
P M l n g r  OI tha 301h C o n f o ~  
on Daclrlon and Control 
Brighton, England * Decrmbr 1991 W3-4 9 4:40 

OPTIMAL DISTRIBUTED POLICIES 
FOR CHOOSING AMONG MULTIPLE SERVERS' 

George D. Stamoulis and John N. Tsitsiklis 

Laboratory for Information and Decision Systems 
Massachusetts Institute of Technology 

Cambridge, Mass. 02139, U.S.A. 

ABSTRACT 

We analyze a system consisting of multiple identical deter- 
ministic servers. Customers arrive in several streams; each 
customer has to decide which server to join by looking only at 
previous decisions of customers of the same stream. For three 
variations of this problem, we prove that Round Robin is the 
policy minimizing the total expected delay over all customers 
of an individual stream. We also consider the problem of opti- 
mizing the total expected delay over all streams; we investigate 
the performance of Round Robin and we argue that it is not 
optimal for this problem. Most of our results also apply under 
more general service time distributions. 

1. INTRODUCTION 

The topic of server allocation in multiserver systems has re- 
ceived significant attention in the literature. There have been 
numerous papers dealing with policies for assigning the arriv- 
ing customers to one of the available servers; the objective is 
usually the optimization of a performance measure such as the 
average delay per customer, the throughput etc. For most of 
the systems analyzed in the literature, it is assumed that they 
consist of exponential servers and that decisions are made un- 
der perfect information of the system's state; see [ll] and ref- 
erences therein. In this paper, we consider problems involv- 
ing identical deterministic servers and decision-making under 
imDerfect information. The general context of our analysis 
is depicted in Fig. 1. There are multiple arrival streams and 
multiple deterministic servers; each scheduler allocates the cus- 
tomers of the corresponding stream by only looking at its own 
previous decisions. There are basically two types of policies 
that can reasonably be applied, namely randomized allocation 
and Round Robin. For most of the variations of our problem, 
we establish that Round Robin is optimal for minimizing the ~ 

total expected delay over all customers of a stream; we also 
present several related open questions. 

Motivation for analyzing the problems considered in this 
paper primarily arises from the context of routing in store- 
and-forward data networks and in interconnection networks of 
multiprocessor computers. In most of such networks, there are 
several alternative paths for each origin-destination pair; usu- 
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ally, routing is done in a distributed fashion, with limited cen- 
tralized coordination; see [l], [4] and references therein. Thus, 
each node routes the packets it generates (towards one of the 
alternative paths) by possibly knowing the routing policies of 
the other processors, but without having any further informa- 
tion on the actual paths and the timing of packets generated 
elsewhere. This fact motivates our considering systems that in- 
volve several contending streams, where each of them has only 
limited knowledge of the global state. Furthermore, note that, 
in the literature of routing in parallel computers, it is usually 
assumed that processors communicate by exchanging packets 
of fixed length (see [4] and references therein); also packets of 
k e d  length are used in the emerging standard of high-speed 
communications, namely the Asynchronous Transfer Mode 191, 
as well as in some standards for store-and-forward data net- 
works [l]. Therefore, the various interconnecting arcs in such 
networks should be modeled as deterministic servers. Finally, 
our problems are also related to the context of resource allo- 
cation in multiprocessor systems, where there are usually sev- 
eral contending sources generating jobs to be processed; even 
though these jobs may have different service times, several of 
our results are still relevant because they also hold under more 
general service time distributions. 

