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1 Introduction

First, make sure you have Julia installed (see julialang.org/install) along with an IDE. I simply use the free Sublime text
editor (https://www.sublimetext.com/) and run the code from the command line as julia script.jl arg1 arg2 ....

The following theory follows a simplified version of the calculation in R. Mannella, Integration of Stochastic Differential
Equations on a Computer, Int. J. Mod. Phys. C (2002). This recitation is adapted from Sunghan Ro’s recitation from the
2024 iteration of this class.

2 Theory: additive noise

We will integrate the stochastic differential equation (SDE) for an overdamped Langevin equation of the form

ẋ(t) = f(x(t)) +
√
2Dη(t) . (1)

Consider a timestep h. In going from time t to time t+ h, the system explicitly evolves as

x(t+ h) = x(t) +

∫ h

0

ẋ(t+ s)ds = x(t) +

∫ h

0

f(x(t+ s))ds+
√
2D

∫ h

0

η(t+ s)ds . (2)

We will derive, and then implement, two different approximations for this equation, which will be used for numerical integration.
First, let’s define the random variable

Z1(h) ≡
∫ h

0

η(t+ s)ds . (3)

Clearly it is a Gaussian random variable with zero mean. We can furthermore see that its variance is

⟨Z1(h)
2⟩ =

∫ h

0

ds1

∫ h

0

ds2⟨η(t+ s1)η(t+ s2)⟩ =
∫ h

0

ds1

∫ h

0

ds2δ(s1 − s2) = h . (4)
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2 THEORY: ADDITIVE NOISE

So, we can replace Z1(h) with the random variable
√
hξ, where ξ is a centered, unit-variance Gaussian random variable. We

thus have

x(t+ h) = x(t) +

∫ h

0

dsf(x(t+ s)) +
√
2Dhξ . (5)

The force term remains to be simplified.

2.1 Lowest-order (Euler/Maruyama) scheme

First, let’s find an integration scheme that is correct to order h. One option is to replace

f(x(s)) = f(x(t)) +O(
√
h) . (6)

Then, we can see that the force integral is∫ h

0

dsf(x(t+ s)) = hf(x(t)) +O(h3/2) . (7)

The result is the integration scheme

x(t+ h) = x(t) + hf(x(t)) +
√
2Dhξ . (8)

This is known as the Euler(/Maruyama) integration scheme, and is the most common.

2.2 Higher-order (Mannella) scheme

What if we want to go to order h2? One such scheme was derived by Mannella in 2002. In this case, we should replace the
force with

f(x(s)) = f(x(t))︸ ︷︷ ︸
≡ft

+[x(s)− x(t)] f ′(x(t))︸ ︷︷ ︸
≡f ′

t

+
1

2
[x(s)− x(t)]2 f ′′(x(t))︸ ︷︷ ︸

≡f ′′
t

+O(h3/2) . (9)

Integrating this gives∫ h

0

dsf(x(t+ s)) ≈ hft + f ′
t

∫ h

0

ds[x(t+ s)− x(t)]︸ ︷︷ ︸
≡ 1

+
1

2
f ′′
t

∫ h

0

ds[x(t+ s)− x(t)]2︸ ︷︷ ︸
≡ 2

. (10)

We can calculate

1 =

∫ h

0

ds[x(t+ s)− x(t)] =

∫ h

0

ds

∫ s

0

ds′
[
f(x(t+ s′)) +

√
2Dη(t+ s′)

]
= ft

h2

2
+

√
2D

∫ h

0

dsZ1(s) +O(h5/2) . (11)

We have substituted f(x(t+ s′)) → ft because we know that each integral contributes a factor of h2, thus the only relevant
term is ft. For the other term, we have

2 =

∫ h

0

ds
[
x(t+ s)− x(t)

]2
=

∫ h

0

ds

∫ s

0

ds1
[
f(x(t+ s1)) +

√
2Dη(t+ s1)

] ∫ s

0

ds2
[
f(x(t+ s2)) +

√
2Dη(t+ s2)

]
(12)

=

∫ h

0

ds

[
2

∫ s

0

ds1f(x(t+ s1))
√
2DZ1(s) + Z1(s)

2 +O(h5/2)

]
. (13)

Recall that Z1(s) is O(
√
h) when s ∼ O(h). Then, because again each integral contributes ∼ O(h), the first term disappears

and we find

2 =

∫ h

0

dsZ1(s)
2 +O(h5/2) . (14)

