8.08/8.S308 - Problem Set 2 - TAP 2026

Due before January 15, 23:59

Anything marked as “graduate” count as bonus problems for undergraduate students.

1- Equipartition theorem and Ito calculus

We consider a particle of mass m, position z(¢) and momentum p(¢) in a quadratic potential

V(z) = jwa?. The Boltzmann constant is 5 = (k7)~! and the particle mobility y = 7.

1.1) Write down the underdamped Langevin dynamics of z(t) and p(¢). Show that in the large
damping limit (7 — 00) it reduces to
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where 7(t) is a zero-mean unit-variance Gaussian white noise. Show that its solution is

() = 2(0)e 5" + ,/%f /O Lo (s)ds 2)

Compute (z(t)) and (z(t)?) and show that, in the steady state,

Wiy =1 @

1.2) Using It formula, construct the time-evolution equation of z?(t) starting from Eq. (1).
What is the first-order differential equation satisfied by (z*(¢))? Solve it for an initial distribu-
tion Plz(t = 0)] = d(z) and deduce Eq. (3) in the steady state.

1.3) Let us now consider N Brownian particles of positions z;, interacting via the potential
1 N
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where () is a symmetric positive-definite matrix and the particles experience N independent
noises 7;(t). What is the overdamped Langevin dynamics of each oscillator? Using Ito formula,
show that

and show that, in the steady state,

) = V' (@) =0 5 ()= (@V'(@) = kT (5)



2- Geometrical Brownian Motion

We consider the celebrated Black—Scholes model, which describes the evolution of the value
y(t) of an investment using the Ito-Langevin equation:

y(t) = fyt) + v2Dy(t) n(t) , (6)
where f and D are real numbers and n(t) is a Gaussian white noise of zero mean and unit
variance (n(t)n(t')) = o(t —t').

2.1) Determine the equations of evolution of (y(¢)) and (y(t)?).
2.2) Compute the mean and the variance of y at time ¢ knowing that y(t = 0) = 3o > 0.

2.3) If f is negative, show that the value of y(t) is going down on average. Depending on the
value of D, do you think that (y(¢)) is a reliable prediction for the value of y(¢) at large times?

2.4) We now consider the stochastic process z(t) = h(y(t)) where h is a strictly increasing
smooth function, defined for y > 0. Compute £z(t) in terms, among other things, of y(¢) and

n(t).

2.5) The variance of the noise term in (6) depends on y(t), this is called a multiplicative noise.
What is the condition on A under which the statistics of the noise term in the Langevin equation
for z(t) does not depend on x (i.e. the noise is additive)?

2.6) We now consider the case y(t) = exp[x(t)]. Show that, for this choice, the dynamics of x
read:

&= f—D+V2Dn(t) (7)

2.7) We now consider the case D = f. Give without derivation the Fokker-Planck equation
describing the evolution of P,(x,t), the probability density that the random variable x(t) takes
value x at time t7

2.8) We define the Fourier transform of P, as

A

Pulat) = [ dePua,t)e ®)
If the initial condition is given by y(t = 0) = o, what are the values of P,(z,0) and P,(g,0)?
2.9) Show that 0,P,(q,t) = —D¢?P,(q,1).

2.10) Solve this equation and inverse the Fourier transform to get

1 (z — 1n(yo))2]

Falw,t) = 75 P l‘ 1Dt

(9)

2.11) We now want to infer P,(y,t), the probability density that the random variable y(t)
solution of (6) (with D = f) takes value y at time ¢, knowing that it was at yo at time zero. To
do so, we consider first the case of two general random variables x and y such that z = h(y) with
h an increasing function. Again, we note P,(z) and P,(y) the probability densities associated
to the two variables. Explain the physical meanings of

B = [ apr ad Em =[P (10)



2.12) For each y, for what value Z(y) do we have F,(z(y)) = F,(y)? Taking the derivative of
this equality with respect to a wisely chosen variable, show that

Py(y) = P:(h(y))h' (y) (11)

2.13) Conclude that the distribution of the solution of (6) (with D = f) knowing that y(t =
0) =yo is
2
(In(y) — In(yo))
4Dt

(12)
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3. Graduate: The Dean-Kawasaki Equation

Let us consider N interacting particles

Tp = — Z V(= 5) 4 m3; (mi) =0; (mi(t)n;(t')) = 2kT6; j6(t — 1) (13)

J

where V' (u) is the interaction potential.

3.1) Show that

EHESIICEEI0)
is a distribution which measures the local (m;mber) density of particles.
3.2) We consider a differentiable function f(z) and define
F(t) =>_ fla:(t)) (14)
Using the definition of p(z,t), show that

P(t) = [ duf(@)p(a,t

3.3) Using It6 formula on equation (14), show that F(t) can be alternatively written as
(1) = [ duf(@)ulkToup(,t) + [ dyV' (e = po@)o(y) = S mdle —z:(®)]  (15)
Hint: g(z;) can always be written as [ g(z)d(z — ;). Show that the density p(x,t) evolves as
plat) = 0 KTDp(a, ) + [ dyV'(w = y)ple, Oply, 1) + €z, )] (16)
where {(z,t) is a random variable. Give its expression in terms of x, n; and x;(t).

3.4) Show that
€z 1) =0 et (E(z, )§(", 1)) = 6(t = #)d(w — 2")p(x, £)2KT (17)

where (...) are averages over the noises 7;(t) for given density profiles p(z,t) and p(z',t').

3.5) Show that the dynamics (16) can be written as

P t) = 0u ol 00, 2+ () (18)

Give the expression of the functional F[p] and its interpretation.