In [7], Ephremides et al. analyze the following problem: A 
stream of arriving customers have to choose from L identical 
exponential servers, where L 2 2; each customer has to join 
a server upon arrival, in such a way that the expected total 
delay over all customers arriving up to a certain time is min- 
imized. It is established therein that Round Robin (RR) is 
the optimal allocation policy for the aforementioned problem. 
In this paper, we prove that the same result also applies for 
the case of deterministic servers; see 52.1. In 52.2, we con- 
sider a more general problem, namely we assume that each of 
the deterministic servers also receives a stream dedicated to be 
served by this same server; all of these streams are taken to 
have the same statistics; see Fig. 3. The customers allowed se- 
lection of a server are now called sDecial; each of them chooses 
which server to join (upon arrival) by only knowing the previ- 
ous decisions by sDecial customers. (Arrivals corresponding to 
dedicated streams are not observable prior to decision-making.) 
Thus, each special customer selects its respective server while 
having imperfect information on the workload of the available 
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servers. Again, RR is established to be the policy minimizing 
the expected total delay Over all special customers. A similar 
problem was analyzed by Bonomi and Kumar 151, with all ded- 
icated and special streams being of the Poisson type. However, 
only static randomized policies are considered therein, that is 
all customers decide which server to join by applying the same 
probabilistic rule; this gives rise to a nonlinear optimization 
problem. (Obviously, RR is a non-static policy.) 

1, where 
all arrival streams are identically distributed. Each customer 
chooses which of the available deterministic servers to join, by 
knowing & the previous decisions of customers belonging to 
the same stream. We analyze two optimization problems. In 
the first one, each stream of customers wishes to minimize its 
individual total expected delay; in this context, we prove that 
a set of randomized versions of RR constitute an equilibrium 
set of policies (in the sense of Game Theory); see $3.1. On the 
contrary, in $3.2, the objective is optimization, that is 
to minimize the steady-state average delay per customer over 
all streams (which are taken Poisson). Regarding the latter 
problem, we present some first results and discuss some open 
questions that we intend to investigate in the future. A similar 
problem (with exponential servers and Poisson streams) was 
analyzed by Ni and Hwang [lo]. However, only static random- 
ized policies are considered therein, thus reducing the problem 
to a nonlinear program. 

To the best of our knowledge, the results of this paper 
are new. Even though there exists an extensive literature on 
stochastic scheduling, the use of non-static policies in problems 
with imperfect information has received limited attention. Re- 
lated is the work by Beutler and Teneketzis [3], who gave a 
framework for analyzing problems with only two alternative 
scheduling decisions. However, the problems analyzed therein 
involve one scheduler, in contrast with the problems discussed 
in $3 of the present paper. 

In $3, we consider the system depicted in Fig. 

2. PROBLEMS WITH A SINGLE SCHEDULER 

2.1 One Arrival Stream and Several Servers 
In this subsection, we prove that Round Robin (RR) is an 

optimal policy for assigning any stream of K arriving customer4 
to one of L identical deterministic servers with unit service 
time; see Fig. 2. All servers are assumed to be initially empty; 
the optimization criterion is the expected total delay over the 
K arriving customers. A little thought reveals that RR sim- 
ulates the G / D / L  queue, where each customer joins the first 
available server; this is due to the assumption of deterministic 
service time. Thus, it is intuitively clear that the RR policy 
should be optimal. However, the above argument does not 
constitute a rigorous proof, because it only shows that each 
customer suffers the smallest possible delay g & ~  the decisions 
of customers that arrived previously. Below, we present the 
rigorous proof for the case of L = 2 servers, and then we ex- 
tend the result to all L > 2. 
Proposition 1: Round Robin is an optimal policy for the case 
of 2 servers, for any sequence of arrival instants (either fixed 

Proof: Let tk be the arrival time of the kth customer, for 
k = 1,.  . . , K, and let be the unfinished work at the j th  
server at time tk -, for j = 1,2. It is initially assumed that 
t ,  , . . . , tK are fixed and known and that the ~2)'s are observ- 
able; these assumptions will prove to be redundant. It can be 
established that the optimal decision for the kth customer is 

or random). m 

to join the second server if and only if w r )  2 w r ) .  (In fact, 
for w:') = w r ) ,  both decisions are equivalent.) The proof 
is done by a straightforward (yet tedious) Dynamic Program- 
ming argument with finite horizon; the technical details are 
omitted. Thus, the optimal policy is the myopic one, namely 
for each customer to join the least loaded server. Furthermore, 
we have w:' )  = w:') = 0, by the assumption that both servers 
are initially empty. Assuming that the first customer joins the 
second server, then we have w!') + 1 2 w r )  1 tu!') = 0, which 
implies that the second customer should join the first server. 
(Note that if w r )  = 0, then the second customer could alter- 
natively join the second server; however, this does not apply 
for all sequences of arrival instants.) Furthermore, we have 

where [a]+ 'Af max(0, a}; this implies that w p )  5 w:') 5 w p )  + 11 
and thus the third customer should join the second server etc. 
It follows that RR is an optimal policy, for any fixed sequence 
of arrival instants; since the structure of RR does not de- 
pend on the arrival instants, its optimality is preserved under 
random arrivals. Finally, the assumption that workloads at 
time ta , . . . , tK are observable also proved to be redundant. 