All in all, we find

x(t+ h) = x(t) + fth+
√
2DZ1(h) + f ′

tft
h2

2
+ f ′

t

√
2D

∫ h

0

dsZ1(s) + f ′′
t

∫ h

0

dsZ1(s)
2 , (15)

where we recall that

Z1(h) =

∫ h

0

η(t+ s)ds ∼
√
hξ . (16)
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2 THEORY: ADDITIVE NOISE

2.3 Error: explicit computation

We will now explicitly calculate the error of our integration schemes for an overdamped harmonic oscillator with mobility µ,
spring constant k̃, and diffusivity µkBT :

ẋ(t) = −µk̃x(t) +
√
2µkBTη(t) (17)

where η(t) is a standard Gaussian white noise, which satisfies

⟨η(t)⟩ = 0 , ⟨η(t)η(s)⟩ = δ(t− s) . (18)

Define the scaled spring constant k ≡ µk̃, along with the diffusivity D = µkBT . Then, we have the Langevin equation

ẋ(t) = −kx(t) +
√
2Dη(t) . (19)

2.3.1 Analytical solution

We can explicitly calculate the steady-state probability distribuion for x using Itō’s formula. We can write the dynamics of
each moment

d

dt
⟨x(t)n⟩ = n⟨x(t)n−1ẋ(t)⟩+ n(n− 1)D⟨x(t)n−2⟩ (20)

= −kn⟨x(t)n⟩+ n(n− 1)D⟨x(t)n−2⟩ . (21)

Using causality, we have replaced ⟨x(t)n−1η(t)⟩ = ⟨x(t)n−1⟩⟨η(t)⟩ = 0. In the steady state, this then gives us the nth moment
in terms of the (n− 2)nd one:

⟨xn⟩ = (n− 1)
D

k
⟨xn−2⟩ . (22)

Clearly only the even moments n = 2m are nonzero. These are given by

⟨x2m⟩ = (2m− 1)(2m− 3) . . . 1

(
D

k

)m

= (2m− 1)!!

(
D

k

)m

. (23)

But these are the moments of the Gaussian distribution with variance D/k. Thus, because a probability distribution is
uniquely characterized by its moments, the steady-state probability distribution for x is given by

Pth(x) =
exp

(
− k

2Dx2
)√

2πD/k
= N

(
0,

D

k

)
. (24)

Luckily for us, in the harmonic oscillator model, we can explicitly calculate the steady-state probability distributions resulting
from our (approximate) simulation schemes, and thus explicitly calculate their error.

2.3.2 Euler/Maruyama scheme error

For the harmonic oscillator, the Euler scheme is defined by the recursion relation

x(t+ h) = x(t)− hkx(t) +
√
2Dhξ (25)

where now ξ is a centered Gaussian random variable of unit variance.
We are interested in the probability distribution of x(t) as t → ∞. We can compute the following recursion relation for the

mean:

⟨x(t+ h)⟩ = ⟨x(t)⟩(1− hk) +
√
2Dh⟨ξ(t)⟩ = ⟨x(t)⟩(1− hk) . (26)

As long as h < 1/k, this converges to zero. Likewise, the variance satisfies the recursion relation

⟨x(t+ h)2⟩ = ⟨x(t)2⟩(1− hk)2 + 2
√
2Dh(1− hk)⟨x(t)ξ(t)⟩+ 2Dh⟨ξ(t)2⟩ = ⟨x(t)2⟩(1− hk)2 + 2Dh . (27)

In the steady state, i.e. at long times, we find

⟨x(t → ∞)2⟩ = 2Dh

1− (1− hk)2
=

D

k

1

1− hk/2
. (28)
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2 THEORY: ADDITIVE NOISE

Let’s moreover suppose that the initial distribution for x is Gaussian. Then, because the recursion relation simply scales x
then adds another Gaussian random variable to it, we see that the distribution remains a Gaussian. (It is also possible to
prove that if it doesn’t start as a Gaussian, it becomes one, using the Central Limit Theorem.) Thus, we can conclude the the
steady-state probability distribution for the Euler scheme is

PEuler(x) = N
(
0,

D

k

1

1− hk/2

)
. (29)

The error is evidently O(h).

