
ObNoDog: Shape Detection on Not a Dog
Jing Cao

Department of EECS
Massachusetts Institute of Technology

Cambridge, MA, U.S.
jingcao@mit.edu

Nicholas Cerone
Department of Mechanical Engineering

Department of EECS
Massachusetts Institute of Technology

Cambridge, MA, U.S.
ceronj26@mit.edu

Abstract—This project presents a shape detection system im-
plemented on an FPGA, capable of identifying multiple geometric
shapes such as circles, squares, triangles, and plus signs in a
real-time video feed. The system employs a hardware-accelerated
pipeline that combines efficient image processing algorithms to
achieve accurate shape recognition. Connected Components La-
beling (CCL) is applied to calculate the areas of shapes and track
their centers of mass, ensuring each shape and its data is stored
consistently and separately. Moore’s Neighbor Tracing algorithm
(Moore’s) is utilized to detect and trace the perimeters of shapes.
To classify shapes, the system uses a circularity measure, a ratio
derived from the perimeter and area, to distinguish among a
few different preset geometric forms. This approach leverages
the parallel processing capabilities of the FPGA to deliver high-
performance shape detection with minimal latency, making it
suitable for applications such as object tracking, robotic vision,
and industrial automation. The results demonstrate the system’s
effectiveness in identifying and classifying shapes with real-time
processing speeds.

Index Terms—Shape detection, no dog, FPGA, Moore’s Neigh-
bor Tracing, Connected Components Labeling

I. INTRODUCTION

This project focuses on implementing a real-time shape
detection system on an FPGA to identify geometric shapes
such as circles, squares, triangles, and plus signs. The system
is designed to process image data in hardware, leveraging
the computational efficiency of FPGAs to achieve high-speed
detection and classification. By combining Connected Com-
ponents Labeling (CCL) for area calculation and center of
mass tracking, Moore’s Neighbor Tracing algorithm (Moore’s)
for boundary detection, and a circularity measure for shape
classification, the system provides a robust pipeline for shape
analysis.

The algorithm begins by using CCL to identify distinct
objects in the image and computes their areas and centers,
allowing for accurate tracking and localization. Objects with
sufficiently large area are individually masked and then passed
into Moore’s, which calculates perimeter by tracing each
object’s boundary. Finally, we pass each object’s area and
perimeter into a module to calculate Circularity, a modified
ratio of area to perimeter which allows us to distinguish
shapes based on how circular they are (how much the area
is maximized given the perimeter). This multi-step approach
ensures that the system can handle noise and imperfections
within certain shape classes reliably and efficiently.

The integration of these algorithms into FPGA hardware is
tailored to exploit its parallel processing capabilities, enabling
the system to operate at real-time speeds with minimal compu-
tational overhead. On an FPGA, this algorithm can be run to
classify all distinct objects in parallel to one another. The result
is a shape detection solution that is not only fast and reliable
but also energy-efficient, making it ideal for embedded systems
and applications where power and performance constraints are
critical.

II. IMAGE PROCESSING

In this section, we describe the image processing pipeline
implemented on the FPGA, focusing on the techniques used
for shape detection and classification. The system integrates
CCL for identifying and localizing shapes, Moore’s for bound-
ary extraction, and a custom image sprite display for visual-
ization.

A. Camera Feed Masking (Nicholas)

In order to maximize available BRAM in which to store
shapes for classification, we forego a traditional 24-bit wide
frame buffer on raw camera input. Instead, we directly com-
binationally convert raw camera RGB pixel data to YCrCb
values, create a mask through a threshold on Cr, then store the
mask into a 1-bit wide BRAM. This mask is then displayed
out via HDMI as though it were a traditional frame buffer, and
this mask is what is input into the CCL module. Though this
leaves us with low-resolution camera feed output which is not
very helpful for debugging, the BRAM saved was critical for
a robust implementation.

B. Connected Components Labeling (Jing)

The Connected Components Labeling (CCL) module is
responsible for identifying distinct blobs (connected regions
of pixels) in a binary image [1], assigning unique numeric
labels to each blob, and calculating blob area and center of
mass. This module uses a two-pass algorithm to efficiently
label connected components and compute properties.

