

8.08/8.S308 - Problem Set 3 - IAP 2026

Due before January 21, 23:59

Anything marked as “graduate” counts as bonus problem for undergraduate students.

1- Backward Fokker-Planck Equation

The dynamics of a colloidal particle can be described, at the trajectory level, by a stochastic equation:

$$\dot{x} = f(x) + \sqrt{2D(x)}\eta(t); \quad \text{with} \quad \langle \eta(t) \rangle = 0; \quad \langle \eta(t)\eta(t') \rangle = \delta(t-t'); \quad (1)$$

and, at the level of probability distribution, through a Fokker-Planck equation

$$\frac{\partial P(x, t|x_0, t_0)}{\partial t} = \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x} D(x) - f(x) \right] P(x, t|x_0, t_0) \quad (2)$$

where $P(x, t|x_0, t_0)$ is the probability to find the colloid at x at time t knowing that it was at x_0 at time t_0 . This equation is called the “Forward Fokker-Planck equation” because, once the system has been at x_0 at time t_0 , it describes what happens in the future (Fig. 1, left).

Conversely, $P(x, t|x_0, t_0)$ can be seen as a function of the variables x_0 and t_0 : what is the probability of reaching x at time t if leaving x_0 at t_0 . One can thus study how $P(x, t|x_0, t_0)$ evolves with t_0 (cf Fig. 1, right). This is the purpose of the Backward Fokker-Planck equation, which we construct in this exercise.

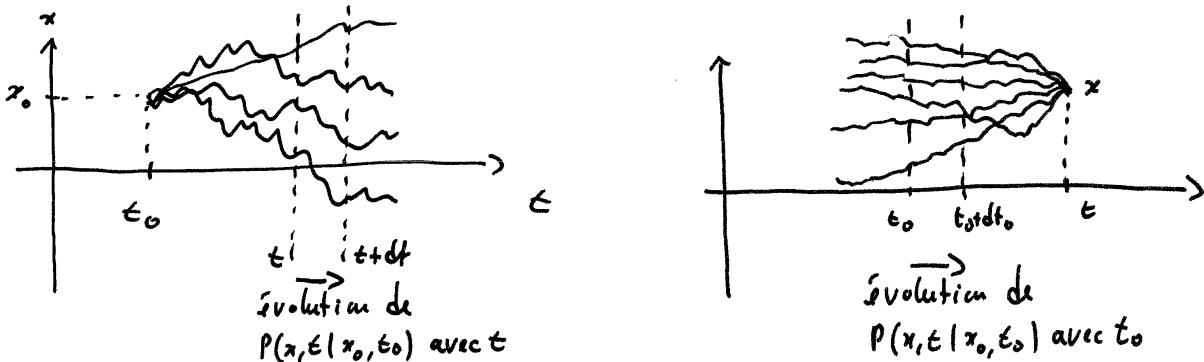


Figure 1: $P(x, t|x_0, t_0)$ can be seen either as a function of x, t , for fixed values of x_0 and t_0 —this is the perspective of the forward Fokker-Planck equation (left)—or as a function of x_0 and t_0 , for fixed values of x and t —this is the point of view of the backward Fokker-Planck equation (right).

1.1) Consider a particle evolving with equation (1). The probability to find it at x_0 , x' and x at the successive times $t_0 < t' < t$, $P(x, t; x', t'; x_0, t_0)$, satisfies

$$P(x, t; x', t'; x_0, t_0) = P(x, t|x', t')P(x', t'|x_0, t_0)P(x_0, t_0) \quad (3)$$

where $P(x_0, t_0)$ is the probability that the particle was at x_0 at t_0 . Explain intuitively the content of equation (3). On which property of the dynamics (1) does equation (3) rely?

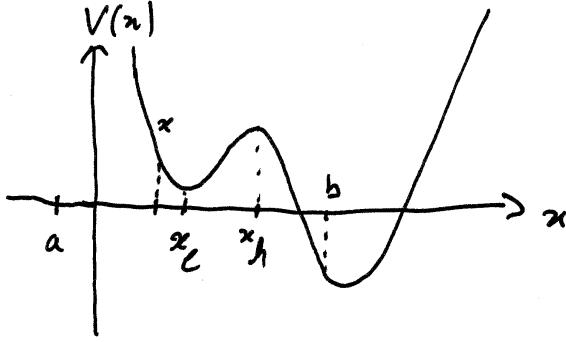


Figure 2: Energy landscape leading to the existence of a metastable state around x_ℓ , separated from the main energy well by an energy barrier. We want to compute the mean first-passage time from x to b .

