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Abstract
We formulate a private learning model to study an intrinsic tradeoff between privacy and query

complexity in sequential learning. Our model involves a learner who aims to determine a scalar
value, v∗, by sequentially querying an external database and receiving binary responses. In the
meantime, an adversary observes the learner’s queries, though not the responses, and tries to infer
from them the value of v∗. The objective of the learner is to obtain an accurate estimate of v∗ using
only a small number of queries, while simultaneously protecting her privacy by making v∗ provably
difficult to learn for the adversary. Our main results provide tight upper and lower bounds on the
learner’s query complexity as a function of desired levels of privacy and estimation accuracy. We
also construct explicit query strategies whose complexity is optimal up to an additive constant.1
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1. Introduction

Organizations and individuals often rely on relevant data to solve decision problems. Sometimes,
such data are beyond the immediate reach of a decision maker and must be acquired by interacting
with an external entity or environment. However, these interactions may be monitored by a third-
party adversary and subject the decision maker to potential privacy breaches, a possibility that has
become increasingly prominent as information technologies and tools for data analytics advance.

The present paper studies a decision maker, henceforth referred to as the learner, who acquires
data from an external entity in an interactive fashion by submitting sequential queries. The interac-
tivity benefits the learner by enabling her to tailor future queries based on past responses and thus
reduce the number of queries needed, while, at the same time, exposes the learner to substantial
privacy risk: the more her queries depend on past responses, the easier it might be for an adversary
to use the observed queries to infer those past responses. Our main objective is to articulate and
understand an intrinsic privacy versus query complexity tradeoff in the context of such a Private
Sequential Learning model.

1. Extended abstract. Full version appears as [arXiv:1805.02136, v2].
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2. The Private Sequential Learning Model

The Private Sequential Learning model involves a learner who aims to determine a particular true
value, v∗. The true value is a scalar in some bounded subset of R. Without loss of generality, we
assume that v∗ belongs to the interval2 [0, 1) and that the learner knows that this is the case. The true
value is stored in an external database. In order to learn the true value, the learner interacts with the
database by submitting queries as follows. At each step k, the learner submits a query qk ∈ [0, 1),
and receives from the database a response, rk, indicating whether v∗ is greater than or equal to the
query value, i.e.,

rk = I(v∗ ≥ qk),

where I(·) stands for the indicator function. Furthermore, each query is allowed to depend on the
responses to previous queries, through a learner strategy, to be defined shortly.

Denote by N the total number of learner queries, and by ε > 0 the learner’s desired accuracy.
After receiving the responses to N queries, the learner aims to produce an estimate x̂, for v∗, that
satisfies

|x̂− v∗| ≤ ε

2
.

In the meantime, there is an adversary who is also interested in learning the true value, v∗.
The adversary has no access to the database, and hence seeks to estimate v∗ by free-riding on
observations of the learner queries. Let δ > 0 be an accuracy parameter for the adversary. We
assume that the adversary can observe the values of the queries but not the responses, and knows the
learner’s query strategy. Based on this information, and after observing all of the queries submitted
by the learner, the adversary aims to generate an estimate, x̂a, for v∗, that satisfies

|x̂a − v∗| ≤ δ

2
.

2.1. Learner Strategy

The queries that the learner submits to the database are generated by a (possibly randomized) learner
strategy, in a sequential manner: the query at step k depends on the queries and their responses up
until step k − 1, as well as on a discrete random variable Y . In particular, the random variable
Y allows the learner to randomize if needed, and we will refer to Y as the random seed. Without
loss of generality, we assume that Y is uniformly distributed over {1, 2, . . . ,Y}, where Y is a large
integer. Formally, fixing N ∈ N, a learner strategy φ of length N is comprised of two parts:

1. A finite sequence of N query functions, (φ1, . . . , φN ), where each φk is a mapping that takes
as input the values of the first k − 1 queries submitted, the corresponding responses, as well
as the realized value of Y , and outputs the kth query qk.

2. An estimation function φE , which takes as input the N queries submitted, the corresponding
responses, and the realized value of Y , and outputs the final estimate x̂ for the true value v∗.

