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This article presents an overview of the gamma and beta functions and their relation to a variety of
integrals. We will touch on several other techniques along the way, as well as allude to some related
advanced topics. However, we will not worry about the finer details of convergence, and all given integrals
do convergence for the given bounds. Most of these kinds of integrals that would occur on an integration
bee are solvable via other traditional methods too, but our methods will often provide quicker and more
methodical solutions.

The prerequisite is standard single-variable integration, primarily of polynomial, exponential, and trigonometric
functions, along with integration by substitution (reverse chain rule, often called u-substitution), integration
by parts (reverse product rule), and improper integrals. There are a couple derivations involving partial
derivatives or double integrals, but otherwise multivariable calculus is not essential.

1 Gamma Function

Our study of the gamma function begins with the interesting property

∫ ∞
0

xne−x dx = n! for nonnegative

integers n.

1.1 Two derivations

The difficulty here is of course that xne−x does not have a nice antiderivative. We know how to integrate
polynomials xn, and we know how to integrate basic exponentials e−x, but their product is annoying. Let’s
consider some small cases first.

If n = 0, then we have the familiar integral∫ ∞
0

e−x dx = lim
a→∞

∫ a

0

e−x dx = lim
a→∞

−e−x
∣∣∣a
0

= lim
a→∞

(1− e−a) = 1.

If n = 1, then we might recognize it as a typical integration by parts example:∫ ∞
0

xe−x dx = (−xe−x)
∣∣∣∞
0
−
∫ ∞
0

−e−x dx = 1.

Note that the xe−x vanishes at the upper limit due to the e−x and at the lower limit due to the x. Continuing,
if n = 2, then there isn’t a single-step solution, but we can try integrating by parts again:∫ ∞

0

x2e−x dx = (−x2e−x)
∣∣∣∞
0
−
∫ ∞
0

−2xe−x dx = 0 + 2

∫ ∞
0

xe−x dx = 2.

Aha! We were able to reduce the integral to a smaller case we already knew how to do. We can try to apply
this to the more general problem too, where we apply integration by parts through differentiating the power
function and integrating the exponential function:∫ ∞

0

xne−x dx = (−xne−x)
∣∣∣∞
0
−
∫ ∞
0

−nxn−1e−x dx = n

∫ ∞
0

xn−1e−x.
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1.1 Two derivations 1 GAMMA FUNCTION

In essence, each time we apply integration by parts, we reduce the power by 1. If we denote the integral as

I(n) =

∫ ∞
0

xne−x dx, then we have just obtained the recursion relation

I(n) = n · I(n− 1).

If we apply this again to I(n− 1), then we would get

I(n) = n · I(n− 1) = n(n− 1) · I(n− 2),

and so on, decreasing the argument of I until it gets down to something we know. In this case, we showed

earlier the base case I(0) =

∫ ∞
0

x0e−x dx = 1. This recursion relation along with the base case match

exactly those of the factorial function! Hence we may conclude I(n) = n!, so∫ ∞
0

xne−x dx = n!

for nonnegative integers n. This approach of reducing integrals via recursion is known as using a reduction
formula.

Exercise 1.1. Determine a general form for the indefinite integral

∫
xne−x dx for nonnegative integers n.

Exercise 1.2. Determine reduction formulas for

∫
sinn x dx and

∫
cosn x dx.

We now provide a second approach via differentiation with respect to an external parameter. To
motivate this, consider the following simple integral:∫ ∞

0

e−2x dx = −1

2
e−2x

∣∣∣∞
0

=
1

2
.

Of course, nothing is special about 2, and we could easily replace it with another number, say π:∫ ∞
0

e−πx dx = − 1

π
e−πx

∣∣∣∞
0

=
1

π
.

In these cases, it was simple enough to write down the antiderivative by guessing or inspection, but a
substitution would also have worked. We can generalize this more to any real number a:∫ ∞

0

e−ax dx = −1

a
e−ax

∣∣∣∞
0

=
1

a
.