2.3.3 Mannella scheme error

For the harmonic oscillator, the Mannella scheme is defined by the recursion relation

x(t+ h) = x(t)− hkx(t) +
h2k2

2
x(t) +

√
2DZ1(h)− k

√
2D

∫ h

0

dsZ1(s) (30)

≡ x(t)

[
1− hk +

h2k2

2

]
+

√
2Dζ . (31)

We have defined the Gaussian white noise ζ. Clearly ζ has mean zero. The variance is given by

⟨ζ2⟩ =
〈[

Z1(h)− k

∫ h

0

dsZ1(s)

]2〉
(32)

= h− 2k

∫ h

0

ds2

∫ h

0

ds1

∫ s2

0

ds′2⟨η(t+ s1)η(t+ s′2)⟩︸ ︷︷ ︸
=s2

+k2
∫ h

0

ds1

∫ h

0

ds2

∫ s1

0

ds′1

∫ s2

0

ds′2⟨η(t+ s′1)η(t+ s′2)⟩︸ ︷︷ ︸
=min(s1,s2)

(33)

= h− kh2 + k2
∫ h

0

ds1

(∫ s1

0

ds2s2 +

∫ h

s1

s1

)
(34)

= h− kh2 +

∫ h

0

ds1

(
hs1 −

s21
2

)
(35)

= h

[
1− hk +

h2k2

3

]
. (36)

Thus, the noise is equivalent to a single Gaussian random variable

√
2DZ1(h)− k

√
2D

∫ h

0

dsZ1(s) ∼

√
2Dh

[
1− hk +

h2k2

3

]
ξ (37)

where ξ is now a centered Gaussian random variable of unit variance. Thus, our integration scheme is equivalent to

x(t+ h) = x(t)− hkx(t) +
h2k2

2
x(t) +

√
2Dh

[
1− hk +

h2k2

3

]
ξ . (38)

Again, for small enough h, the mean of x decays to zero. The variance now satisfies the recursion relation

⟨x(t+ h)2⟩ = ⟨x(t)2⟩
[
1− hk +

h2k2

2

]2
+ 2Dh

[
1− hk +

h2k2

3

]
(39)

so that in steady state

⟨x(t → ∞)2⟩ = 2Dh[1− hk + h2k2/3]

1− (1− hk + h2k2/2)2
=

D

k

1− hk + h2k2/3

[1− hk/2][1− hk/2 + h2k2/4]
=

D

k

[
1− h2k2

6
+O(h3)

]
. (40)

Again, the steady-state probability distribution is a Gaussian

PMannella(x) = N
(
0,

D

k

1− hk + h2k2/3

[1− hk/2][1− hk/2 + h2k2/4]

)
(41)

but now the error is O(h2).
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3 THEORY: MULTIPLICATIVE NOISE

3 Theory: multiplicative noise

What if the strength of the noise in our Langevin equation is spatially-varying? This is called multiplicative noise. In 1
dimension, the most general such system is described by the Langevin dynamics

ẋ(t) = f(x(t)) + g(x(t))η(t) . (42)

However, Eq. (42) is ill-defined without the specification of a discretization. For instance, the average velocity of a particle
⟨ẋ(t)⟩ is given by

⟨ẋ(t)⟩ = ⟨f(x(t))⟩+ ⟨g(x(t))η(t)⟩ . (43)

If we are using the Itō convention, then

⟨x(t)η(t)⟩ = ⟨x(t)⟩⟨η(t)⟩ = 0 =⇒ ⟨g(x(t))η(t)⟩ = ⟨g(x(t))⟩⟨η(t)⟩ = 0 . (44)

However, if we are using the Stratonovich convention,

⟨x(t)η(t)⟩ ̸= ⟨x(t)⟩⟨η(t)⟩ =⇒ ⟨g(x(t))η(t)⟩ ̸= ⟨g(x(t))⟩⟨η(t)⟩ . (45)

Thus even tangible physical quantities such as the particle velocity are sensitive to the choice of discretization.
To remedy the ambiguity of Eq. (42), we will explicitly discretize it. Construct a lattice of times {t0, t1, . . . , tN} such that

tk+1 − tk = ∆t, and define xk ≡ x(tk) and ∆xk ≡ xk+1 − xk. Let α ∈ [0, 1] be a number that specifies the discretization
convention1, and define xα

k ≡ xk + α∆xk. Then, we write

∆xk = ∆tf(xα
k ) +

√
∆tg(xα

k )ηk , (46)

where ηk is a unit-variance centered Gaussian random variable. Now, Eq. (42) is understood as the ∆t → 0 limit of Eq. (46).
We should always keep in mind that different α lead to different physics.

Now, we will figure out how to build a numerical integrator for this system that is accurate to O(h) for some finite timestep
h.