We will denote by ΦN the set of all learner strategies of length N , defined as above.

2. We consider a half-open interval here, which allows for a cleaner presentation, but the essence is not changed if the
interval is closed.
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2.2. Information Available to the Adversary

We summarize in this subsection the information available to the adversary. First, the adversary is
aware that the true value v∗ belongs to [0, 1). Second, we assume that the adversary can observe the
values of the queries but not the corresponding responses, and that the learner strategy φ is known
to the adversary. In particular, the adversary observes the value of each query qk, for k = 1, . . . , N ,
and knows the N mappings, φ1, φ2, . . . , φN . This means that if the adversary had access to the
values r1, r2, . . . , rk−1 and the realized value of Y , she would know exactly what qk is for step
k. While it may seem that an adversary who sees both the learner strategy and her actions is too
powerful to defend against, we will see in the sequel that the learner will still be able to implement
effective and efficient obfuscation by exploiting the randomness of Y .

3. Private Learner Strategies

In this section, we introduce and formally define private learning strategies, the central concept of
this paper. A private learner strategy must always make sure that its estimate is close to the true
value v∗, while keeping the adversary’s probability of correct detection of v∗ sufficiently small. Our
goal in this section is to formalize those ideas.

3.1. Information Set

Recall from Section 2.2 that the adversary knows the values of the queries and the learner strategy.
We will now convert this knowledge into a succinct representation: the information set of the ad-
versary. Fix a learner strategy, φ. Denote by Q(x) the set of query sequences that have a positive
probability of appearing under φ, when the true value v∗ is equal to x:

Q(x) = {q ∈ [0, 1)N : Pφ(Q = q) > 0}, (1)

where Q is a vector-valued random variable representing the sequence of learner queries, whereas
q stands for a typical realization; the probability is measured with respect to the randomness in the
learner’s random seed, Y .

Definition 1 Fix φ ∈ ΦN . The information set for the adversary, I(q), is defined by:

I(q) =
{
x ∈ [0, 1) : q ∈ Q(x)

}
, q ∈ [0, 1)N . (2)

From the viewpoint of the adversary, the information set represents all possible true values that are
consistent with the queries observed. As such, it captures the amount of information that the learner
reveals to the adversary.

3.2. (ε, δ, L)−Private Strategies

A private learner strategy should achieve two aims: accuracy and privacy. Accuracy can be captured
in a relatively straightforward manner, by measuring the absolute distance between the learner’s
estimate and the true value. An effective measure of the learner’s privacy, on the other hand, is
more subtle, as it depends on what the adversary is able to infer. To this end, we develop in this
subsection a privacy metric by quantifying the “effective size” of the information set I(q) described
in Definition 1. Intuitively, since the information set contains all possible realizations of the true
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value, v∗, the larger the information set, the more difficult it is for the adversary to pin down the
true value.

Definition 2 Fix δ > 0, L ∈ N, and a set E ⊂ R. We say that a collection of L closed intervals
[a1, b1], [a2, b2], . . . , [aL, bL], is a (δ, L) cover for E if E ⊂

⋃
1≤j≤L[aj , bj ], and bj − aj ≤ δ for all

j.
We say that a set E is (δ, L)-coverable if it admits a (δ, L) cover. In addition, we define the

δ-cover number of a set E , Cδ(E), as

Cδ(E) , min {L ∈ N : E is (δ, L)-coverable}. (3)

We are now ready to define (ε, δ, L)-private learner strategies.

Definition 3 (Private Learner Strategy) Fix ε > 0, δ > 0, L ≥ 2, with L ∈ N. A learner strategy
φ ∈ ΦN is (ε, δ, L)-private if it satisfies the following:

1. Accuracy constraint: the learner estimate accurately recovers the true value, with probability
one:

P
(∣∣x̂(x, Y )− x

∣∣ ≤ ε/2) = 1, ∀ x ∈ [0, 1),

where the probability is measured with respect to the randomness in Y .