Q.E.D. 

As already mentioned, there are cases where the optimal 
policy is unique; e.g., if all interarrival times exceed unity 
(which equals the service time), then all policies are equivalent. 
However, Proposition 1 guarantees that RR is alwavs optimal. 
Next, we consider the case of more than two servers. 
Proposition 2: Round Robin is an optimal policy for the case 
of L > 2 servers, for any sequence of arrival instants (either 
fixed or random). 
Proof: The result is trivial when the total number K of cus- 
tomers does not exceed L. Henceforth, we assume that K > L. 
Since there are finitely many policies, at least one of them is 
optimal. We fix an optimal policy; let e;, , q2,. . . be the or- 
dered indices of customers choosing the ith server under this 
policy. Let us focus on the subset of customers choosing either 
the ith server or the j t h  server under the optimal policy (with 
i # j). By the optimality of RR for the case of two servers (see 
Proposition l), there should hold 

or e,, < < c j a  < < * C,l < c,1 < c,z < C,z < 

for, otherwise, we can redistribute the customers joining servers 
i and j and (in general) reduce the expected total delay. [For 
certain sequences of arrival instants, this would not change the 
value of the expected total delay, thus yielding a new opti- 
mal policy that satisfies (l).] Therefore, we have cSl < c,,. 
Combining these inequalities Over all pairs i, j it follows eas- 2 

ily that {ell,. . . , eL l }  = (1,. . . ,L } ;  that is, each of the first 
L customers is assigned to a different server. Let us assume, 
without loss of generality, that e,' = i for i = 1,. . . , L. Apply- 
ing (1) with i = 1 and j > 1, it is seen that the leftmost set of 
inequalities apply; thus, we have clz  < ei, for all j > 1, which 
implies that cl, = L + 1. That is, after all L servers have been 
exhausted, the very first one is selected again. Furthermore, 
applying (1) with i = 2 and j > 2, it follows that e,, < e,, 
for all j > 2, which implies that e,' = L + 2. Continuing this 
argument, we can establish the optimality of the RR policy. 

Q.E.D. 

(1) 
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Using Propositions 1 and 2, it is easily seen that, in the case 
of an ernodic arrival process, RR is optimal for minimizing the 
steady-state average delay per customer. 

It is worth noting that Proposition 1 (and consequently 
Proposition 2) also holds under another interesting optimiza- 
tion criterion, namely for minimization of the expected depar- 
ture time of the customer to complete service. The proof 
follows the same lines: first, a finite horizon Dynamic Program- 
ming argument proves that joining the least loaded server is 
again optimal; then, using this, the optimality of RR is estab- 
lished as in Proposition 1. 

2.2 Server Allocation Involving Dedicated Streams 
In the problem of 52.1, there was only a stream of K ar- 

riving customers to be assigned to the servers available; this 
stream will henceforth be referred to as special. In this sub- 
section, we analyze a more general problem; in particular, we 
now assume that in addition to the special stream, there are L 
identically distributed streams of customers, with each of them 
being dedicated to a different server; see Fig. 3. No restric- 
tions apply for either the marginal or the joint statistics of the 
dedicated streams; however, we assume that the special stream 
is indeDendent of the dedicated ones. Each server operates on 
a FIFO basis. The scheduler receives only the special stream 
of customers and decides how to assign them to the servers, 
based only on its previous decisions; the scheduler cannot ob- 
serve the workload of the servers. We shall prove that Round 
Robin is still optimal for minimizing the expected total delay 
over all sDecial customers. This result makes perfect intuitive 

