
18.0851 Project:

Machine Learning from Scratch: Stochastic Gradient Descent and

Adam Optimizer

James Gabbard and Daniel Miller

December 2018

1 Introduction

Machine learning is an increasingly important field of study with a wide range of applications. From facial
recognition in social media to aiding doctors in diagnosing patients, it is quickly spreading throughout
daily life. To accomplish these tasks, it is almost always necessary to leverage the learning capabilities of
neural networks. Such learning depends on having a means of training these neural networks and, since
many AI libraries such as Tensorflow provide prepackaged optimizers, the process of actually updating
the parameters that compose a neural network is often overlooked. This project seeks to remedy that by
explaining the theory behind two popular optimizers: Stochastic Gradient Descent (SGD) and Adapative
Moment Estimation (Adam). First, a brief overview of neural networks will be provided. Then, SGD and
Adam will both be discussed, with a detailed subsection on backpropagation. Finally, the performance of
both optimizers will be evaluated in a classification problem and in a reinforcement learning (RL) problem.
All of the code for this project was written in MATLAB with no pre-existing code being used.

2 Neural Network Overview

At its simplest, a neural network is a collection of matrix calculations that takes an input and produces an
output. In a classification problem, a neural network would be provided with labelled data and would be
tasked with producing the correct label for a given input. In reinforcement learning, neural networks are
used to select a correct action given the state of an agent. These applications will be explained in greater
detail in Sections 5 and 6.

The dimensions of a neural network are described in terms of depth and width. Depth refers to the
number of hidden layers, or layers between the input layer and the output layer. The width of a neural
network refers to the number of neurons in each layer. The weights need to be of a dimension that can take
the input of one layer and transform it into the appropriate size of the next layer. The biases are then added
to the product of the weights and the input.

As a demonstration, consider the neural network in Fig. 1. It has a depth of 2, an input and output of
width 2, and hidden layers with a width of 4. If the input x is[

x11 x12
]

=
[
1 2

]
(1)

and the first set of weights and biases are
W11 W12

W21 W22

W31 W32

W41 W42

 =


1 2
3 4
5 6
7 8

 (2)

1

Figure 1: A Neural Network

b1 =


0.5
0.5
0.5
0.5

 (3)

then the neurons of the first hidden layer would receive a value of

N =WxT +B (4)
N1,1

N1,2

N1,3

N1,4

 =


1 2
3 4
5 6
7 8

[12
]

+


0.5
0.5
0.5
0.5

 (5)


N1,1

N1,2

N1,3

N1,4

 =


5.50
11.50
17.50
23.50

 (6)

These values are then sent through an activation function in an element-wise manner in order to add
nonlinearities to the network. Common examples of these functions include sigmoid, tanh, and rectified
linear unit (ReLU). The output of these functions becomes the input to the next layer in the network, and
this process repeats until the output layer is reached.

In order for a network to learn, a method must be devised to shape these weights and biases into producing
an accurate output. The solution that has been devised is to define and minimize an objective function. To
better understand how this works, consider a common classification problem in which a neural network is
being used to differentiate pictures containing a cat from a picture containing a dog. When the data set of
images is produced, each image will receive a label – a 0 for a cat and a 1 for a dog, for example. When the
neural network receives each image as an input, it will then produce a 1 or a 0 as an output depending on
what it believes the image contained. The objective function is then the error between the image labels and
the corresponding output of the neural network.

2

3 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is an optimization technique most commonly applied to neural networks.
The stochastic part of its name refers to randomly selecting training data from a larger data set. This reduces
the computational cost of the learning process. The second portion of the name, gradient descent, refers to
how the algorithm goes about updating the weights and biases that compose the neural network. Gradient
descent optimizes a network by minimizing an objective function, J(θ), where θ represents the weights and
biases that compose the neural network. The algorithm calculates the gradient of the objective function
with respect to the neural network parameters, ∇θJ(θ), and then updates the parameters in the opposite
direction. That is to say, it updates the network with the negative of the gradient, −∇θJ(θ)

3.1 Preliminary Steps

Before using SGD, an applicable set of training data must be created. A batch of labelled images such as
that which was discussed in Section 2 would be acceptable. Next, the neural network’s weights W and biases
b must be initialized. There is no single way of initializing a network and information on different techniques
can be found on the internet.