2. Privacy constraint: for every x ∈ [0, 1) and every possible sequence of queries q ∈ Q(x),
the δ-cover number of the information set for the adversary, Cδ

(
I(q)

)
, is at least L, i.e.,

Cδ
(
I(q)

)
≥ L, ∀ q ∈ Q(x). (4)

The accuracy constraint requires that a private learner strategy always produce an accurate esti-
mate within the error tolerance ε, for any possible true value in [0, 1). The privacy constraint controls
the size of the information set induced by the sequence of queries generated, and the parameter L
can be interpreted as the learner’s privacy level: since the intervals used to cover the information
set are of length at most δ, each interval can be thought of as representing a plausible guess for the
adversary. Therefore, the probability of the adversary successfully estimating the location of v∗ is
essentially inversely proportional to the number of intervals needed to cover the information set,
which is at most 1/L.

3.3. Example Applications

We examine two illustrative example applications of our model.
Example 1 - learning an optimal price. A firm is to release a new product and would like to

identify a revenue maximizing price, p∗, prior to the product launch. The firm believes that the
revenue function, f(p), is strictly concave and differentiable as a function of the price, p, but has
otherwise little additional information. A sequential learning process is employed to identify p∗

over a series of epochs: in epoch k, the firm assesses how the market responds to a test price, pk,
and receives a binary feedback as to whether f ′(pk) ≥ 0 or f ′(pk) < 0. This may be achieved, for
instance, by contracting a consulting firm to conduct market surveys on the price sensitivity around
pk. The firm would like to estimate p∗ with reasonable accuracy over a small number of epochs,
but is wary that a competitor might be able to observe the surveys and deduce from them the value
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of p∗ ahead of the product launch. In the context of Private Sequential Learning, the firm is the
learner, the competitor is the adversary, the revenue-maximizing price is the true value, and the test
prices are the queries. The binary response on the revenue’s price sensitivity indicates whether the
revenue-maximizing price is less than the current test price.

Example 2 - online optimization with private weights. In the previous example, the adversary
is a third-party entity who does not observe the responses to the queries. We now illustrate in
this example that the Private Sequential Learning model can also describe a situation where the
adversary is the database to which queries are submitted, and thus has partial knowledge of the
responses; the connection is made precise in Xu (2017).

Consider a learner who wishes to identify the maximizer, x∗, of a function f(x) =
∑m

i=1 αifi(x)
over some bounded interval X ⊂ R, where {fi(·)}1≤i≤m is a collection of strictly concave differ-
entiable constituent functions, and {αi}1≤i≤m are positive (private) weights representing the im-
portance that the learner associates with each constituent function. The learner knows the weights
but does not have information about the constituent functions; such knowledge is to be acquired by
querying an external database. During epoch k, the learner submits a test value, xk, and receives
from the database the derivatives of all constituent functions at xk, {f ′i(xk)}1≤i≤m. Using the
weights, the learner can then compute the derivative f ′(xk), whose sign serves as a binary indicator
of the position of the maximizer x∗ relative to the current test value. The database, which possesses
complete information about the constituent functions but does not know the weights, would like to
infer from the learner’s querying pattern the maximizing value x∗ or possibly the weights them-
selves. The query strategies we develop for Private Sequential Learning can also be applied in this
setting.

3.4. Related Work

Our work is related in spirit to differential privacy (Dwork, 2008; Dwork and Roth, 2014) and the
private information retrieval problem in cryptography (Kushilevitz and Ostrovsky, 1997; Chor et al.,
1998; Gasarch, 2004). However, in contrast to differential privacy, our definition of privacy mea-
sures the adversary’s ability to perform a specific inference task. It is also substantially weaker than
the ones studied in private information retrieval: the adversary may still obtain some information on
the value the learner is searching for. This relaxation of the privacy requirement allows the learner
to deploy richer and more sample-efficient query strategies. In a different model, Tsitsiklis and Xu
(2018) study the issue of privacy in a sequential decision problem, where an agent attempts to reach
a particular node in a graph, traversing it in a way that obfuscates her intended destination against
an adversary who observes her past trajectories. However, a major new element in our model is
that the learner strives to learn a piece of information of which she herself has no prior knowledge.
The central conflict of trying to learn something while preventing others from learning the same
information sets our work apart from the extant literature.