1.2) For three random variables a, b, c , one has $P(a, c) = \int db P(a, b, c)$. Apply this formula to $P(x, t; x', t'; x_0, t_0)$ to show that $P(x, t|x_0, t_0)$ is solution of the Chapman-Kolmogorov equation:

$$\forall t' \in]t, t_0[, \quad P(x, t|x_0, t_0) = \int dx' P(x, t|x', t') P(x', t'|x_0, t_0) \quad (4)$$

What is the physical meaning of equation (4)?

1.3) Take the derivative of equation (4) with respect to t' and show that $P(x, t|x_0, t_0)$ is solution of the Backward Fokker-Planck equation:

$$\frac{\partial P(x, t|x_0, t_0)}{\partial t_0} = - \left[D(x_0) \frac{\partial}{\partial x_0} + f(x_0) \right] \frac{\partial}{\partial x_0} P(x, t|x_0, t_0) \quad (5)$$

Hint: Remember that $\lim_{t' \rightarrow t_0} P(x', t'|x_0, t_0) = \delta(x' - x_0)$

1.4) For a stochastic process which does not explicitly depend on time (a.k.a. ‘homogeneous in time’), one has $P(x, t|x_0, t_0) = P(x, t + \tau|x_0, t_0 + \tau)$. Show this to imply that

$$\partial_t P(x, t|x_0, t_0) = -\partial_\tau P(x, 0|x_0, \tau = t_0 - t) \quad (6)$$

Using the Backward Fokker-Planck, applied to $P(x, 0|x_0, t_0 - t)$, show that

$$\frac{\partial P(x, t|x_0, t_0)}{\partial t} = \left[D(x_0) \frac{\partial}{\partial x_0} + f(x_0) \right] \frac{\partial}{\partial x_0} P(x, t|x_0, t_0) \quad (7)$$

2- The Kramers Problem

We study the time it takes for a particle evolving with the Langevin dynamics

$$\dot{x} = -V'(x) + \sqrt{2kT} \eta(t) \quad \text{where} \quad \langle \eta(t) \rangle = 0; \quad \langle \eta(t) \eta(t') \rangle = \delta(t - t') \quad (8)$$

to cross an energy barrier of height ΔE (Fig 2). More precisely, we would like to compute the mean first-passage time to reach b for a particle that was at x at $t = 0$.

2.1) We use absorbing boundary conditions at a and b , i.e. a particle reaching a or b is removed from the system. What does the function

$$G(x, t) = \int_a^b dx' P(x', t|x, 0) \quad (9)$$

measure ?

2.2) $G(x, t + dt)$ and $G(x, t)$ are not necessarily equal. Why? How is their difference connected to $Q(x, t)dt$, the probability that a particle leaves $[a, b]$ for the first time between t and $t + dt$? Show that

$$Q(x, t) = -\partial_t G(x, t) \quad (10)$$

What is the mathematical definition of $\bar{Q}(x)$, the mean time it takes for the particles to exit $[a, b]$? Show that

$$\bar{Q}(x) = \int_0^\infty G(x, t) dt \quad (11)$$

(We admit without proof that $\lim_{t \rightarrow \infty} tG(x, t) = 0$.)

2.3) Using the Backward Fokker-Planck equation, show that $G(x, t)$ is a solution of

$$\partial_t G(x, t) = kT \frac{\partial^2}{\partial x^2} G(x, t) - V'(x) \frac{\partial}{\partial x} G(x, t) \quad (12)$$

Then, show that $\bar{Q}(x)$ is a solution of the ordinary differential equation

$$kT \bar{Q}''(x) - V'(x) \bar{Q}'(x) = -1 \quad (13)$$

2.4) We now take $a = -\infty$, so that particles only exit $[a, b]$ at $x = b$. Show that the mean first-passage time until b is given by:

$$\bar{Q}(x) = \frac{1}{kT} \int_x^b ds e^{\beta V(s)} \int_{-\infty}^s du e^{-\beta V(u)} \quad (14)$$

(To do so, simply check that this expression is a solution of (13) with the proper boundary condition as $x \rightarrow b$.)

