buffer can
absorb the slow time-scale variation in the traffic intensity.
Specifically, to satisfy a loss probability requirement of p,
Theorem 4 says that we need a buffer of size approximately

—logp
r}a

Bli(p’ a) =

where 7} can be computed from the statistics of the stream and
the channel capacity, but is independent of the slow time-scale
parameter . On the other hand, if the streams are multiplexed
together then we need approximately

N = ﬁ_@
y(c)

streams and a shared buffer of size N B,, to achieve a loss
probability of p, as long as B,, is large enough to absorb the
fast time-scale fluctuations of an individual stream. We note
that in this multiplex scenario, both the number of streams and
the buffering per stream needed to achieve the required loss
probability is independent of the slow time-scale parameter
«. This means that if o is very small, the multiplexing gain
in terms of buffering is very significant, of the order of é
compared to the multiplexing gain of —11\7 for fast time-scale
streams.
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