4. Main Result

The learner’s overall objective is to employ the minimum number of queries while satisfying the
accuracy and privacy requirements. We state our main theorem in this section, which establishes
lower and upper bounds for the query complexity of a private learner strategy, as a function of the
adversary accuracy δ, learner accuracy ε, and learner privacy level, L. Recall that ΦN is the set of
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learner strategies of length N . Define N∗(ε, δ, L) to be the minimum number of queries needed
across all (ε, δ, L)-private learner strategies,

N∗(ε, δ, L) = min
{
N ∈ N : ΦN contains at least one (ε, δ, L)-private strategy

}
. (5)

Our result will focus on the regime of parameters where

0 < 2ε < δ ≤ 1/L. (6)

Having 2ε < δ corresponds to a scenario where the learner would like to identify the true value
with high accuracy, while the adversary is aiming for a coarse estimate. Note that the regime where
δ < ε is arguably much less interesting, because it is not natural to expect the adversary, who is
not engaged in the querying process, to have a higher accuracy requirement than the learner. The
requirement that δ ≤ 1/L stems from the following argument. If δ ≥ 1/(L − 1), then the entire
interval [0, 1) is trivially (δ, L − 1)-coverable, and Cδ

(
I(q)

)
≤ Cδ

(
[0, 1)

)
≤ L − 1 < L. Thus,

the privacy constraint is automatically violated, and no private learner strategy exists. To obtain a
nontrivial problem, we therefore only need to consider the case where δ < 1/(L − 1), which is
only sightly broader than the regime δ ≤ 1/L that we consider. The following theorem is the main
result of this paper3.

Theorem 4 (Query Complexity of Private Sequential Learning) Fix ε > 0, δ > 0, and a posi-
tive integer L ≥ 2, such that 2ε < δ ≤ 1/L. Then,

max
{

log
1

ε
, log

δ

ε
+ 2L− 4

}
≤ N∗(ε, δ, L) ≤ log

1

Lε
+ 2L. (7)

The proof of the upper bound in Theorem 4 is constructive, providing a specific learner strat-
egy that satisfies the bound. If we set δ = 1/L, which corresponds to the worst case where the
adversary’s accuracy requirement is essentially as loose as possible, then Theorem 4 leads to the
following corollary. It yields upper and lower bounds that are tight up to an additive constant of
4. In other words, the private learner strategy that we construct achieves essentially the optimal
query-complexity in this scenario.

Corollary 5 Fix ε > 0 and a positive integer L ≥ 2 such that 2ε < 1/L. The following holds.

1. If L = 2, we have

log
1

ε
≤ N∗

(
ε,

1

L
,L
)
≤ log

1

ε
+ 4. (8)

2. If L ≥ 3, we have

log
1

Lε
+ 2L− 4 ≤ N∗

(
ε,

1

L
,L
)
≤ log

1

Lε
+ 2L. (9)

3. All logarithms are taken with respect to base 2. To reduce clutter, non-integer numbers are to be understood as
rounded upwards.
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A main take-away from the above results is about the price of privacy: it is not difficult to see that in
the absence of a privacy constraint, the most efficient strategy, using a bisection search, can locate
the true value with log(1/ε) queries. Our results thus demonstrate that the price of privacy is at most
an additive factor of 2L.

The proof of Theorem 4 is given in Tsitsiklis et al. (2018). For the upper bound, we con-
struct a certain Opportunistic Bisection (OB) query strategy, where the learner augments a bisection
search with 2L additional “opportunistic” queries in a randomized and symmetric manner, such
the adversary cannot be certain whether the true value is discovered by the bisection search, or the
opportunistic queries. For the lower bound, one may ask whether the additional 2L queries need
to be distinct from the log(1/ε) queries used by the bisection search, or essentially, whether the
query complexity could be further reduced by “blending” the queries for obfuscation with those for
identifying the true value in a more effective manner. However, we show that such “blending” is not
possible.
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