

8.08/8.S308 - Problem Set 2 - IAP 2026

Due before January 15, 23:59

Anything marked as “graduate” count as bonus problems for undergraduate students.

1- Equipartition theorem and Itō calculus

We consider a particle of mass m , position $x(t)$ and momentum $p(t)$ in a quadratic potential $V(x) = \frac{1}{2}\omega x^2$. The Boltzmann constant is $\beta = (kT)^{-1}$ and the particle mobility $\mu = \frac{1}{\gamma}$.

1.1) Write down the underdamped Langevin dynamics of $x(t)$ and $p(t)$. Show that in the large damping limit ($\gamma \rightarrow \infty$) it reduces to

$$\dot{x}(t) = -\frac{\omega}{\gamma}x(t) + \sqrt{\frac{2kT}{\gamma}}\eta(t) \quad (1)$$

where $\eta(t)$ is a zero-mean unit-variance Gaussian white noise. Show that its solution is

$$x(t) = x(0)e^{-\frac{\omega}{\gamma}t} + \sqrt{\frac{2kT}{\gamma}} \int_0^t e^{-\frac{\omega}{\gamma}(t-s)}\eta(s)ds \quad (2)$$

Compute $\langle x(t) \rangle$ and $\langle x(t)^2 \rangle$ and show that, in the steady state,

$$\langle V(x) \rangle = \frac{kT}{2}. \quad (3)$$

1.2) Using Itō formula, construct the time-evolution equation of $x^2(t)$ starting from Eq. (1). What is the first-order differential equation satisfied by $\langle x^2(t) \rangle$? Solve it for an initial distribution $P[x(t=0)] = \delta(x)$ and deduce Eq. (3) in the steady state.

1.3) Let us now consider N Brownian particles of positions x_i , interacting via the potential

$$V(x_1, \dots, x_N) = \frac{1}{2} \sum_{i,j=1}^N x_i \Omega_{ij} x_j,$$

where Ω is a symmetric positive-definite matrix and the particles experience N independent noises $\eta_i(t)$. What is the overdamped Langevin dynamics of each oscillator? Using Itō formula, show that

$$\frac{1}{2} \frac{d}{dt}(\vec{x} \cdot \vec{x}) = -\mu \vec{x} \cdot \Omega \vec{x} + \sqrt{2\mu kT} \vec{x} \cdot \vec{\eta} + \mu N kT \quad (4)$$

Is equipartition satisfied in the steady state?

1.4) We now consider the underdamped dynamics: $m\dot{q} = p$ and $\dot{p} = -\gamma p/m - V'(q) + \sqrt{2\gamma kT}\eta(t)$. Construct the evolution equations of $\langle q^2(t) \rangle$, $\langle V(q(t)) \rangle$, $\langle q(t)p(t) \rangle$ and $\langle p^2(t) \rangle$ and show that, in the steady state,

$$\langle qp \rangle = \langle pV'(q) \rangle = 0 \quad ; \quad \left\langle \frac{p^2}{m} \right\rangle = \langle qV'(q) \rangle = kT \quad (5)$$

2- Geometrical Brownian Motion

We consider the celebrated Black–Scholes model, which describes the evolution of the value $y(t)$ of an investment using the Itō-Langevin equation:

$$\dot{y}(t) = f y(t) + \sqrt{2D} y(t) \eta(t), \quad (6)$$

where f and D are real numbers and $\eta(t)$ is a Gaussian white noise of zero mean and unit variance $\langle \eta(t) \eta(t') \rangle = \delta(t - t')$.

2.1) Determine the equations of evolution of $\langle y(t) \rangle$ and $\langle y(t)^2 \rangle$.

2.2) Compute the mean and the variance of y at time t knowing that $y(t = 0) = y_0 > 0$.

2.3) If f is negative, show that the value of $y(t)$ is going down on average. Depending on the value of D , do you think that $\langle y(t) \rangle$ is a reliable prediction for the value of $y(t)$ at large times?

2.4) We now consider the stochastic process $x(t) = h(y(t))$ where h is a strictly increasing smooth function, defined for $y > 0$. Compute $\frac{d}{dt}x(t)$ in terms, among other things, of $y(t)$ and $\eta(t)$.

2.5) The variance of the noise term in (6) depends on $y(t)$, this is called a multiplicative noise. What is the condition on h under which the statistics of the noise term in the Langevin equation for $x(t)$ does *not* depend on x (i.e. the noise is additive)?

2.6) We now consider the case $y(t) = \exp[x(t)]$. Show that, for this choice, the dynamics of x read:

$$\dot{x} = f - D + \sqrt{2D}\eta(t) \quad (7)$$

2.7) We now consider the case $D = f$. Give without derivation the Fokker-Planck equation describing the evolution of $P_x(x, t)$, the probability density that the random variable $x(t)$ takes value x at time t ?