We’ll restrict ourselves to a > 0 to ensure that the integral converges. (If a were negative then e−ax would
behave like ex, which blows up at ∞.) At this point, we have introduced a as an arbitrary constant, but we
can also treat it as a function parameter that we can vary, similar to the n in I(n). In this case, we won’t
define a new function in terms of a yet, but rather we’ll take a derivative with respect to a. In particular,
taking the derivative of both sides of the above equation gives

d

da

∫ ∞
0

e−ax dx =
d

da

1

a
.

The right side is easy to evaluate as it’s simply − 1

a2
. For the left side, it would be nice if we could just apply

the derivative to the e−ax. Formally, in order to do that, we have to swap the order of differentiation and
integration; that is, we want to move the derivative inside the integral. Swapping a derivative and integral

2



1.2 Properties 1 GAMMA FUNCTION

is not always legal, and this is generally governed by Leibniz’s integral rule. In our case, everything is
continuous and well-behaved, so doing so gives

d

da

∫ ∞
0

e−ax dx =

∫ ∞
0

∂

∂a
e−ax dx =

∫ ∞
0

−xe−ax dx.

Here,
∂

∂a
is a partial derivative, which should be treated as an ordinary derivative with respect to a, but

keeping in mind that x is a constant from the perspective of the derivative. Hence our equation becomes∫ ∞
0

xe−ax dx =
1

a2

after removing the minus sign from both sides. We now repeat this procedure again:

d

dx

∫ ∞
0

xe−ax dx =
d

dx

1

a2∫ ∞
0

−x2e−ax dx = − 2

a3
.

And again:

d

dx

∫ ∞
0

x2e−ax dx =
d

dx

2

a3∫ ∞
0

−x3e−ax dx = −3 · 2
a4

.

And again:

d

dx

∫ ∞
0

x3e−ax dx =
d

dx

3 · 2
a4∫ ∞

0

−x4e−ax dx = −4 · 3 · 2
a5

.

At this point a pattern emerges, and it is not difficult to show inductively that the general result is∫ ∞
0

xne−ax dx =
n!

an+1

for nonnegative integers n. Taking a = 1 gives the desired result

∫ ∞
0

xne−x dx = n!.

Notice how we actually solved a more general integral in the process. We started with our original
integrand just as a function of x, introduced an external parameter a, and then differentiated with respect to
a. In doing so, we derive a whole class of integrals at once, and we can substitute any appropriate value for
a to get a specific integral. These parameters are generally introduced in place of constants or coefficients.

Exercise 1.3. Compute

∫ 1

0

x2019(lnx)2020 dx and

∫ 1

0

x42
(

log
1

x

)1337

dx.

Exercise 1.4. Compute

∫ ∞
−∞

1

(x2 + 4)2
dx,

∫ ∞
−∞

x2

(3x2 + 1)2
dx, and

∫ ∞
−∞

x4

(x2 + 1)5
dx..

1.2 Properties

We are now ready to formally introduce the gamma function.
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1.2 Properties 1 GAMMA FUNCTION

Definition. The gamma function is Γ(z) =

∫ ∞
0

tz−1e−t dt

Here, we use t as the variable of integration to place greater emphasis that this is a function of z, the
variable in the power. As suggested by the z, we can also allow for complex numbers. The integral will
converge for all Re(z) > 0. The decaying exponential e−t will suppress any power of t at ∞. On the other

hand, if Re(z) ≤ 0, then the magnitude of tz−1 behaves as
1

t
, whose integral diverges at 0. This function

can actually be extended to include almost all complex numbers through analytic continuation. For
Re(z) ≤ 0, the integral representation no longer holds as it diverges, but complex analysis provides a way to
uniquely extend it to the entire complex plane, except at the nonpositive integers. For our purposes, we’ll
only use Re(z) > 0, where the integral is meaningful.

The most important thing to notice is that the power is tz−1 rather than tz. There are a variety of
historical reasons for this. However, arguably the mathematical reason for this is that at a deeper level, the

integral should actually be viewed as

∫ ∞
0

tze−t
dt

t
, where

dt

t
is the Haar measure on the multiplicative

group of positive reals.