2.5) Graduate. We now turn to the low temperature limit. For x and b as in Fig 2, show that the integral over s is dominated by the vicinity of x_h when $T \rightarrow 0$ and that the integral over u is dominated by the vicinity of x_ℓ . Using a Taylor expansion of the potential around these points, prove the validity of the Arrhenius law:

$$\bar{Q}(x) \underset{T \rightarrow 0}{\sim} \frac{2\pi}{\sqrt{|V''(x_h)V''(x_\ell)|}} e^{\beta[V(x_h) - V(x_\ell)]} \quad (15)$$

2.6) Graduate. Does this result depend on x ? on b ? What is the typical time-scale for this system to reach its steady-state?

Graduate: 3- Non-equilibrium dynamics with 2 degrees of freedom

Let us consider the Itō-Langevin dynamics

$$\gamma_1 \dot{x}_1 = f_1(x_1, x_2) + \sqrt{2\gamma_1 T_1} \eta_1; \quad \gamma_2 \dot{x}_2 = f_2(x_1, x_2) + \sqrt{2\gamma_2 T_2} \eta_2; \quad (16)$$

where μ_i and T_i are positive constants, and $\eta_1(t)$ and $\eta_2(t)$ are two independent Gaussian White Noises of statistics $\langle \eta_i(t) \rangle = 0$ and $\langle \eta_i(t) \eta_j(t') \rangle = \delta_{i,j} \delta(t-t')$. The force field $\vec{f} = (f_1, f_2)$ is smooth.

3.1) We consider $P(x_1^0, x_2^0, t)$ the density of probability to observe the stochastic processes $x_1(t)$ and $x_2(t)$, solutions of (16), at positions x_1^0 and x_2^0 at time t . Show that

$$P(x_1^0, x_2^0, t) = \langle \delta(x_1(t) - x_1^0) \delta(x_2(t) - x_2^0) \rangle_{x_1, x_2} \quad (17)$$

where the average is computed over the realisations of the stochastic processes $x_1(t)$ and $x_2(t)$.

3.2) Taking the derivative of (17) with respect to time, and using Itô calculus where appropriate, show that $P(x_1^0, x_2^0, t)$ is solution of the Fokker-Planck equation

$$\partial_t P(x_1^0, x_2^0, t) = \frac{\partial}{\partial x_1^0} \left[\frac{\partial}{\partial x_1^0} \mu_1 T_1 - \mu_1 f_1 \right] P(x_1^0, x_2^0, t) + \frac{\partial}{\partial x_2^0} \left[\frac{\partial}{\partial x_2^0} \mu_2 T_2 - \mu_2 f_2 \right] P(x_1^0, x_2^0, t) \quad (18)$$

where we have introduced the mobilities $\mu_i = \frac{1}{\gamma_i}$. You can neglect all boundary terms when doing integration by parts.

3.3) We drop the superscript x_i^0 from now on. Show that the Fokker-Planck equation (18) can be put under the form of a conservation equation $\partial_t P(x_1, x_2, t) = -\nabla \cdot \vec{J}$ and give the expression of $\vec{J} = (J_1, J_2)$.

3.4) We consider $f_i = -\partial_{x_i} U(x_1, x_2)$, where U is a smooth potential which depends explicitly on x_1 and x_2 . Under which conditions does the current \vec{J} vanish in the steady state? What is the expression of $P(x_1, x_2)$ in such steady states?

3.5) We now consider $\mu_i = 1$, $T_i = T$ and $\vec{f} = -\nabla U + \vec{g}$, where \vec{g} is *not* the gradient of a potential. Show that if $\vec{g} \cdot \nabla U = 0$ and $\nabla \cdot \vec{g} = 0$, then $P = \exp[-U/T]/Z$ is an acceptable steady-state (if U is a confining potential and Z a normalization constant). Does the current vanish in steady-state?