The process of learning can now begin. First, a minibatch of data is created by randomly selecting data
points from the larger pool of training data. In the aforementioned classification problem, this would be a
random subset of photos. In a reinforcment learning application, this would be a minibatch of one or more
tuples containing the state and reward data that the agent received for its actions (see Section 6). These
steps are described in Algorithm 2 lines 2-6. Next, backpropagation is applied.

3.2 Backpropagation

All gradient based optimization strategies (SGD, ADAM, AdaGrad, and RMSprop, and others) require the
gradient of the network’s objective function with respect to the network’s parameters. This can be computed
efficiently with the backpropagation algorithm. An excellent in-depth description of the algorithm can be
found in the article “How the backpropagation algorithm works” on neuralnetworksanddeeplearning.com;
the following derivation follows closely the notation and structure of this article.

Backpropagation relies on the judicious application of the chain rule to the equations that define a
network. In this derivation a superscript such as bl denotes a quantity associated with layer l, while a
subscript denotes a component of a vector (e.g. bli represents the bias of the ith neuron in layer l). Let the
vector al be the activation of layer l, and zl denote the weighted and biased input to a layer in the network,
so that

zli =
∑
j

wlija
l−1
j + bli (7)

The input and activation are related through the activation function σ, which acts on each component of
the input:

ali = σ(zli) (8)

The backpropagation algorithm relies on the concept of “error” in a particular neuron, denoted δli and defined
by δli = ∂J

∂zli
. If the parameters in a network are near optimal, the gradient of the objective with respect to

any parameter should be near zero; heuristically, ∂J
∂zli

is small for any neuron with near optimal parameters,

and large where optimization is still needed.
The backpropagation algorithm begins with a forward pass. Here, the network is applied to a set of

features x, and the input zl and activation al are recorded at each layer l according to (7). This yields the
networks final activation, aL, which is compared to a set of labels y to calculate the network’s objective
function J(x, θ). For simplicity, consider a quadratic objective function

J(x, θ) =
∥∥aL − y∥∥2 (9)

3

This objective function is convenient because of its simple derivative with respect to any activation:

∂J

∂aLi
= (aLi − yi) (10)

The error in the final layer, δL, is derived from the chain rule:

δLi =
∂J

∂zLi
=

∂J

∂aLi

daLi
dzLi

(11)

Here the total derivative
daLi
dzLi

is used, since any neuron’s activation function is a single-variable function of

its input. Taking derivatives from (8) and (10) gives

δLi = (aLi − yi)σ′(zLi). (12)

This is an element-wise product (Hadamard product) of two vectors, often notated with the “�” symbol:

δL = (aL − y)� σ′(zL) (13)

To compute the error in previous layers, error is “backpropagated” from the last layer to the first. Each step
of this backward pass begins with δl known, and arrives at δl−1 through the chain rule:

δl−1i =
∂J

∂zl−1i

=
∑
j

∂J

∂zlj

∂zlj

∂al−1i

dal−1i

dzl−1i

(14)

Although the expression is a bit unruly, the only new derivative here is
∂zlj

∂al−1
i

. From (7),

∂zli
∂al−1j

= wlij (15)

Substituting this into (14) gives

δl−1i =
[∑

j

δljwji

]
σ′(zl−1i) (16)

Recognizing the bracketed term as multiplication by (W l)T , and the remaining multiplication as an element-
wise product, the above can be written succinctly in matrix notation as

δl−1 = (W l)T δl � σ′(zl−1) (17)