From our above derivations, we have

Γ(n) = (n− 1)!

for positive integers n. From integration by parts, we also have the recursion formula

Γ(z + 1) = z · Γ(z) .

Note that because of the off-by-one shift, the gamma recursion is not the same as the factorial recursion.
The statement 5! = 5 · 4! would translate into Γ(6) = 5 · Γ(5), not Γ(6) = 6 · Γ(5) which is a false statement.
This recursion extends beyond just the positive integers, but to all positive real numbers. In this sense, the
gamma function extends the factorial function while maintaining its defining property. This is not the only
possible extension, but it is in some sense the best and arguably most useful. We can make this extension
unique by adding an additional property. Specifically, the Bohr-Mollerup theorem says that f(x) = Γ(x)
is the only function f : R+ → R satisfying f(1) = 1, f(x + 1) = xf(x) for all x > 0, and is logarithmically
convex.

The integral provides another reason why 0! should equal 1, namely that

0! = Γ(1) =

∫ ∞
0

e−x dx = 1.

We could also have applied the recursion Γ(2) = 1 ·Γ(1), which gives Γ(1) = 1. In factorial terms, this would
be 1! = 1 · 0!. If we were to try to apply the recursion further, we would get Γ(1) = 0 · Γ(0), and no finite
real (or complex) value of Γ(0) could satisfy this equation. Hence Γ(0) must be infinite, and this cascades
downward to all negative integers.

Note that it suffices to determine the values of Γ(z) on any unit interval, say 0 < z ≤ 1, and the values
at other real numbers can be computed via recursion. So far, we only know Γ(1) on this range, which gives
us all the integers. Next we will determine Γ(1/2). It is possible to determine directly from the Gaussian

integral

∫ ∞
−∞

e−x
2

dx, whose value is often determined with multivariable integration. Instead, we will do the

reverse, first determining Γ(1/2) independently, and then applying it to determine the value of the integral.
To proceed, we will first prove a useful result:

Γ(z)Γ(1− z) =
π

sin(πz)
.

Recall the limit

e−t = lim
n→∞

(
1− t

n

)n
.
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1.2 Properties 1 GAMMA FUNCTION

Substituting this into the gamma integral

Γ(z) =

∫ ∞
0

lim
n→∞

tz−1
(

1− t

n

)n
dt = lim

n→∞

∫ n

0

tz−1
(

1− t

n

)n
dt.

Note that we have incorporated n as the variable limit for both Euler’s constant as well as the improper
integral.1 Next we repeatedly integrate by parts, differentiating the

(
1− t

n

)n
and integrating the tz−1:∫ n

0

tz−1
(

1− t

n

)n
dt =

tz

z

(
1− t

n

)n∣∣∣∣∣
n

0

−
∫ n

0

tz

z

(
−n
n

)(
1− t

n

)n−1
dt =

n

nz

∫ n

0

tz
(

1− t

n

)n−1
dt.

Notice that positive powers of t evaluates to 0 at t = 0 and positive powers of 1 − t
n evaluate to 0 at n, so

the first term will continue to be 0. Integrating by parts n times therefore gives

Γ(z) = lim
n→∞

n

nz
· n− 1

n(z + 1)
· n− 2

n(z + 2)
· · · 1

n(z + n− 1)

∫ n

0

tz+n−1 dt = lim
n→∞

n!

nn
n−1∏
k=0

(z + k)

· n
z+n

z + n
= lim
n→∞

nz

z

n∏
k=1

k

z + k
.

Then applying recursion to Γ(1− z) gives

Γ(z)Γ(1− z) = Γ(z) · (−z)Γ(−z) = −z

(
lim
n→∞

nz

z

n∏
k=1

k

z + k

)(
lim
n→∞

n−z

−z

n∏
k=1

k

−z + k

)
= lim
n→∞

1

z

n∏
k=1

k2

k2 − z2
.

The factors of n cancel, so now the limit only applies to the product to give

lim
n→∞

1

z

n∏
k=1

k2

k2 − z2
=

1

z

∞∏
k=1

k2

k2 − z2
.