, sense. Indeed, since the scheduler cannot observe the dedi- 
cated streams, it has the same “estimate” for the additional 
load imposed at each different server; thus, the optimal policy 
should be the same as in the absence of the dedicated streams. 
Though somewhat tedious, the proof to follow is based on this 
idea. [Of course, if the scheduler were allowed to observe the 
workloads of the servers, then the optimal policy would (in 
general) be different, since it would take into account this ad- 
ditional information.] 
Proposition S: Round Robin is an optimal policy for any se- 
quence of arrival instants of the special customers (either fixed 
or random). 
Proof: We shall only consider the case L = 2; a similar proof 
also applies for L > 2. Let t l ,  ... , tK  be the arrival instants 
of the special customers, which are initially taken to be fixed. 
Let U:’) denote the random variable corresponding to the un- 
finished work at the j t h  server at time t k - ;  this includes the 
work induced by the special and the dedicated streams. 
Our optimization problem is as follows: 

K 

minimize E [zk (U:’) + 1) + (1 - zk)(uL2) + 113 , 
over (q,. . . , zK) E (O,l}K . 

k= 1 

(2) 

Notice that 2, = 1 (resp. zk = 0) corresponds to the kth cus- 
tomer joining the first server (resp. the second server). Let us 
assume that the service discipline is channed from FIFO to the 
following: all dedicated customers are allotted preemDtive re- 
sume Driority over the special ones. The distributions of the 
Up)’s remain the w, because the new service discipline is 
work-conserving. Henceforth, we assume that this new disci- 
pliie applies. We have 

where the random variable Vi’) corresponds to the contribu- 
tion of the dedicated customers to the unfinished work at the 
j t h  server at time tk -; similarly, WLj) corresponds to the un- 
finished work due to special customers. Using (2) and (3) and 
omitting a constant term, it is seen that our optimization prob- 
lem is equivalent to the following: 

Clearly, special customers are trammarent to the dedicated 
ones; this implies that V/’)  does not depend on (zl, . . . , z K ) .  

Moreover, by symmetry between the dedicated streams, Vi1) 
and V:” are identically distributed. Thus, we have 

E[zkVil) + (1 - zk)Vi’)]  = E[V/’’] , 

and the optimization problem of (4) reduces to the following: 

K 

minimize E [ Z ~ W ~ I )  + (1 - Z~)W~’)]  , 

over (zl,. . . , ZK ) E (0,  I } ~  . 
k = l  

(5 )  

Recall now that special customers are served only in the 
absence of any dedicated customers at the same server. There- 
fore, during the interval [ t k , t k + l ) ,  the j t h  server (where j E 
{ 1,2}) can reduce the unfinished work due to special customers 
by as much as If), where the random variable 1;’) is the total 

of a . /D/1 queue serving 
only the dedicated stream of the j t h  server. Recalling also the 
interpretation of z k  (and that service times equal unity), we 
have 

period over the interval ItL , tk+ 

W;;)l = [WL” + Z L  - I y ] +  ( 6 4  

with W,(’) = W:” = 0.  Since the two dedicated streams are 
symmetric and independent of the special stream, the random 
vectors ( I : ’ ) ,  . . . , I : ’ ) )  and ( I :a) ,  . . . ,ILa)) are identically dis- 
tributed for any k E (1,. . . , K - 1). Hence, for each fixed 
(q,. . . , zK), the distribution of the vector (W,’”, . . . ,WF))  
remains the same if we replace IL2) with 1:’) in (6.6). [This 

becomes apparent after “unfolding” the iteration in (6.6).] Let 
us assume that each WL” is updated according to this rule 
[instead of the rule in (6.b)], namely that 

WL;)l = [Wi” + (1 - Z k )  - p]+ , 
Then, for each fixed (zl,. . . , zK ), the value of the “cost” func- 
tion in (4) still remains the same, because the expectations in- 
volved depend only on the mareinal distributione of the vectors 
(W:’), . . . ,W$)) and (W,“), . . . , WF’). [Note that by replac- 
ing (6.6) with (6.c), the joint distribution of these two vectors 
is (in general) modified.] Notice now that (6.a) and (6.c) are 
the updating rules for the unfinished work in a tweserver sys- 
tem receiving & the special customers at the random arrival 
instants I ! ~ ) , I ! ~ )  + I:’’,...,I!’) + 1:’’ + + I : ! ~ .  Since 
the optimization problem in (4) also is the same as the one 
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considered in 52.1, it follows from Proposition 1 that RR is an 
optimal policy for any fixed sequence of arrival instants of the 
special customers. Again, RR is also optimal for random such 
inst ants. Q.E.D. 