Applying this equation to layer L and continuing backwards to the first layer yields the error for every neuron
in the network. Finally, the gradient of the objective function with respect to any parameter is related to
the error in a particular neuron. Using the chain rule,

∂J

∂bli
=
∂J

∂zli

∂zli
∂bli

(18)

∂J

∂wlij
=
∂J

∂zli

∂zli
∂wlij

(19)

Taking derivatives of (7) gives

∂zli
∂bli

= 1 (20)

∂zli
∂wlij

= al−1j (21)

4

After substituting these into (18) and (19), and then vectorizing the result,

∂J

∂bl
= δl (22)

∂J

∂W l
= δl(al−1)T (23)

The equations of backpropagation are collected in fully-vectorized, algorithmic form below.

Algorithm 1 Backpropagation

1: procedure Backpropagation(X, θ)
2: a0 ← x . Set Input
3: for l← [1, L] do . Forward Pass: Compute weighted inputs and activations
4: zl ←W lal−1 + bl

5: al ← σ(zl)
6: end for
7:

8: δL ← (aL − y)� σ′(zL) . Compute Error in Final Layer
9: for l← [L− 1, 1] do . Backpropagate Error

10: δl ← (W l+1)T δl+1 � σ′(zl)
11: end for
12:

13: for l← [1, L] do . Compute gradients w.r.t. network parameters
14: ∇bl = δl

15: ∇W l = δl(al−1)T

16: end for
17: return ∇θ = (∇W l ,∇bl)
18: end procedure

3.3 Network Update

With backpropagation complete, it is time to update the network weights and biases. For each layer of the
neural network, the parameters update is as follows:

θi ← θi − η∇θ (24)

in which η is the learning rate. This procedure updates network parameters based on a single point from a
labeled dataset; if mini-batching is desired, gradients are computed for every data point in the batch, and
then averaged before an update step is taken:

θi ← θi −
η

B

∑
i

(∇θ)i (25)

Here B is the size of the minibatch. The SGD algorithm is now repeated until a stopping criteria is met. This
may be some predefined convergence criteria or a limit on the number of updates that can be completed.

4 Adam Optimizer

Adam optimizer is technically not an entirely new algorithm, but rather a modification of stochastic gradient
descent. As such, the entire algorithm operates identically to SGD except for a new parameter update step
involving two newly introduced variables, m and v. These are known as the first and second moments of
inertia, and are at the core of what separates Adam from SGD. As will be familiar to anyone who has taken

5

Algorithm 2 Stochastic Gradient Descent (SGD)

1: procedure SGD Training(X)
2: initialize θ = (W, b) to small random numbers . W are NN weights, b are NN biases
3: randomize order of training examples in X . Not applicable in RL
4: while not converged do
5: Create minibatch of length B from X . Depends on application
6: a1 = minibatchj . Input to NN from Batch
7: ∇θ =Backpropagation(X, θ)
8: for i← [2, L] do . Update moments for both W and b
9: θi ← θi − η

B

∑
i(∇θ)i . Update Network Parameters

10: end for
11: end while
12: end procedure

a class in probability and statistics, the first moment of inertia of a distribution refers to its mean, while the
second is the uncentered variance. More specifically, mi is the moving average of the mean of the gradient
and vi is the moving average of the variance. How these improve the performance of the optimizer will soon
be clear.

4.1 Network Update

Psuedo-code for the Adam optimizer is given in Algorithm 3. Before updating the network parameters, the
moments must be updated and corrected for bias. Recall that the first moment represents a moving average
of the gradient, while the second moment is the moving average of the uncentered variance of the gradient.
Using parameters β1 and β2, these averages are updated. In this report, values of β1 = 0.9 and β2 = 0.999
were used.

mi ← β1mi + (1− β1)∇θ (26)

vi ← β2vi + (1− β2)∇2
θ (27)

By using these moving averages, Adam builds momentum as it conducts gradient descent. If, after
calculating many similar gradients, it comes across a single spurious gradient, the optimizer will mostly
disregard it. This smooths the learning process greatly.