The algorithm is implemented using a finite state machine
with nine states (see Fig. 6):

1) IDLE: Waits for a new frame to begin processing.
2) STORE FRAME: Stores the masked frame into a

frame buffer.



3) FIRST PASS: Performs an initial labeling of masked
pixels and builds an equivalence table for labels.

4) SECOND PASS: Resolves equivalences to assign final
labels.

5) PROPERTY CALC: Computes area, sum of x-
coordinates, and sum of y-coordinates for each blob.

6) STORE IN ARRS: Stores calculated properties in ar-
rays.

7) PRUNE: Discards blobs smaller than a predefined size
threshold and identifies the largest ones.

8) TL FRAME: Stores masks of each blob in a frame
buffer in top_level.

9) OUTPUT: Outputs the final results.

1) Two-Pass CCL Algorithm: We implement the CCL al-
gorithm in two passes over the image.

In the first pass, the algorithm scans the masked frame in
raster order. For each masked pixel encountered the module
examines four neighboring pixels (west, northwest, north,
northeast). If no labeled neighbors exist, the pixel is assigned a
new unique numeric label. If labeled neighbors are present, the
pixel inherits the smallest neighboring label. This pass results
in an initial labeling where parts of the same blob may have
different temporary labels.

The second pass focuses on resolving label equivalences
and finalizing object properties. The algorithm identifies and
merges labels that belong to the same connected component,
ensuring that all pixels of a single object end up with the
same label. As labels are resolved, the algorithm updates
properties for each blob. The properties include the area and
sums of x- and y-coordinates which are used for center of
mass calcuation.

An example of this algorithm is shown in 1. We are first
presented with a binary mask. In the first pass, we give an
initial labeling of the blobs where blobs may have multiple
different labels. In the second pass, we resolve labels that point
to the same blob and get the final labeled blobs.

2) Blob Pruning and Center of Mass Calculation: After
the two-pass labeling, we prune blobs with fewer pixels than
a predefined minimum size. They are discarded by marking
them as 0 in the intermediary frame buffers.

For each remaining blob, we calculate the center of mass
using the formula

CENTER OF MASS(X, Y) =
(∑

xi

A
,

∑
yi

A

)
where xi and yi are the coordinates of the pixels in the blob
and A is the total area of the blob.

C. Connecting CCL and Moore’s Neighbor Tracing (Nicholas)
CCL outputs the areas and center of mass of the largest

two blobs and stores them into frame buffers for usage by
Moore’s. Moore’s requires four frame buffers to read from
since it must access all eight neighbors for each pixel so CCL
outputs a mask of each labeled blob into four frame buffers,
making a total of eight frame buffers it outputs to since we
only keep track of the largest two blobs.

Fig. 1: Example walkthrough of connected components label-
ing algorithm [2].

D. Moore’s Neighbor Tracing (Nicholas)

Moore’s Neighbor Tracing algorithm (Moore’s) is a
boundary-following algorithm used to identify the perimeters
of shapes in a binary image. This algorithm begins by locating
the first boundary pixel in the raster scan and traces the
contour by iteratively checking the neighboring pixels in a
predefined order based on the previous neighbor’s location
[3]. It continues until it returns to the starting pixel, effectively
extracting the entire perimeter of the shape.

This version of Moore’s is implemented to be integrated
with CCL; the Moore’s module outputs addresses which are
used to read from the BRAMs in top_level where CCL
stores the blob masks. This is an efficient method because it
means that Moore’s does not use extra resources storing the
frame in local BRAMs while also allowing for CCL to easily
write to the BRAMs as they are in top_level.

The algorithm is implemented using a finite state machine
with four distinct states (see: Fig. 7):



Fig. 2: Example walkthrough of Moore’s Neighbor Tracing
algorithm [4].

1) IDLE: The module waits for a new frame signal to begin
storing the frame.

2) SEARCHING: The module scans the frame line-by-
line to identify the first boundary pixel in the object,
if such an object exists on the screen. Note that we
need not store the frame in local BRAMs, as all memory
accesses happen to BRAMs in top level which set prior
to providing the new frame signal.