3.1 Euler integration scheme

As before, we will build an “Euler” integration scheme that is accurate to O(h), where h is the timestep used in the numerical
simulation. We will thus consider a lattice of times that starts at t0 = t and ends at tN = t+ h, so that ∆t = h/N . We will
take the fine-lattice limit N → ∞. Note, then, that we must have

∆t ≪ h ≪ all other timescales . (47)

We would like to know x(t+ h). It is exactly given by the ∆t → 0 limit of

x(t+ h)− x(t) =

N−1∑
k=0

∆xk =

N−1∑
k=0

[
∆tf(xα

k ) +
√
∆tg(xα

k )ηk

]
. (48)

As before, we expand f and g in powers of h around x(t) = x0:

x(t+ h)− x(t) =

N−1∑
k=0

{
∆t

[
f(x0) +O(

√
h)
]
+

√
∆t

[
g(x0) + (xα

k − x0)g
′(x0) +O(h)

]
ηk

}
. (49)

This is because, as before, increments in x for timesteps of order h are of order
√
h. Note that

∑N−1
k=0 ∆t = h. Also,〈N−1∑

k=0

√
∆tηk

〉
= 0 ,

〈(N−1∑
k=0

√
∆tηk

)2〉
=

N−1∑
k=0

N−1∑
ℓ=0

∆tδkℓ = N∆t = h (50)

so that we can define

η =
1√
h

N−1∑
k=0

√
∆tηk , ⟨η⟩ = 0 , ⟨η2⟩ = 1 . (51)

1The Itō convention is given by α = 0 and the Stratonovich convention is given by α = 1/2. α = 1 is sometimes called the “Hänggi” or “anti-Itō”
convention.
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4 NUMERICS

Then, we have

x(t+ h)− x(t) = hf(x(t)) +
√
hg(x(t))η + g′(x(t))

N−1∑
k=0

(
xα
k − x0

)√
∆tηk︸ ︷︷ ︸

≡ ∗

. (52)

We only have to simplify the term ∗ . Expanding xk and ∆xk gives

∗ =

N−1∑
k=0

[
k−1∑
ℓ=0

(
∆tf(xα

ℓ ) +
√
∆tg(xα

ℓ )ηℓ

)
+ α

(
∆tf(xα

k ) +
√
∆tg(xα

k )ηk

)]√
∆tηk (53)

= ∆t

N−1∑
k=0

[
N−1∑
ℓ=0

g(xα
ℓ )ηℓ + αg(xα

k )ηk

]
ηk +O(h3/2) (54)

= ∆tg(x(t))

N−1∑
k=0

[
N−1∑
ℓ=0

ηℓ + αηk

]
ηk +O(h3/2) . (55)

Because ⟨ηℓηk⟩ = 0 for all ℓ ̸= k, ∗ has mean

⟨ ∗ ⟩ = α∆tg(x(t)) . (56)

In principle, it also has some fluctuations. However, it can be shown that these are subleading in the ∆t → 0 limit. One
proves this rigorously by showing that the L2 difference between ∗ and its mean to converge to 0 as ∆t → 0.2 Thus, we have
our O(h) discretization scheme

x(t+ h) = hf(x(t)) + hαg′(x(t))g(x(t)) +
√
hg(x(t))η , ⟨η⟩ = 0 , ⟨η2⟩ = 0 . (57)

In the numerical section, you will simulate a Brownian particle in the absence of any forces, i.e. f(x(t)) = 0, but with
spatially-varying temperature. Letting µ = kB = 1, the Langevin dynamics are

ẋ(t)
α
=

√
2T (x(t))η(t) (58)

where
α
= indicates the discretization specification of α. You will show that different α indeed leads to different density

distributions, and thus the discretization “convention” is actually physically relevant.

4 Numerics

4.1 Additive noise & h convergence

In the file Rec1-2 Langevin Harmonic.jl, you’ll find partial code to simulate the harmonic oscillator. It takes one argument,
“1” or “2”, indicating the Euler/Maruyama and Mannella algorithms respectively. You will fill in the algorithms inside the
runHarmonicOscillator function. For simplicity, we take k = D = 1. See the code comments for more information about
what it does.

One important thing: to generate a unit-variance, zero-mean Gaussian random number using the random number generator
rng, you can call randn(rng).

4.2 Multiplicative noise: T (x)

In the file Rec2 Brownian Tofx.jl, you will simulate a Brownian particle in a spatially-varying temperature, and plot the
density distribution alongside the theoretical prediction.

2see Sec. 2.1.3 and the beginning of Sec. 2.2 of de Pirey et al. 2022 (arXiv:2211.09470) for a more in-depth explanation.
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