It is worth noting that Proposition 3 also holds for any ser- 
vice time distribution for which Proposition 1 applies; e.g., for 
the exponential distribution, according to the result of [7]. 

As already mentioned in $1, the problem analyzed above 
is motivated from the context of distributed routing. Indeed, 
let us consider the example of Fig. 4. Nodes 0,l and 3 send 
packets to node 2; nodes 1 and 3 behave symmetrically. Of 
course, node 2 cannot observe the packets generated by 1 and 
3. According to Proposition 3, its optimal routing policy is 
to alternate in sending packets through paths 0 + 1 -+ 2 and 
0 + 3 + 2. Note that arcs 1 + 2 and 3 + 2 correspond to the 
servers of our problem. 

3. PROBLEMS WITH SEVERAL SCHEDULERS 

The system to be analyzed in this section is depicted in Fig. 
1. There are L deterministic servers, with L 2 2. Customers 
arrive in N independent and identically distributed streams, 
where N 2 2. Upon arrival of a customer, the correspond- 
ing scheduler decides which server she will join, based Q& on 
its own previous decisions. It is assumed that each scheduler 
knows the & of the rest, without ever receiving any ad- 
ditional information. Two problems will be analyzed in this 
context, namely one with individual optimization (per stream) 
and another with optimization (cver all streams). Note 
that the term “individual” here refers to a single stream, rather 
than to a single customer (as in 121); however, using this term 
in the present context is appropriate, because each stream is 
allocated to the available servers on the basis of individual in- 
formation. 

Again, the system under consideration is motivated from the 
context of distributed routing. An example of the same spirit 
as that of Fig. 4 can be easily constructed; see Fig. 5. For 
the network depicted therein, it is assumed that nodes 1 and 2 
send packets to node 5;  obviously, we have N = 2 and L = 2, 
with arcs 3 + 5 and 4 + 5 corresponding to the servers. 

3.1 Individual Optimization of Contending Streams 
In this subsection, we assume that each of the streams of 

customers wishes to minimize its individual total expected de- 
lay. Since the situation is “competitive”, we are interested in 
finding eauilibrium sets of policies. If the schedulers follow such 
a set of policies, then none of them would have incentive to de- 
viate from its own policy; this would ensure fairness among 
the various nodes. As will be proved below, any N-tuple of 
Svmmetricallv Randomized Round Robin policies (Sym.Rand. 
RR) is an equilibrium set. This class of policies is defined 
as follows: Assuming that a scheduler applies RR, we define 
as its decision Dattern the vector of the first L allocation de- 
cisions (in order to avoid trivialities, we assume that, with 
positive probability, each stream consists of at least L cus- 
tomers); of course, this is a permutation of (1 , .  . . , L) and it is 
sufficient to define the entire sequence of decisions of the sched- 
uler, because it is repeated periodically. A policy will be said to 
be Sym.Rand.RR if the scheduler selects its decision pattern 
randomlv, in such a way that each entry assumes any k e d  
value m E (1,. . . , L} with the same probability (namely, with 
probability t). For example, one such policy is obtained when 
the decision pattern of a scheduler is selected randomly, with 
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all L! possible orders being equiprobable; another such pol- 
icy is obtained when the selection is over all L cyclic shifts of 
(1,. . . , L), with all permissible outcomes having a priori prob- 
ability k. It should be noted that when a scheduler is known 
to adopt a Sym.Rand.RR policy, the other schedulers cannot 
observe its decision pattern, even though they may know what 
the possible patterns are. This assumption is consistent with 
on-line distributed routing (see also §I),  where the decision 
pattern of a node may be determined progressively, as more 
packets are generated. 
Proposition 4: Any N-tuple of Symmetrically Randomized 
Round Robin policies is an equilibrium set of policies, for any 
marginal distribution of the arrival streams. 
Proof: Let us assume that each of the schedulers correspond- 
ing to the first N - 1 streams adopts a Sym.Rand.RR pol- 
icy (not necessarily the same); we shall prove that, given this 
information, the Nth scheduler should also adopt such a policy, 
in order to minimize the total expected delay of the customers 
of the Nth stream. Indeed, the Nth scheduler visualizes the sit- 
uation as follows: Each of the servers will receive a “dedicated” 
stream, which in fact consists of customers originating from the 
first N-1 “original” streams. Since all servers are treated sym- 
metrically by a Sym.Rand.RR policy, the Nth scheduler can 
tell a priori that all these “dedicated” streams have the same 
statistics. Therefore, according to Proposition 3, RR (with any 
decision pattern) is an individually optimal policy for the Nth 
scheduler. This implies that any Sym.Rand.RR policy also is 
individually optimal for the Nth scheduler, which proves the 
result. Q.E.D. 