The
k2

k2 − z2
factors look similar to the infinite product expansion for sin:

sin(πz) = πz

∞∏
k=1

(
1− z2

k2

)
= πz

∞∏
k=1

k2 − z2

k2
.

This is the reciprocal, so rearranging gives

Γ(z)Γ(1− z) =
π

sin(πz)
.

This is the reflection formula, named as such because of its symmetry about 1
2 .

Applying the reflection formula to z = 1
2 gives

Γ(1/2)Γ(1/2) =
π

sin(π/2)
= π,

so Γ(1/2) =
√
π. Here, we chose the positive square root since the integral

Γ(1/2) =

∫ ∞
0

t−1/2e−t dt

is clearly positive. This is what lets people say in popular mathematics that
(
1
2

)
! has a value, namely given

by (
1

2

)
! = Γ(3/2) =

1

2
Γ(1/2) =

1

2

√
π.

Thus we can compute the gamma function at integers and half-integers. Unfortunately, these are the only
rational numbers on which there is a closed form. For denominators larger than 2, it is common to just leave
expressions in terms of Γ(z). Of course, by recursion and reflection, all such fractions can be reduced to one
in the range 0 < z < 1

2 .

1This step requires significant justification in real analysis, both moving the limit outside the integral and incorporating the
limit with the integral. However we won’t worry about that here.
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1.3 Applications 1 GAMMA FUNCTION

1.3 Applications

Applying the gamma function to an integral involving polynomials with exponentials is fairly straightforward
upon recognizing it as such. The general method is to make a substitution to convert whatever the exponential

is into e−x. For example, to compute

∫ ∞
0

x2019e−2020x dx, we would make the substitution u = 2020x.

Remember with any substitution that we have to change both the limits of integration and the differential

element. In this case x =
u

2020
, so dx =

du

2020
, and the limits are scaled 0→ 2020·0 = 0 and∞→ 2020·∞ =

∞. Hence we can compute∫ ∞
0

x2019e−2020x dx =

∫ ∞
0

( u

2020

)2019
e−u

du

2020
=

1

20202020

∫ ∞
0

u2019e−u du =
2019!

2020
.

Note that all gamma-like integrals require an improper integral with a limit at ∞. For integrals of the

form

∫ ∞
−∞

, we can often exploit symmetry if the integrand is odd or even, in which case it evaluates to 0 or

2

∫ ∞
0

, respectively. If the limits are finite, then the nice values of Γ(z) no longer apply, and one would have

to redetermine the relevant values.

Earlier we alluded to the Gaussian integral

∫ ∞
−∞

e−x
2

dx. We can use the same methods here. The

integrand is even, so it suffices to compute a half of it. Substituting u = x2 would give x = u1/2, so
dx = 1

2u
−1/2 du, giving∫ ∞
−∞

e−x
2

dx = 2

∫ ∞
0

e−x
2

dx = 2

∫ ∞
0

e−u · 1

2
u−1/2 du = 2 · 1

2

∫ ∞
0

u−1/2e−u du = Γ(1/2) =
√
π.

This is particularly useful in statistics and probability theory where the Gaussian or normal distribution
is prevalent. These also often show up in physics, particularly statistical physics and quantum physics
which involve probability distributions of states. Quantities of interest include the mean/expectation and

variance/uncertainty/standard deviation, which involve computing the integrals

∫ ∞
−∞

xe−x
2

dx and

∫ ∞
−∞

x2e−x
2

dx,

albeit with messier constants. These are all easily done using our methods.

So far we have only used real numbers. One nice application of complex numbers is for gamma-like
integrals with an extra sin or cos factor. Recall that

eix = cosx+ i sinx.

This effectively allows us to switch between trigonometric functions and exponentials. For example, to

compute

∫ ∞
0

xe−x cos(x) dx, we could interpret the integral as the real part of

∫ ∞
0

xe−x cos(x) dx+ i

∫ ∞
0

xe−x sin(x) dx =

∫ ∞
0

xe−x(cos(x) + i sin(x)) dx =

∫ ∞
0

xe−xeix dx.

