On Learning the Past Tenses of Verbs

Rumelhart, McClelland 1985

Big Picture

How do we (humans) use and acquire knowledge of language?

Two competing ideas:

- *1. Explicit, inaccessible rule view*: rules of language are stored in explicit form
- 2. Connectionist models: capture "rule-like" behavior with no explicit form of rules

History

- First connectionist implementation by Rumelhart & McClelland in 1986
 - Number of criticisms:
 - Error rate on "unseen" verbs is high -> Do these models reach adult competence?
 - Pinker and Prince (1988) and Lachter and Bever (1988): Extremely poor empirical performance
- Improved results by MacWhinney & Leinbach in 1991, replaced
 Wickelfeature representation with UNIBET
- Resurgence of neural networks today
 - Kirov and Cotterell (2018) show that the Encoder-Decoder network architectures preclude many of P&P's arguments

Three claims from R&M connectionist model

- 1. The model captures the U-learning three-stage pattern of acquisition.
- 2. The model captures most aspects of differences in performance on different types of regular and irregular verbs.
- 3. The model is capable of responding to regular and irregular verbs seen in training *and* low frequency "unseen" verbs.

R&M argument

- The model demonstrates that it can acquire past tense without rules. So, "[t]he child need not figure out what the rules are, nor even that there are rules. The child need not decide whether a verb is regular or irregular."
- 2. If no explicit rules, why should children generate forms that they have never heard of?

"They do so because the past tenses of similar verbs they are learning show such a consistent pattern that the generalization from these similar verbs outweighs the relatively small amount of learning that has occured on the irregular verb question."

Discussion

U-learning three-stage pattern of past tense acquisition

<u>Train:</u> 10 trials, 10 high-frequency verbs

190 more trials, 410 medium-frequency verbs

<u>Test:</u> 86 low-frequency verbs

Connectionist model

Figure adapted from paper

Connectionist model

root phonetic	,	eat /eet/	
wickelphones of /eet/	*ee	e ^e t	et*

wickefeature of *e	*: [(000)	(00)(000)(00)1]
e	e: [(001)	(01) (100) (01) 0]
	e: [(001)	(01) (100) (01) 0]

Connectionist model

Pattern associators allow:

- Exploitation of regularities that exist in mappings (e.g. dependent set of inputs -> patterns)
- 2. Regular patterns and exceptions to those patterns to coexist
- 3. For regularization, followed by the gradual tuning of connections to include exceptions

Discussion

1: Model captures U-learning three stage pattern

FIGURE 4. The percentage of correct features for regular and irregular high-frequency verbs as a function of trials.

FIGURE 6. The ratio of the correct response to the sum of the correct and regularized response. Points on the curve below the .5 line are in the region where the regularized response is greater than the correct response.

Figures from paper

Discussion

not t/d: drink, move, make -> used as no-change verbs t/d: eat, build, pat -> predominantly regularized

TABLE 11

AVERAGE SIMULATED STRENGTHS OF REGULARIZED AND NO-CHANGE RESPONSES

Time Period	Verb Ending	Regularized	No Change
11-15	not 1/d	0 44	0 10
	1/d	0 35	0 27
16-20	not 1/d	0 32	0 12
	s/d	0 25	0 35
21-30	not 1/d	0 52	0 11
	s/d	0.32	0 41

Table from paper

TABLE 12

AVERAGE NUMBER OF WICKELFEATURES INCORRECTLY GENERATED

Trial	Irreg	ular Verbs	Regular Verbs					
Numbu	ſype I	Турез Ш-VШ	Ending in 1/d	Not Ending in 1/d	CVt/d			
11-15	89 8	123.9	74.1	82.8	87.3			
16-20	57.6	93.7	45.3	51.2	60.5			
21-30	21-30 45.5 78.2		32.9	37.4	47.9			
31-50	34.4	61.3	22 9	26.0	37 3			
51-100	18.8	39.0	11.4	12.9	21.5			
101-200	11.8	21.5	6.4	7.4	12.7			
	no change	e vowel change			t for a second			