Since the above result is a consequence of Proposition 3, it 
also holds for any service time distribution for which Proposi- 
tion 1 applies. 

It should be noted that an N-tuple of RR policies is not nec- 
essarily an equilibrium point. Consider, for example, the case 
of N = L = 2, with both streams consisting of 2 customers ar- 
riving at times 0 and 1. Clearly, if both N schedulers apply RR 
with decision pattern (1,2), then each of them would have been 
better off if it had chosen the decision pattern (2 , l ) .  In fact, if 
one of the schedulers chooses (1,2) as its decision pattern while 
the other chooses (2, I), then each customer would suffer the 
minimum possible delay (namely, one time unit). This pair of 
RR policies results in the minimum total expected delay over 
all customers of both streams; that is, it constitutes a social 
optimum. On the contrary, a pair of Sym.Rand.RR policies 
is & a social optimum, because with positive probability the 
two schedulers choose the same decision pattern. 

It would be desirable to attain an equilibrium set of policies 
that do not employ any randomization at all. Consider, for ex- 
ample, the following variation of the problem under analysis: 
All arrival streams are Poisson with rate p < 1 (see also $3.2) 
and, for each stream, the objective is individual minimization 
of the steady-state average delay per customer. It is can be 
proved that giny N-tuple of RR policies is an equilibrium set. 
The idea of the proof is as follows: Let Pi denote the deci- 
sion pattern of the j t h  scheduler, for j = 1,. . . , N; note that 
P, is some fixed permutation of (1, ..., L). Let 6:) denote 
the index of the server to receive the first customer of the j t h  
stream to be served in the kth period. Given the initial 
decision patterns of the schedulers, it is straightforward that . 
the vector ( s r ) ,  . . . , sLN I) evolves as an irreducible finitestate 
homogeneous Markov chain. (Note that all entries of the corre- 
sponding transition matrix are positive.) Thus, for k e d  initial 
decision patterns P I , .  . . , Pry ,  the steady-state performance is 



the same as that of a system using a set of Sym.Rand.RR poli- 
cies with the permissible initial decision patterns for the j th  
scheduler being the L cyclic shifts of Pi (for all j E ( 1 , .  . . , N } ) .  
Using ergodicity and Proposition 4, it follows that RR with de- 
cision patterns Pl , . . . , PN also constitutes an equilibrium set 
of policies. 

3.2 Social Optimization of Contending Streams 
Next, we discuss a problem of optimizing a “global” perfor- 

mance measure in the system introduced in the beginning of 
this section. We now assume (for simplicity) that each arrival 
stream is Poisson with rate p. We are interested in minimizing 
the steady-state average delay per customer, where the aver- 
age is taken over all streams. We shall consider the simple 
case N = L, and we assume that p < 1 so that stability is 
attainable; e.g., by having each customer choosing randomly 
which server to join (with all servers being equiprobable), the 
system reduces to N independent MIDI1 queues, each with 
utilization p. 