3) TRACING: After identifying the first boundary pixel,
the module performs Moore’s Neighbor Tracing algo-
rithm. During each cycle, eight adjacent locations to
the current pixel of interest are pulled from BRAM
and checked in a specified order based on the previous
neighbor[3] to determine the next pixel of interest. This
process continues until the module returns to the first
found boundary pixel.

4) OUTPUT: Once the object has been fully traced, the
module provides a valid output signal and outputs the
calculated perimeter of the shape.

E. Transparent Image Sprite (Nicholas)

To facilitate visual feedback and debugging, the processed
data is displayed on a monitor using a custom image sprite
renderer. This renderer overlays detected shapes with their cen-
troid markers, and each shape is annotated with its correspond-
ing classification result in text (e.g., circle, square, triangle,
plus) are displayed for clarity. This is done through a modified
Image Sprite module, whereby input images are binary masked
and only pixels which are masked in the image are actually
displayed onscreen. This effectively allows for the display of
transparent images (the custom shape centroid markers and
classification labels) overtop of the camera display without any
artifacts. As for setup, this required writing a custom Python
file to convert .png images into .mem files of 1-bit width
based on whether the background is transparent at that pixel

or not. The sprite visualization helps to create an interactive
and informative user interface, not only for debugging, but for
outputting results in an intuitive manner.

III. SHAPE CLASSIFICATION

Our current shape classification algorithm utilizes a naive
and computationally efficient method based on circularity,
which is a measure of how closely the shape approximates
a perfect circle. Circularity is defined as the ratio of the area
(A) to the square of its perimeter (P ) scaled by 4π:

CIRCULARITY =
4πA

P 2

To simplify the computation and avoid handling decimals, we
multiply this ratio by a factor of 100 (letting π·100 = 314) and
account for any noise which may cause the value to exceed
100 in our thresholds. Circularity provides a normalized metric
that helps differentiate between geometric shapes based on
their boundary and area characteristics.

The larger the circularity, the more likely it is to be a circle.
We have four thresholds to differentiate between shapes:

1) Circularity > 128: classify as a circle
2) Circularity > 80: classify as a square
3) Circularity > 73: classify as a triangle
4) Circularity ≤ 73: classify as a plus sign

These thresholds were identified through calculation then
refined through trial and error.

IV. RESULTS

The current implementation demonstrates the feasibility and
computational efficiency of using FPGAs for real-time shape
detection and classification of multiple objects. Our implemen-
tation can label and analyze up to two shapes utilizing the
CCL algorithm, perform Moore’s to calculate the perimeter of
detected shapes, and classify shapes based on their circularity
values. Images of final results are shown in Fig. 3.

Improving on our preliminary results, the implementation
can now detect and classify more than one shape at a time
and prunes noise from labeling in CCL. This allows it to often
classify shapes correctly, even when multiple shapes are on the
screen at once.

V. EVALUATION

A. Classification Accuracy

The accuracy of our shape classification system is influ-
enced by several key factors.

1) Orientation: The orientation of shapes relative to the
image plane significantly impacts classification accu-
racy. When shapes are rotated such that their edges
become diagonal relative to the pixel grid, their mea-
sured perimeter decreases compared to shapes aligned
with the image axes. This occurs because diagonal
edges create fewer pixel transitions than horizontal or
vertical edges, reducing the measured perimeter while
the area remains constant. Consequently, the circularity



Fig. 3: Results of testing on multi-shape detection.

metric increases for rotated shapes, potentially leading
to misclassification.

2) Distance from camera: Objects positioned closer to
the camera yield more reliable classification results due
to improved spatial resolution. This is because more
precise area and perimeter measurements due to reduced
quantization error, better definition of shape boundaries,
reducing edge detection ambiguity, and improved sepa-
ration between adjacent shapes, minimizing the risk of
merged component labeling.

3) Circularity thresholds: The system’s classification ac-
curacy was heavily dependent on carefully calibrated
circularity thresholds. These thresholds define the de-
cision boundaries between different shape categories
based on their calculated circularity values. Through
iterative testing, we determined optimal threshold values
that maximize classification accuracy across our test
dataset. However, this manual threshold calibration pro-
cess highlights a limitation in the system’s adaptability
to varying environmental conditions.