Table from paper

TABLE 13

TABLE 14

PERCENTAGE OF REGULARIZATION

BY PRESCHOOLERS

(Data from Bybee & Slobin, 1982)

Example

blew

580 g

bit

broke

fdt

caught

STRENGTH OF REGULARIZATION RESPONSES RELATIVE TO CORRECT RESPONSES

	Average Trials		
<u> </u>			
latio Type Ratio Type Rat	io		
.76 VIII 61 VIII 71	1		
.74 VII .61 VII .69	9		
.60 IV .48 V .50	5		
.59 V .46 IV .50	5		
.57 III .44 III 5	3		
.52 VI .40 VI .52	2		
	21-30 11-30 atio Type Ratio Type Rat 76 VIII .61 VIII .71 74 VII .61 VIII .71 60 IV .48 V .56 59 V .46 IV .51 57 III .44 III .51 52 VI .40 VI .51		

Verb Type

VIII

VI

V

VII

ш

IV

Verb Types II, V, VI, and VII

Examples: spend/spent; bite/bit; sing/sang; come/came

Verb Types III, IV, and VIII

sleep/slept; catch/caught; see/saw

Graphs from paper

Discussion

3: Model responds to training and testing sets

- The testing sample contains 86 "unseen" low frequency verbs (14 irregular and 72 regular), all of which were not chosen at random.
 - Six verbs had no response alternatives: jump, pump, soak, warm, trail, and glare
- 93% error rate for irregular verbs; 33% error rate for regular verbs
- 43% error rate overall

TABLE 18

SYSTEM RESPONSES TO UNFAMILIAR LOW-FREQUENCY REGULAR VERBS

English

Rendition

(guard)

(guarded) (kid)

(kidded)

(mated)

(maded)

(squated)

(squat) (squawked)

(carped)

(carpted)

(dripted)

(dripped)

(mapted)

(mapped)

(shaped)

(shipped)

(sipped)

(sepped)

(slept)

(smokted)

(smoke)

(snapted)

(typted)

(browned) (brawned)

(hug)

(mailed)

(membled)

(toureder)

(toured)

/tur/

tour

/turd'r/

/turd/

(stepted)

Response

Rendition

0.29 0.26

0.39

0.24

0.43

0.23

0.27

0 21

0.28

0.21

0.28

0.22

0.24

0.22

0.43

0.27

0.42

0.28

0.40

0.29

0 22

0.40

0.59

0.33

0 39

0.23

0 31

0.25

						Vеть Туре	Presented Word	Phonetic Input	Phonetic Response
		Т	ABLE 17			End in t/d	guard	/gard/	/gard/ /gard°d/
	THE MOL	EL'S RESI	ONSES TO	UNFAMILIA	R		kid	/kid/	/kid/ /kid^d/
-	LOW-F	REQUENC	Y IRREGU	LAR VERBS			mate	/mAt/	/mAt^d/ /mAd^d/
Verb Type	Presented Word	Phonetic Input	Phonetic Response	English Readition	Response Strength		equat	/skw*t/	/skw*t*d/ /skw*t/ /skw*kt/
ľ	bid th rus t	/bid/ /rr*st/	/bid/ /tr*st*d/	(bid) (thrust ed)	0.55 0.57	End in unvoiced	carp	/karp/	/karpt/ /kapt`d/
11	bend	/bend/	/bcad^d/	(bended)	0.28	consonant	drip	/drip/	/dript^d/ /dript/
	lend	/lend/	/lend^d/	(lended)	0.70		map	/map/	/mapt^d/ /mapt/
ш	weep	/krep/ /wep/	/krept/ /wept/	(creeped) (weeped)	0.51 0.34		shape	/sap/	/sApt/ /sipt/
rv	catch	Area (/wept/	(wept)	0.33		sip	/sip/	/sipt/ /scpt/
	Callu	/	/1.00.1/	(carcheo)	0.07		slip	/slip/	/slept/
v	breed grind	/bred/ /grind/	/bred`d/ /grmd/	(brecded) (bairs)	0.48 0.44		smoke	/smOk/	/smOkt*d/ /smOk/
	wind	/wind/	/wind/	(wind)	0.37		snap	/snap/	/snapt*d/
VI	cline	Alin/	Addited /	(aligned)			step	/step/	/stept d/
••	en s		/ MINU/		0.28		type	/tmp/	/tipt'd/
	die	/die/	/died/	(diamed)	0.23		•		
	stick	/stik/	/stikt/	(sticked)	0.22	End in voiced	brown	/brwa/	/brwnd/ /br*nd/
V[[tear	/ter/	/terd/	(tcarcd)	0.90	consonant or vowel	hug mail	/b`g/ /m∧*l/	/b*g/ /mA*ld/ /memb*ld/