We denote by f ( N ; p )  the optimal average delay per cus- 
tomer. We are not able to find an exact expression for f ( N ; p ) ;  
however, we derive some bounds that provide us with some 
qualitative view of its behavior. In particular, it is seen that 

Indeed, for N = N I N z ,  we can group the servers and the 
streams in Nl-tuples and dedicate a different group of servers 
to each group of streams; by applying the optimal policy cor- 
responding to N = NI within each of the groups of streams, 
we attain an average delay of f ( N l  ; p )  per customer. This im- 
plies that f ( N I N z ; p )  5 f ( N l ; p ) ;  the inequality f ( N I N z ; p )  5 
f ( N z ;  p )  can be proved in exactly the same way. Investigating 
the structure of the optimal set of policies and the behavior 
of f ( N ; p )  as a function of N seems to be a rather hard prob- 
lem. Since our problem is related to distributed routing, it is 
of interest to analyze the asymptotic case N -+ 00. (In the lit- 
erature of interconnection networks, asymptotics with respect 
to the network size play a key role.) It is easily seen from (7) 
that the performance of the optimal set of policies does not 
deteriorate; this, however, does not necessarily imply that the 
optimal delay decreases as N -t 00. It is conjectured that 
limN, oo f ( N ;  p )  exists and that it is bounded away from 1.  In 
other words, some delay due to contention is inevitable even for 
very large N .  This is in contrast with the MIDIN queue, for 
which the average delay per customer tends to 1,  for N + 00 

and k e d  utilization p ;  such a queue would be obtained if all 
N streams were merged to one. 

For all problems analyzed so far, Round Robin proved to 
be an optimal policy. Unfortunately, this is not the case for 
the present problem. Indeed, let us assume that each of the 
qchedulers applies an RR policy. Then, for any n and I ,  the 
sub-stream of customers from the nth stream that join the 
Ith server form a renewal process, with interarrival time dis- 
tributed as Erlang with N degrees of freedom and expected 
value F. Each server is fed by the sum of N such processes; 
for N + 00, this comDound process converges weakly to a 
Poisson process with rate p (see [SI). Therefore, as N -t 00, 

each of the N queues in the system “tends to behave” as 
an M / D / l  queue with utilization p. Thus, letting r (N;p)  
be the average delay per customer attained by RR, we have 
limN4 OD r(N; p )  = 1+ (see [SI); though intuitively clear, 
the derivation of this limit is technically complicated and will 
be clarified further in the final version of the paper. On the 
other hand, it is argued below that in light traffic r (2;p)  is 

strictly smaller than r (1;p) .  If N is an even number, an av- 
erage delay of r (2;p)  per customer would be attained by pair- 
wise grouping the N streams and dedicating a different pair of 
servers to each pair of streams; each scheduler would have to 
apply RR between the corresponding two servers. Hence, RR 
over &l N servers is not the optimal policy for even N and 
small p. 

Next, we argue that r(2;p) < r(1;p) for small p. We d e  
note as MIDI1 the policy that assigns all customers of the j t h  
stream to the j t h  server, for j = 1,2; clearly, this results in a 
steady-state average delay per customer of r(1;p).  Thus, it suf- 
fices to prove that if both schedulers apply RR under light traf- 
fic, then the performance is better than the one attained under 
M / D / l .  For sufficiently small p, either one or two customers 
will be served (by both servers) in almost all & periods. If 
only one customer is served in a busy period, then MIDI1 and 
RR are equivalent. Consider now a busy period in which there 
are two customers served; clearly, the probability that they 
both “originate” from the same stream equals i. Let s(j) be 
the index of the server to be joined under RR by the first cus- 
tomer to arrive (in the busy period) through the j t h  stream, 
for j = 1,2. If dl) = dZ), then RR with two customers from 
the same stream (resp. from different streams) is equivalent 
to MIDI1 with two customers from different streams (resp. 
from the same stream); since the two scenarios are equiprob- 
able, both RR and MIDI1 perform the same for s(l) = a(’). 
If s(l) # d’), then the two customers served will join dif- 
ferent servers (under RR), regardless of which streams they 
“originate” from; this outperforms M / D / l ,  because if both 
customers originate from the same stream then one of them 
will delay the other under M / D / l .  