However, before using them to update parameters, these moments must be corrected for bias. When
learning first begins, Adam initializes mi and vi to zero. As a result, the first few updates are all biased
towards this value. Therefore, to avoid biasing the update step, it is necessary to conduct updates using the
true moments, E[∇θ] and E[∇2

θ]. In order to derive the bias correction equations, first consider the average
update equation for vi, Eq. 27, at some future time step t. At such a point, the value of vt can be rewritten
as a geometric series of discounted gradients.

vt = (1− β2)

t∑
i=1

βt−i2 · ∇2
θ (28)

To find our desired expected value, we then take the expectation of both sides of the equation.

E[vt] = E[(1− β2)

t∑
i=1

βt−i2 · ∇2
θ] (29)

Since the summation portion of this previous equation is a constant, it can be pulled out of the expectation.
This leads the right hand side with a constant and the desired expected value.

6

E[vt] = E[∇2
θ] · (1− β2)

t∑
i=1

βt−i2 (30)

A simpification is then applied

E[vt] = E[∇2
θ] · (1− βt2) (31)

and the terms are rearranged, thus providing the desired bias correction update equation.

E[∇2
θ] =

E[vt]

(1− βt2)
(32)

The derivation for the first moment of inertia is similar. The final form of the unbiased estimators and
parameter update equations are shown below.

m̂i =
mi

1− βt1
(33)

v̂i =
vi

1− βt2
(34)

θi ← θi −
α√
v̂i + ε

m̂i (35)

Algorithm 3 Adam

1: procedure Adam(X)
2: initialize θ = (W, b) to small random numbers . W are NN weights, b are NN biases
3: randomize order of training examples in X . Not applicable in RL
4: initialize m← 0, v ← 0 . 1st and 2nd moments of inertia
5: while not converged do
6: Create minibatch of length B from X . Depends on application
7: a1 = minibatchj . Input to NN from Batch
8: ∇θ =Backpropagation(X, θ)
9: for i← [2, L] do . Update moments for both W and b

10: mi ← β1mi + (1− β1)∇θ . Update biased first moment
11: vi ← β2vi + (1− β2)∇2

θ . Update biased second moment
12: m̂i = mi

1−βt
1

. Bias-corrected first moment

13: v̂i = vi
1−βt

2
. Bias-corrected second moment

14: θi ← θi − α√
v̂i+ε

m̂i . Update Network Parameters

15: end for
16: end while
17: end procedure

5 Classification Results

To test the performance of the SGD and ADAM algorithms, both were implemented in MATLAB. Theses
algorithms were tested on classification datasets inspired by the Google TensorFlow Playground application
(playground.tensorflow.org), shown in Figure 2. Each datapoint provides the coordinates of a point in 2-
dimensional space, as well as a number representing its color (1 for orange, 0 for blue). Clusters of blue or
orange points are clustered to form recognizable shapes such as rings, circles, squares, and spirals. Given
the coordinates of an arbitrary point, a neural network is tasked with predicting its color.

7

Figure 2: Imitations of Google TensorFlow Playground Datasets: circles, square regions, and spirals

To test the efficacy of SGD, the algorithm was used to train a simple, fully-connected neural network on
these three datasets. The network consisted of two inputs (x and y coordinates), two hidden layers of eight
neurons each, both using a ReLU activation function, and a single output neuron using a sigmoid activation
function. This produces a number between 0 and 1 to represent the color of any point in the plane. During
the training, each parameter update was based on a batch of 50 datapoints.