Discussion

Compositional Generalization in Semantic Parsing: Pre-training vs. Specialized Architectures

> Furrer, Zee, Scales, Schärli Google Research

"How can we achieve compositional generalization in natural language?

- 1. How to properly measure compositional generalization?
- 2. Approaches tried
- 3. Which work? Which don't? Future directions?

1. How to measure compositional generalization?

One way: The SCAN dataset

jump	\Rightarrow	JUMP
jump left	\Rightarrow	LTURN JUMP
jump around right	\Rightarrow	RTURN JUMP RTURN JUMP RTURN JUMP
turn left twice	\Rightarrow	LTURN LTURN
jump thrice	\Rightarrow	JUMP JUMP
jump opposite left and walk thrice	\Rightarrow	LTURN LTURN JUMP WALK WALK WALK
jump opposite left after walk around left	\Rightarrow	LTURN WALK LTURN WALK LTURN WALK LTURN WALK
		LTURN LTURN JUMP

Figure 1. Examples of SCAN commands (left) and the corresponding action sequences (right).

1. How to measure compositional generalization?

Template	Command	Target
1	"turn left"	LTURN
2	"turn right"	RTURN
3	"Primitive <i>left</i> "	LTURN [Primitive]
4	"Primitive right"	RTURN [Primitive]
5	"turn opposite left"	LTURN LTURN
6	"turn opposite right"	RTURN RTURN
7	"Primitive opposite left"	LTURN LTURN [Primitive]
8	"Primitive opposite right"	RTURN RTURN [Primitive]
9	"turn around left"	LTURN LTURN LTURN
10	"turn around right"	RTURN RTURN RTURN RTURN
11	"Primitive around left"	LTURN [Primitive] LTURN [Primitive] LTURN [Primi-
		tive] LTURN [Primitive]
12	"Primitive around right"	RTURN [Primitive] RTURN [Primitive] RTURN [Primi-
		tive] RTURN [Primitive]

Table 1: All command templates in the SCAN dataset, along with the target output. Here, "Primitive" can stand for "*jump*", "*walk*", "*run*", or "*look*", with the corresponding output [Primitive] being "JUMP", "WALK", "RUN", or "LOOK".

Traditional SCAN splits

Split name	Commands held out
Add jump	any compound containing "jump"
Add turn left	any compound containing "turn left"
Jump around right	any compound containing "jump around right"
Around right	any compound containing "PRIMITIVE around right" e.g. walk around right
Opposite right	any compound containing "PRIMITIVE opposite right"
Right	any compound containing "PRIMITIVE right"
Length	any command whose target sequence length is greater than 22

Distribution-Based Compositionality Assessment (DBCA) and Maximum Compound Divergence (MCD)

- 1. Similar atom distribution: All atoms present in the test set are also present in the train set, and the distribution of atoms in the train set is as *similar* as possible to their distribution in the test set.
- 2. Different compound distribution: The distribution of compounds in the train set is as different as possible from the distribution in the test set.