B. Resource Usage

We use 40 RAMB36s (2x for the camera input mask frame
buffer, 2x for each of the 2 shape classifier sprites, 8x for each
of the 2 Moore’s input masks, 2x for each of 2 label masks
for display, 14x for CCL) and 1 RAMB18 for registers. By
efficiently routing BRAMs and removing extraneous features,
we are well below the limit for available memory usage, even
with two shape classifiers.

C. Latency

Our design successfully meets timing with

WNS = +0.131ns

. In addition, to meet visual latency for the user, we required
that our design could complete all of the shape classifications
within a single frame, or within 0.033s at 30fps. With a clock
at 10ns, this means our design must complete all computation
in 3 million cycles. We assumed that 3 million clock cycles
would be more than enough time for our design to classify
shapes based on the following analysis; since each of CCL
and Moore’s runs in non-deterministic time (CCL requires
divisions to find centers of mass while Moore’s traces the
perimeter of the masked object, which could be different
length frame-to-frame), we decided to analyze them based on
algorithmic complexity:

• CCL: for n total pixels on the screen and a hard-coded
maximum number of labels m < n, CCL first stores
the frame over n pixels, then does a first pass over n
pixels, then loops to resolve m equivalences m times,
then calculates properties for m labels, then stores the m
labels into proper arrays, then prunes over m labels, then
stores the n pixels into the top_level BRAM, then
outputs. Thus, CCL takes O(n+m2) linear time on the
size of the screen and quadratic time on the maximum
number of labels. Since we have n = 320 · 180 and we
hard-code m = 64, we assume the runtime of this module
does not blow up.

• Moore’s: for n total pixels on the screen, Moore’s first
scans through all n pixels to find the start point, then
traces the perimeter (at worst it could scan a spiral of
length n/2), then outputs. Thus, Moore’s takes O(n)
linear time on the size of the screen. Since we have
n = 320 · 180, we assume the runtime of this module
does not blow up.

All other parts of the algorithm have comparatively insignif-
icant runtimes. Additionally, this runtime is not dependent on
the number of shapes, since all shapes can be classified in
parallel due to the FPGA’s parallel processing capabilities.
Finally, we recognize that even if CCL and Moore’s together
did exceed the 3 million clock cycle limit, then we would
simply need to skip the frame. In the end, we find that
the latency of our algorithm does not exceed the functional
maximum, as desired.

D. Meeting Goals

We successfully met both our minimum and stretch goals
posed in the original design review presentation. Our original
goal was to implement rudimentary noise canceling and then
use area computation, Moore’s, and circularity to classify
just a single shape, which we achieved by our preliminary
report. However, through the implementation of CCL and
routing Moore’s to read from BRAM in top_level, we
effectively parameterize the number of shapes that can be
classified at once, limited only by the memory capabilities



of the hardware (not latency, as the FPGA can classify in
parallel). Since ObNoDog is able to classify multiple shapes
at once with individual shape identification, sophisticated noise
pruning, and efficiently utilized BRAMs, we successfully met
our stretch goal of classifying a variable number of multiple
shapes.

VI. DISCUSSION

A. Challenges

Several challenges emerged through development.
Firstly, memory proved to be a scarce resource. With the

current implementation, CCL requires BRAM to store a mask
of the frame alongside the label of each pixel, Moore’s reads
from the BRAM masks in top_level in order to compute
neighbors, additional masks are required to output individual
blobs to the display, and more. To get our model within the
BRAM limit, we had to remove extraneous features (e.g. the
initial frame buffer of camera input), alongside trade less
memory usage for more latency in some modules (e.g. we
increased CCL latency from an original design by 4x to reduce
the amount of memory used by 4x).

Secondly, the reliance on circularity alone for classification
makes it difficult to distinguish between shapes with similar
values. For instance, a rounded square may be misclassified
as a circle, and irregularities in the boundary can distort
circularity values. This limitation becomes particularly evident
in noisy or imperfectly segmented images, where boundary
artifacts skew the calculated metrics. By pruning blobs under
a certain area (single pixel noise), CCL reduces the likelihood
that shapes are misclassified, though jagged shape edges will
still likely overinflate the perimeter calculation.