(a) (b)

Figure 3: (a) Training the circle and regions datasets with SGD. (b) Training the spiral dataset with SGD
using different learning rates

As seen in Figure 3a, SGD is able to successfully train the network on the simplest two datasets, circles
and square regions. These tests used a learning rate of α = 3, and arrived at satisfactory solutions within
150 iterations. For the more complex spiral dataset, learning rate has a significant impact on the results.
Figure 3 shows the performance of SGD on the spiral dataset at three different learning rates. For α = 0.1,
the network learns slowly, and is unable to converge to a steady loss within 10, 000 updates. At higher
learning rates, the algorithm does converge; α = 0.7 reaches a stable average loss of 0.05 per within 5, 000
iterations. However, as shown in Figure 4c, the global minimum loss for a network of this size is several
orders of magnitude lower. Even at this stage, the learning rate is too high for the algorithm to settle at this
minimum, and instead it skips around near this point. If the learning rate continues to increase to α = 2.0,
the network reaches it’s steady-state faster, but ultimately strays farther from the minimum.

8

(a) Circles (b) Regions (c) Spirals

Figure 4: Comparing SGD and ADAM optimizers on all three PlayGround datasets

With the ADAM optimizer, the network trains faster on all three datasets. Figure 4 shows typical loss
vs. epoch plots for both optimizers, demonstrating that ADAM reaches a satisfactory solution faster and
ultimately achieves a lower loss than SGD. For these plots, the base learning rate of each optimizer has
been chosen by trial and error to achieve a balance of speed and ultimate accuracy during the optimization.
While gains are marginal for the simple dataset, ADAM is able to consistently train the spirals dataset to
a high degree of accuracy within several thousand epochs, while SGD takes many more epochs to achieve
sub-optimal accuracy.

6 Reinforcement Learning

Consider the following scenario. A machine learning researcher has a robot and a maze in which it needs to
navigate. The maze is full of obstacles and the task is to get to the middle of the maze without colliding
with any obstacles. At any given moment the robot knows its state, but nothing of its surroundings. It also
has the ability to take a single step in any direction per discrete time step. How does the researcher train
the robot to successfully complete the course?

One solution is to provide feedback to the robot based upon its actions. Every time the robot takes a
step closer to the goal state, it receives a positive reward of +1. Every time it moves away from the goal, it
receives a negative reward of -1. Finally, if the robot collides with an obstacle, it receives a larger negative
reward of -5 and is placed back to the point in the maze in which it started. Over time, the robot begins to
associate certain actions in certain states with positive or negative rewards. If provided with a sufficiently
large number of attempts, the robot will learn to navigate to the center of the maze. This strategy of
providing a reward for an action in order to train a robot, otherwise known as an agent, is the core of a
subcategory of machine learning called Reinforcement Learning (RL).

With this basic concept introduced, the question of how to make an agent understand and learn from its
actions quickly arises. Since this report is focused on SGD and Adam, this report shall limit its discussion
of RL to a popular, well-proven RL algorithm called Deep Q-Learning (DQN).

Consider an agent acting in a discrete time system. At time point t ∈ {0, 1, ...T}, the agent is in state
st. The agents selects an action at from a list of available actions, which takes the agent to state st+1 at
time t + 1. Upon entering this state, the agent receives a reward Rt+1, and the state-action-reward cycle
repeats. The sequence ends when the agent enters a “terminal state”, usually corresponding to either success
or failure. Typically the agent chooses its action based on some deterministic rule at each state. This is a
“policy”, and the goal of reinforcement learning is to find a policy that maximizes a system’s total reward.

The notion of total reward can be ill-defined for systems with no terminal states, so it is helpful to
introduce the idea of a discounted future reward. The quantity we seek to maximize is the expected value

9

of future discounted rewards,
Gt = Rt + γRt+1 + γ2Rt+2 + ..., (36)

where γ is a discount factor (0 < γ < 1). Higher values of γ lead to a farsighted strategy, while lower values
of γ prioritize immediate reward over long-term gain. Given a particular policy, define the “quality” of an
action to be the expected value of future rewards after taking that action from a given state:

Q(a, s) = E(Gt | st = s, at = a) (37)

A this point it is helpful to introduce, without proof, two results from the theory of Markov Decision
Processes. First, an optimal policy is one which chooses the highest quality action in any given state.
Second, when following an optimal policy, the quality function obeys the Bellman equation:

Q(at, st) = Rt+1 + γmax
a

Q(at+1, st+1) (38)

Intuitively, the Bellman equation states that the expected future reward of an action comes in two parts: the
immediate reward, and expected future reward from the next state’s best possible action. Along with the re-
sult about optimal policies, this result is enough to construct a successful neural-network based reinforcement
learning algorithm.