Now we have a typical gamma integral, just with complex numbers too, giving∫ ∞
0

xe−(1−i)x dx =
1!

(1− i)2
=

1

−2i
=

1

2
i.

The real part is 0, so we conclude that

∫ ∞
0

xe−x cos(x) dx = 0. In fact, we can also immediately deduce

that

∫ ∞
0

xe−x sin(x) dx =
1

2
from the imaginary part. Converting between trigonometric functions and

exponentials also works for indefinite integrals.
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2 BETA FUNCTION

Exercise 1.5. Compute

∫ ∞
−∞

xe−x
2

dx,

∫ ∞
0

xe−x
2

dx, and

∫ ∞
−∞

x2e−x
2

dx.

Exercise 1.6 (2020 MIT Integration Bee). Compute

∫ ∞
0

x5e−x
4

dx.

Exercise 1.7 (2019 MIT Integration Bee). Compute

∫ ∞
0

e−
2019
4t2

t2
dt.

Exercise 1.8 (2019 HMNT Integration Bee). Compute

∫
sin log xdx.

Exercise 1.9 (2020 HMMT Integration Bee). Compute

∫
xex sinx dx.

Exercise 1.10 (2020 HMMT Integration Bee). Compute

∫ ∞
0

x

1 + ex
dx.

2 Beta Function

Unfortunately, there isn’t a good lead-in to motivate the beta function, so instead we’ll dive straight in.

Definition. The beta function is B(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt.

Notice now that this is a function in two variables, x and y. Which is which turns out to be not important,
as substituting u = 1− t gives

B(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt =

∫ 0

1

(1− u)x−1uy−1(−du) =

∫ 1

0

uy−1(1− u)x−1 du = B(y, x).

Hence we have that
B(x, y) = B(y, x)

so the beta function is symmetric. The powers are shifted by 1 for the same reasons as before.

2.1 Relation to gamma

As with the gamma function, we first try to get intuition for the beat function on integers. In these cases,
there is a nice combinatorial interpretation. To keep the argument clean, let’s consider∫ 1

0

tx(1− t)y dx

without the shift, and we’ll add the off-by-ones back at the end when writing the result in terms of B.

Suppose we had x distinct red objects, y distinct blue objects, and one gray object, and they are randomly
placed on the unit interval [0, 1]. Then the integral computes the probability that all the red objects come
first, followed by the gray object, followed by the blue objects. This is because it integrates over all possible
positions 0 ≤ t ≤ 1 of the gray object, t is the probability for each red object to occur before t, and 1− t is
the probability for each blue object to occur after t.

0 1t
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2.2 Applications 2 BETA FUNCTION

There is another way we can compute the probability. Suppose, instead of randomly placing the objects
one by one, we first randomly chose the x+ y+ 1 positions that the objects will take, and then we distribute
the objects among these positions. There are (x + y + 1)! ways to arrange the objects into these positions.
A satisfactory arrangement will have the x red objects in the first x spots, the gray object next, followed by
the y blue objects in the remaining y spots. There are x! ways to arrange the red objects in their spots, and

y! ways to arrange the blue objects. Hence the desired probability is
x! y!

(x+ y + 1)!
.

We calculated the same probability in two different ways, so they must equal, giving∫ 1

0

tx(1− t)y dt =
x! y!

(x+ y + 1)!

for nonnegative integers x and y. If we shift x 7→ x− 1 and y 7→ y − 1, then we get

B(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt =
(x− 1)! (y − 1)!

(x+ y − 1)!

for positive integers x and y. We could write the factorials in terms of the gamma function as

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
.

It would be natural to expect that this relation extends beyond just integers to all positive real numbers.
Indeed it does, which we now prove. We start by expanding the numerator

Γ(x)Γ(y) =

∫ ∞
0

ux−1e−u du

∫ ∞
0

vy−1e−v dv =

∫ ∞
0

∫ ∞
0

ux−1vy−1e−u−v dudv.