2.8) We define the Fourier transform of P_x as

$$\hat{P}_x(q, t) = \int_{-\infty}^{\infty} dx P_x(x, t) e^{-iqx} \quad (8)$$

If the initial condition is given by $y(t = 0) = y_0$, what are the values of $P_x(x, 0)$ and $\hat{P}_x(q, 0)$?

2.9) Show that $\partial_t \hat{P}_x(q, t) = -Dq^2 \hat{P}_x(q, t)$.

2.10) Solve this equation and inverse the Fourier transform to get

$$P_x(x, t) = \frac{1}{\sqrt{4\pi D t}} \exp \left[-\frac{(x - \ln(y_0))^2}{4Dt} \right] \quad (9)$$

2.11) We now want to infer $P_y(y, t)$, the probability density that the random variable $y(t)$ solution of (6) (with $D = f$) takes value y at time t , knowing that it was at y_0 at time zero. To do so, we consider first the case of two general random variables x and y such that $x = h(y)$ with h an increasing function. Again, we note $P_x(x)$ and $P_y(y)$ the probability densities associated to the two variables. Explain the physical meanings of

$$F_x(\bar{x}) = \int_{-\infty}^{\bar{x}} dx P_x(x); \quad \text{and} \quad F_y(\bar{y}) = \int_{-\infty}^{\bar{y}} dy P_y(y) \quad (10)$$

2.12) For each \bar{y} , for what value $\bar{x}(\bar{y})$ do we have $F_x(\bar{x}(\bar{y})) = F_y(\bar{y})$? Taking the derivative of this equality with respect to a wisely chosen variable, show that

$$P_y(\bar{y}) = P_x(h(\bar{y}))h'(\bar{y}) \quad (11)$$

2.13) Conclude that the distribution of the solution of (6) (with $D = f$) knowing that $y(t = 0) = y_0$ is

$$P_y(y, t) = \frac{1}{y\sqrt{4\pi Dt}} \exp \left[-\frac{(\ln(y) - \ln(y_0))^2}{4Dt} \right]. \quad (12)$$

3. Graduate: The Dean-Kawasaki Equation

Let us consider N interacting particles

$$\dot{x}_i = - \sum_j V'(x_i - x_j) + \eta_i; \quad \langle \eta_i \rangle = 0; \quad \langle \eta_i(t) \eta_j(t') \rangle = 2kT\delta_{i,j}\delta(t - t') \quad (13)$$

where $V(u)$ is the interaction potential.

3.1) Show that

$$\rho(x, t) = \sum_i \delta(x - x_i(t))$$

is a distribution which measures the *local* (number) density of particles.

3.2) We consider a differentiable function $f(x)$ and define

$$F(t) = \sum_i f(x_i(t)) \quad (14)$$

Using the definition of $\rho(x, t)$, show that

$$\dot{F}(t) = \int dx f(x) \dot{\rho}(x, t)$$

3.3) Using Itô formula on equation (14), show that $\dot{F}(t)$ can be alternatively written as

$$\dot{F}(t) = \int dx f(x) \partial_x [kT \partial_x \rho(x, t) + \int dy V'(x - y) \rho(x) \rho(y) - \sum_i \eta_i \delta(x - x_i(t))] \quad (15)$$

Hint: $g(x_i)$ can always be written as $\int g(x) \delta(x - x_i)$. Show that the density $\rho(x, t)$ evolves as

$$\dot{\rho}(x, t) = \partial_x [kT \partial_x \rho(x, t) + \int dy V'(x - y) \rho(x, t) \rho(y, t) + \xi(x, t)] \quad (16)$$

where $\xi(x, t)$ is a random variable. Give its expression in terms of x , η_i and $x_i(t)$.

3.4) Show that

$$\langle \xi(x, t) \rangle = 0 \quad \text{et} \quad \langle \xi(x, t) \xi(x', t') \rangle = \delta(t - t') \delta(x - x') \rho(x, t) 2kT \quad (17)$$

where $\langle \dots \rangle$ are averages over the noises $\eta_i(t)$ for given density profiles $\rho(x, t)$ and $\rho(x', t')$.

3.5) Show that the dynamics (16) can be written as

$$\dot{\rho}(x, t) = \partial_x \left[\rho(x, t) \partial_x \frac{\delta \mathcal{F}[\rho]}{\delta \rho(x, t)} + \xi(x, t) \right] \quad (18)$$

Give the expression of the functional $\mathcal{F}[\rho]$ and its interpretation.