6.1 Deep-Q Networks

The central idea of DQN is to approximate the quality function Q with a neural network. This network
takes the current state as an input, and calculates the quality of each available action, assuming that the
agent follows an optimal policy. In turn, the agent chooses the action with the highest possible quality at
each time step. If the network accurately approximates Q, then its output will obey the Bellman equation.
This can be framed as a cost function, which is minimized only when the Bellman equation is satisfied:

C =
[
Rt+1 + γmax

a
Q(at+1, st+1)−Q(at, st)

]2
(39)

This cost function is used in conjunction with backpropagation and gradient-based optimization to train the
neural network. Theoretically, as this cost function decreases, the Q network comes closer to approximating
a solution of the Bellman equation, and the agent’s choices approach an optimal policy. This basic DQN
algorithm is given below.

1: procedure Naive DQN(X)
2: Initialize Neural Network to represent action-value function Qθ
3: for ep = [1,N] do . N is max number of episodes
4: st ← s0 . Random Initial State
5: while st is not a terminal state do
6: Select at = argmaxaQ(st, a)
7: Receive reward Rt+1 and new state st+1

8: Train network using Bellman cost function
9: st ← st+1

10: end while
11: end for
12: end procedure

6.2 Improving on DQN

In practice, a naive implementation of deep-Q learning is highly unstable. However, with some minor
alterations, the algorithm is capable of solving complex tasks.

10

• ε-greedy policy. Exploration vs. exploitation is a classic problem in RL: exploring new solutions
to problems can lead to important gains, but this strategy usually does not maximize rewards in the
short term. A simple way to encourage exploration is to force an agent to act randomly at some
timesteps. An ε-greedy policy is one in which, at each timestep, the agent chooses a random action
with probability ε, and otherwise chooses the highest quality action. This parameter ε typically starts
close to 1, and decreases as training progresses.

• Experience Replay. When a network trains only on the results of its most recent action, it can
“forget” solutions that were learned in the past. One way to preserve this information is to store the
agent’s past actions in memory, and sample randomly from this memory when training the network.
This strategy is called Experience Replay, and helps stabilize the performance of Deep-Q networks.

• Target Network. In traditional learning, changing the parameters of a network moves its output
close to a desired output label). In DQN, quality is the network output, and the right hand side of the
Bellman equation (38) acts as a label. However, changing the parameters now changes both the output
and the label, which causes the training process to be extremely unstable. To remedy this, these labels
can be generated by a static “target network” that is updated to match the trained network every few
thousand time steps. This approach requires double the memory for network parameters, but greatly
increases the stability of the training process.

These improvements to DQN are given below as a revised version of the original algorithm.

1: procedure DQN(X)
2: Initialize Neural Network to represent action-value function Qθ
3: Initialize Experience Replay memory, M
4: Initialize target action-value function Q̂θ−
5: for ep = [1,N] do . N is max number of episodes
6: st ← s0 . Random Initial State
7: while st is not a terminal state do
8: With probability ε select a random action at
9: Otherwise, select at = argmaxaQ(st, a)

10: Receive reward Rt+1 and new state st+1

11: Store transition {st, at, st+1, Rt+1} in M . Experience Replay
12: Train Qθ using random experiences from M
13: st ← st+1

14: end while
15: Q̂θ− ← Qθ . Update Target Network
16: end for
17: end procedure

7 RL Results

7.1 Cart Pole

A classic test problem in reinforcement learning is “Cart Pole”, illustrated in Figure 5. In this environment,
an agent is presented with a dynamic system with two degrees of freedom: a cart that slides back and forth
on a track, and a pole that pivots about the center of the cart. Both the cart and the pole have mass, and
the dynamic system is integrated numerically using a symplectic Euler scheme. Typical parameters for Cart
Pole are given in Table 1.