Next we substitute s = u+ v in as v = s− u to get

Γ(x)Γ(y) =

∫ ∞
0

∫ s

0

ux−1(s− u)y−1e−s duds =

∫ ∞
0

∫ s

0

ux−1
(

1− u

s

)y−1
sy−1e−s duds.

Now we substitute2 t =
u

s
in for u = st with du = sdt and get

Γ(x)Γ(y) =

∫ ∞
0

∫ 1

0

(st)x−1(1−t)y−1sy−1e−ssdtds =

∫ ∞
0

sx+y−1e−s ds

∫ 1

0

tx−1(1−t)y−1 dt = Γ(x+y)B(x, y).

Hence we obtain our desired relation

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
.

2.2 Applications

Useful applications of the beta don’t necessarily come directly from its original form, but its numerous other
forms that can be obtained from various substitutions. One particularly lucrative form is the trigonometric
one, which allows fast evaluation of integrals of powers and products of trigonometric functions. We start
similarly as before:

Γ(x)Γ(y) =

∫ ∞
0

ux−1e−u du

∫ ∞
0

vy−1e−v dv =

∫ ∞
0

∫ ∞
0

ux−1vy−1e−u−v dudv.

This time, we make the substitutions u = s2 and v = t2, with the hope of getting s2 + t2 in the exponential
and then converting to polar coordinates:

Γ(x)Γ(y) =

∫ ∞
0

∫ ∞
0

(s2)x−1(t2)y−1e−s
2−t22sds2tdt = 4

∫ ∞
0

∫ ∞
0

s2x−1t2y−1e−(s
2+t2) dsdt.

2In this case we are able to do the substitutions step-by-step, but more generally a change of variable to a double integral
requires computing the Jacobian to determine how the differential area element changes.
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A APPENDIX

Now we change into polar coordinates with s = r cos θ, t = r sin θ, and dsdt = r dr dθ. Note that the region
of integration is over the first quadrant in s and t, so we have

Γ(x)Γ(y) = 4

∫ π/2

0

∫ ∞
0

(r cos θ)2x−1(r sin θ)2y−1e−r
2

r dr dθ = 4

∫ π/2

0

(cos θ)2x−1(sin θ)2y−1 dθ

∫ ∞
0

r2x+2y−1e−r
2

dr.

The r integral is evaluated using standard gamma methods to give 1
2Γ(x+ y), so we obtain

∫ π/2

0

(cos θ)2x−1(sin θ)2y−1 dθ =
Γ(x)Γ(y)

2Γ(x+ y)
=

1

2
B(x, y) .

Notice that this integral is from 0 to π/2. Oftentimes trig integrals will range from 0 to π or 2π, and in
those cases one can use the symmetry of sin and cos to reduce it to the desired range.

Exercise 2.1 (2020 HMMT Integration Bee). Compute

∫ 1

0

1√
x− x2

dx.

Exercise 2.2 (2020 HMMT Intergration Bee). Compute

∫ π/2

0

(sinx)3 dx.

Exercise 2.3 (2020 HMMT Integration Bee). Compute

∫ π/2

0

sin7 x cos7 xdx.

Exercise 2.4 (2020 MIT Integration Bee). Compute

∫ 2π

0

cos2020(x) dx.

A Appendix

A.1 Hints

1.2 After integrating by parts you will need to apply sin2 x+cos2 x = 1 to manipulate the remaining integral
into the form you want.

1.3 Consider

∫ 1

0

xa dx.

1.4 Consider

∫ ∞
−∞

1

ax2 + b
dx. (Further hint: The indefinite integral is a messy tan−1, but evaluating it at

the bounds should help.)

1.7 The usual method works. You might be worried about the t being in the denominator, but that just
means you have to remember to adjust the limits too!

1.10 Rewrite the integrand as
xe−x

1 + e−x
and expand the denominator as a geometric series with common

ratio −e−x. (We have to rewrite the denominator in this form in order for the series to converge.
Originally |ex| is unbounded, so the geometric series wouldn’t make sense, but |e−x| ≤ 1 on x ≥ 0.)
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