Thirdly, debugging and test-benching CCL proved to be
much more challenging and time-consuming that we originally
anticipated. In part, this is due to having to reconfigure BRAM
usage during development multiple times (CCL stores pixel
labels into BRAM, a large sink for our original BRAM
budget). Another reason was that CCL has a large number of
states in the FSM, and since a number of these states needed to
interact with top_level in intelligent ways (e.g. writing to
top_level BRAMs), a large amount of test-benching was
required to ensure robust outputs.

B. Future Work

To address the identified challenges and expand the system’s
capabilities, future work will focus on the following areas:

Latency: Optimizing the finite state machine logic and
memory access patterns will help reduce processing time. For
example, instead of writing outputs from the CCL module
into separate BRAMs and reloading them in the Moore’s
Neighbor Tracing module, the design will share BRAMs
across modules by instantiating them in the top_level.
This eliminates unnecessary read/write cycles and minimizes
memory access delays. Implementing pipelined architectures
can allow multiple steps of the processing pipeline to operate
concurrently, significantly improving throughput. Parallelizing
computationally intensive tasks, such as perimeter calculation

and equivalence resolution in the CCL module, can further
reduce latency.

Improved shape classification: The current classification
system will be expanded by modifying Moore’s to output an
array of boundary pixel coordinates. This additional data will
enable the calculation of properties like number of vertices,
to distinguish between polygons with similar circularity, and
edge detection, which may provide metrics like aspect ratio
or edge uniformity. While vertex and edge detection introduce
their own set of challenges in boundary noise and orientation
considerations, incorporating these features alongside circular-
ity will create a more nuanced multi-dimensional classification
metric, improving accuracy and robustness.

n-shape detection: The current system is designed to trace
and classify up to two shapes at a time. This is due to limits
in the FPGA’s available BRAM. However, the current code
can be extended to any number of shapes, since all shapes are
classified in parallel. On the other hand, storing all pixel values
and masks DRAM instead of BRAM would immediately
loosen the restriction on memory, allowing storage of many
more shapes at the potential expense of latency.

VII. ACKNOWLEDGMENTS

We would like to express our heartfelt gratitude to our TA,
Jan, for her unwavering support and assistance, especially dur-
ing the critical days leading up to the deadline. Her guidance
in structuring our system, debugging issues, and identifying
design flaws that we had overlooked was invaluable.

Additionally, we extend our thanks to Prof. Joe Steinmeyer
for delivering an exceptional class that enriched our learning
experience.

VIII. APPENDIX

GitHub Repository: https://github.com/jca0/ObNoDog-final

REFERENCES

[1] Image Analysis - connected components labeling. (n.d.).
https://homepages.inf.ed.ac.uk/rbf/HIPR2/label.htm

[2] Wikimedia Foundation. (2024, November 5). Connected-component
labeling. Wikipedia. https://en.wikipedia.org/wiki/Connected-
component labeling

[3] Ghuneim, A. (n.d.). Contour tracing.
https://www.imageprocessingplace.com/downloads V3/root downloads/
tutorials/contour tracing Abeer George Ghuneim/moore.html

[4] Adjustable method based on body parts for improving the accuracy
of 3D reconstruction in visually important body parts from
silhouettes - Scientific Figure on ResearchGate. Available from:
https://www.researchgate.net/figure/An-example-of-Moore-Neighbor-
boundary-tracing-found-1-8-pixels-as-a-boundary-12 fig3 372683288
[accessed 12 Dec 2024]

https://github.com/jca0/ObNoDog-final


Fig. 4: Block diagram of top level module

Fig. 5: Block diagram for image processing

Fig. 6: FSM diagram for Connected Components Labeling module

Fig. 7: FSM diagram for Moore’s Neighbor Tracing module


	Introduction
	Image Processing
	Camera Feed Masking (Nicholas)
	Connected Components Labeling (Jing)
	Two-Pass CCL Algorithm
	Blob Pruning and Center of Mass Calculation

	Connecting CCL and Moore's Neighbor Tracing (Nicholas)
	Moore's Neighbor Tracing (Nicholas)
	Transparent Image Sprite (Nicholas)

	Shape Classification
	Results
	Evaluation
	Classification Accuracy
	Resource Usage
	Latency
	Meeting Goals

	Discussion
	Challenges
	Future Work

	Acknowledgments
	Appendix
	References