A single state of the system consists of the position and velocity of both the cart and the pole: s =
{x, ẋ, θ, θ̇}. At each timestep in the numerical integration, the agent can choose from two actions: apply
a force of 10N or -10N to the cart. The system reaches a terminal state when either x or θ exceeds some

11

xmax = 2.4 mcart = 1.0kg |F | = 10N

θmax = 12◦ mpole = 0.1kg L = 0.5m

Table 1: Parameters used in the CartPole environment

predefined criteria (xmax, θmax). The agent receives a reward of 1 at every timestep that the cart is upright,
and 0 for terminal states. To maximize reward, an agent must find a way to keep the pole balanced upright,
without leaving the screen.

Figure 5: CartPole: a classic reinforcement learning problem

To solve this problem, a Deep-Q network was setup with two hidden layers of 16 neurons each. The
hyper-parameters used for the learning are given in Table 2. The Cart-Pole environment was implemented
with the same parameters given in Table 1. Figure 6 shows a typical graph of performance vs. time for
the Deep-Q network, illustrating that the networks performance does in fact improve as training progresses.
Unfortunately the algorithm is still somewhat unstable, despite all of the alterations proposed in the previous
section. However, over the course of training the network moves from an average run of 15 time steps to
over 100 time steps, and several times reaches a peak performance of over 300 time steps.

If the network is stopped at peak performance, the resulting policy is able to reproduce this peak perfor-
mance consistently, showing that the instability is due to training updates and not to an a relatively stable
network learning an unreliable policy. On the upside, if a trigger is set up to stop the network at a certain
performance network, the relatively small network is able to generate policies that can consistently balance
a pole for upwards of 2000 time steps.

α = 0.003 ε = 0.05 γ = 0.95

Memory: 2000 transitions Batchsize: 128 transitions Target net updates: 3000 steps

Table 2: Hyper-parameters used in the Deep Q network

12

Figure 6: Performance vs. time for a typical Cart Pole training session

8 Conclusion

The purpose of this report was to remove the aura of mystery from neural network learning and to provide a
greater understanding of this process that many consider to be a black box. To this end, Backpropagation,
Stochastic Gradient Descent, and Adam optimizer were discussed in detail, and the two optimizers were
compared on a sample problem. The basic frameworks of Reinforcement Learning and Deep-Q Learning
were also presented, to illustrate a fascinating application of gradient-based optimization. Machine learning
is a fast-moving field, and it is likely that these algorithms will be (or already have been) altered or replaced
in cutting-edge research. However, the basic concepts presented here should provide a thorough background
for exploring these new technologies.

9 References

[1] Ruder, Sebastian. “An Overview of Gradient Descent Optimization Algorithms.” Sebastian Ruder,
Sebastian Ruder, 19 Jan. 2016, ruder.io/optimizing-gradient-descent.

[2] Kingma, Diederik P, and Jimmy Ba. “ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION.”
CoRR, abs/1412.6980, 2014, arxiv.org/abs/1412.6980.

[3] Nielson, Michael A. Neural Networks and Deep Learning. Determination Press, 2015,
neuralnetworksanddeeplearning.com/chap2.html.

[4] Mnih, Volodymyr, et al. “Human-Level Control through Deep Reinforcement Learning.” Nature, vol.
518, 26 Feb. 2015, pp. 529–533., doi:https://doi.org/10.1038/nature14236.

[5] Smilkov, Daniel, and Shan Carter. “Tensorflow - Neural Network Playground.” A Neural Network
Playground, playground.tensorflow.org/.

13