The above argument is not entirely rigorous, because it is 
always possible that more than two customers are served per 
busy period, even for small p. It is conjectured that r(2; p )  < 
r(1;p) for all p < 1; this claim is further supported by the 
experimental results reported below. 

So far in this subsection, we have seen that RR is not al- 
ways the best policy for our problem of social optimization, 
by arguing that r(2;p) < limN,, ‘ (Nip)  in light traffic. In 
order to obtain a better view of the behavior of r ( N ; p )  as a 
function of N (with k e d  p) ,  we have performed some simula- 
tions. These suggest that r (N;p)  exhibits a global minimum at 
a value N,’ , which depends on p. Under light or medium traffic, 
N,’ appears to be very small (either 2 or 3) and the minimum 
is rather sharp. In Table 1, we present experimental results for 
p = 0.5. The entries of the column labeled RR correspond to 
r (N;  0.5), while those of the column labeled M / D / 1  correspond 
to the average delay for the MID11 policy defined previously; 
both policies are compared under the same sequences of ar- 
rivals. [Note that, for p = 0.5, we have r(1;p) = 1.5.1 Other 
experimental results suggest that, as p -+ 1, the value of N,’ 

p = 0.5 
RR I M / D / 1  

I 

1.250 1.469 

50 I 1.440 I 1.458 

Table 1 
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increases and the minimum becomes more flat. 
The observed behavior of r(N; p )  (with k e d  p )  is in agree- 

ment with intuition. Since all servers are treated symmetrically 
by RR, r(N; p) also equals the average delay over all customers 
joining a particular Berver. For all N, each server is fed at an 
average rate p; what varies with N is the "entropy" in the 
corresponding arrival process. The highest "entropy" appears 
for the extreme cases N = 1 and N -+ 00, where the arrival 
process per server is Poisson. For intermediate values of N, 
the "entropy" in the arrival process is smaller, thus leading to . 
r(N;p) < r(1;p). Proving rigorously the validity of the above 
observations seems to be rather hard. 

The fact that RR appears to be non-optimal is discouraging, 
in the sense that the most straigtforward guess for an optimal 
policy does not qualify. Another "candidate" for achieving 
optimality is the following policy: for fixed p and large N, 

the arrival streams in groups of size approximately N; , 
and dedicate approximately different N,' servers per group. 
[Recall that according to the experimental results, we have 
r ( x ; p )  5 r(N;p) for all N and for each k e d  p.] The perfor- 
mance of this policy does not deteriorate as N -+ m, which is 
in agreement with (7). 

So far we have only dealt with the case L = N; as far as 
asymptotics with respect to N are concerned, the case L = PN 
(where p is constant) can be treated similarly. Of interest 
are also the cases N = o(L) and L = o(N) ,  which however 
seem to be simpler. For example, for constant N, p = % 
(where a < 1 is a constant), and L -+ 00, the optimal delay 
should converge to 1, at least as fast as the delay of an MID/! 
queue with arrival rate a and L -+ 00; indeed, in this case, an 
efficient policy is to allocate different 151 servers to each of 
the arrival streams. On the contrary, for constant L, p = e, 
and N -+ 00, the optimal delay should converge to that of 
an M/D/1 queue with arrival rate a; in this case, each of the 
servers (under any "reasonable" policy) is fed by a process that 
converges to Poisson, as N -+ 00. A more detailed discussion 
of such cases will be presented in the final version of the paper. 

4. CONCLUDING REMARKS 

In this paper, we have analyzed server allocation problems 
involving deterministic servers and decision-making under im- 
perfect information. We began with problems involving a sin- 
gle scheduler and then we turned our attention to those with 
multiple schedulers. For the latter type of problems, we consid- 
ered both cases of individual (per stream) and social (over all 
streams) optimization. Apart from deriving several results on 
the corresponding optimal policies, we stated some conjectures 
which we intend to investigate in the future. All problems con- 
sidered are motivated from the context of distributed routing 
in data networks and in multiprocessor computers. Given its 
diversity and extent of applications, that field appears to be 
rich in scheduling problems that have not attracted yet the at- 
tention of researchers. Analyzing such problems seems to be an 
interesting as well as challenging direction for further research. 
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