8.08/8.S308 - Problem Set 1 - TAP Year

Due before January 9, 23:59

Problems that are referred to as “graduate” count as bonus problems for undergraduate
students. This first problem set is essentially a reminder/test of the Mathematical prerequisites
for the course.

Problem 1—Probabilities

Consider a random variable X of probability density p. Then p(x)dz is the probability that
the random variable X takes a values in [z, + dz], as dz — 0.The n'® moment of X is denoted
by m, = (X™) = [dxz"p(x). The generating function of the moments of p is Z(h) = (e"X). Tt
satisfies

"z sothat  Z(h) = Y (X")2 (1)

n!

(X = -
dhm |,
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The function W(h) = InZ(h) is the generating function of the cumulants (also called

;%W(h)‘hzo. We

will use the notation k, = (X™)., where ¢ stands for “cumulant” or “connected”. One thus has

W(h) = Epz1 h*(X")c/(n!).

“connected moments”) of p. By definition, the n'® cumulant &, of p is k, =

1.1) Determine the m,’s and k,’s for p(x) = exp(—|z|)/2.

1.2) For an arbitrary p(x), show that k1 = m; and k3 = my — m?. Find similar relations for

k3 in terms of ms, mo and mq, and for k4 in terms of my, ms, mo and my. For this question,
2 4

you may want to us that In(1 +wu) ~u — % + % — %+ O(u*) as u — 0.

1.3) Show that, for an even p(x), the relationship between k4 and the moments simplifies into
k4 = my — 3m3. Conclude that, if p(x) is a Gaussian with vanishing mean, (X*) = 3(X?)2
The fourth cumulant is important in that it shows that cumulants are not the moments of the
centered random variable X — (X).

Problem 2—Fourier transforms and series

Let f, be a function defined on an N-site lattice, n = 1,..., N, with IV assumed to be even.
We denote the lattice spacing by a so that L = Na is the total length of the lattice. We define

fq = Z e f (2)
n=1

2.1) Show that if ¢ = %, with k£ = —% +1,..., %, then f, = %Zq fqe*iq"“. Bonus: Show

that >, eldh=m)a = N, .. If short of time, feel free to use this identity without proving it.

Note that such Fourier transforms are defined up to an arbitrary normalization factor A
through

1. :lg:eiqu' and f, :éZe_iq"“f. (3)

This is reflected in the diversity of conventions that are commonly found in the literature.



2.2) We denote x = na and take the N — oco,a — 0 limits, with L = Na kept fixed. To this

end, we adopt the convenient convention A = % This is the limit of a continuous but finite

interval. Express f, as an integral involving f(x), using the convergence of the Riemann sum
>0 A0n ~Nooo [ dzg(x). How does one obtain f(x) if f, is given? What are the acceptable
values of ¢7

2.3) We now consider N — oo with L/N = a fixed. This is the limit of an infinite lattice.
Show that, in this limit, f, = a [™° da § e~ime (We are back to the convention A = 1.)
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2.4) Let f(7) be a periodic function with period 3, prove that f(7) = X,z fu €77 where
wy, and f, will be given in terms of f.

Problem 3—Gaussian integrals

3.1) We consider a > 0. Compute I(a,0)?, where
Jgub)::/i:dxe—%w*—w (4)

hint: you may want to write I? as a two-dimensional integral that can be computed in polar
coordinates.

3.2) Compute (a,b).

3.3) By taking derivates of I, compute

/ dx IQG—%aa:Q—bx (5)

The rest of this problem counts as a Graduate problem. Let x = (z1,...,x,) and h =
(h1,...,hyx) be n-component vectors. We define

Z(h) = /dxe_%zirij“”ﬁhm, (6)

where I' is, for now, a positive definite n x n matrix. We use the notation %xiFijxj — hix;
for ix - (Pz) — h - x, i.e. we implicitly sum over repeated indices. We also defined P(x) =

ﬁe’%x'(rx) and the angular brackets mean (...) = [dx... P(x).
3.4) Check that (e"*) = Z(h)/Z(0).

3.5) Why can we always restrict our analysis to the case where I' is symmetric? This property
will be assumed in the rest of this problem.

3.6) Prove that

;xaknyx:;@—r1m¢mx—rum—;@1m.w@1my (7)

Show then that ) )
<€h-x> _ e§h~(F* h) ] (8)

This is the generalization of the computation of I(a,b) to N variables, b?/2a has now became
a matrix relation.



3.7) With our choice for P above, P(x) = P(—x), so that (x) = 0. Consider instead the new
~ 1

probability density obtained by including the field term h - x: P(x) oc e”2%lu%ithizi = Qhow,
using symmetry consideration, that (x) = T'"'h.

3.8) Since I' is symmetric, it can be diagonalized into a matrix D such that I' = QDQT, with
QT = Q7. By changing variables from x to y = Q~!x, compute Z(0) to show that

1 27T)N/2
dre ¥ 1> = ( 9
/ Vdet I’ (9)

This is the generalization of the derivation of (a,0) to N variables.

Problem 4—Dirac distribution

The Dirac distribution §(z) can be defined from

| r@s@) = 1) (10)

4.1) Show that 6(azx) = &d(x).

lal

4.2) Compute the Fourier transform of d(z), (k) = [*_ dx ¢™**§(2) and show that

1 oo ,
(x) = o L ~dket (11)

4.3) Consider a probability density p(z) and define the average of an observable f(x,x) with
respect to x as (f(z,x¢)), = [ dof(x,zo)p(z). Show that p(z) = (§(x — x0))x,-

4.4) Consider two independent Gaussian random variables x and y of averages = and y and of
variance o7 and o7. Using the result of question 4.3, compute p(z = ax + fy). Hint: you may
want to use Eq.(11) to turn d(z — 2p) into a more useful expression.

Problem 5—Functional derivatives (Graduate)

Let ¢(t) be a function of ¢ and let S[g] be a functional of ¢ (i.e. a map from the space of
functions ¢(t) into the field of real or complex numbers). The functional derivative of S with
respect to q(tp) is defined as follows. Let q.4,(t) = q(t) + €d(t — to), then

= lim —(S(ge,] — Sla)) - (12)

An equivalent definition is to say that when ¢ — ¢ + d¢ (meaning that the trajectory ¢(t) is
perturbed by d¢(t)), the functional changes from S to S + 0.5, with

58 = / 555)5(;@/)615 (13)

to first order in d¢g. This relation defines the functional derivative 6.5/d¢(t'), which is a functional
of ¢ and a function of ¢'.
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Figure 1: A profile separating high-density and low-density regions

5.1) Compute ggg;; .

5.2) If S can be written in the form S[q] = [5* dtL(q(t), ¢(t)), where L is a function of ¢(¢) and

q(t), prove that

0S oL d OL
Salt)  dq  dtoq’ (14)

were everything is evaluated at t = .

5.3) Consider a free energy Flp|] = [ dx (f(p(a:)) + %[81,0(:1:)]2) Show that the free energy is
extremalized (minimized, really), by a profile that satisfies

K0pep(x) = f'(p(2)) (15)

Show that, for the phase-separated profile shown in Fig. 1, the free-energy density f is equal
in the coexisting phases, i.e. f(py) = f(pe)