$$\mathcal{D}_{C}(V \| W) = 1 - C_{0.1}(\mathcal{F}_{C}(V) \| \mathcal{F}_{C}(W))$$

$$\mathcal{D}_{A}(V \| W) = 1 - C_{0.5}(\mathcal{F}_{A}(V) \| \mathcal{F}_{A}(W))$$

MCD: Split with maximum compound divergence \mathcal{D}_C , low atom divergence ($\mathcal{D}_A \leq 0.02$)

Distribution-Based Compositionality Assessment (DBCA) and Maximum Compound Divergence (MCD)

Frequency of atoms (left) and compounds (right) in the train and test sets of the MCD split for CFQ data

The CFQ Dataset

- Given natural language question, generate SPARQL query which, when executed, generates the correct answer

Table 1: Examples of generated questions at varying levels (L) of complexity.

L Question \mapsto Answer

- 10 What did [Commerzbank] acquire? \mapsto Eurohypo; Dresdner Bank
- 15 Did [Dianna Rhodes]'s spouse produce [Soldier Blue]? \mapsto No
- 20 Which costume designer of [E.T.] married [Mannequin]'s cinematographer? → Deborah Lynn Scott
- 30 Who was influenced by and influenced [Steve Vai], [Marx Brothers], [Woody Allen], and [Steve Martin]? → Brendon Small
- 40 Was [Weekend Cowgirls] produced, directed, and written by a film editor that [The Evergreen State College] and [Fairway Pictures] employed? → No
- 50 Were [It's Not About the Shawerma], [The Fifth Wall], [Rick's Canoe], [White Stork Is Coming], and [Blues for the Avatar] executive produced, edited, directed, and written by a screenwriter's parent? → Yes

2. Architectures and Techniques

- SCAN-inspired
 - \rightarrow Syn-att, CGPS, Equivariant, CNN, GECA
- Meta-learning
 - \rightarrow Meta seq2seq, Synth
- Symbolic
 - \rightarrow LANE

 \rightarrow NSEN

- MLM + Pretraining
 → T5 transformer family
- Other

Results

		Add	Jump		~ .			~~~	
Model	Add jump	turn left	around right	Around right	Opposite right	\mathbf{Right}	Length	SCAN MCD	CFQ MCD
LSTM	0.1	90.3	$98.4{\scriptstyle~\pm 0.5}$	$2.5{\scriptstyle~\pm 2.7}$	$47.6{\scriptstyle~\pm 17.7}$	$23.5{\scriptstyle~\pm 8.1}$	13.8	20	52
LSTM+A	0.0 ± 0.0	$82.6{\scriptstyle~\pm 8.2}$	$100.0{\scriptstyle \pm 0.0}$	0.0 ± 0.0	$16.5{\scriptstyle~\pm 6.4}$	$30.0{\scriptstyle~\pm7.8}$	14.1	$6.1{\scriptstyle~\pm1.7}$	$14.9{\scriptstyle~\pm1.1}$
CNN	$69.2{\scriptstyle~\pm 9.2}$	-	-	$56.7{\scriptstyle~\pm10.2}$	8 🗧	-	0.0	-	-
GRU	$12.5{\scriptstyle~\pm 6.6}$	$59.1{\scriptstyle~\pm 16.8}$		120	<u></u>	<u>-</u> 23	18.1	2	123
GRU-dep	$0.7{\scriptstyle~\pm 0.4}$	$90.8{\scriptstyle~\pm3.6}$	\simeq	-	-	-	17.8	-	-
Transformer	1.0 ± 0.6	$99.6{\scriptstyle~\pm 0.8}$	$100.0{\scriptstyle \pm 0.0}$	$53.3{\scriptstyle~\pm10.9}$	$3.0{\scriptstyle~\pm 6.8}$	$92.0{\scriptstyle~\pm15.1}$	0.0	$0.9{\scriptstyle~\pm 0.3}$	$17.8{\scriptstyle~\pm 0.9}$
Univ. Trans.	$0.3{\scriptstyle~\pm 0.3}$	$99.4{\scriptstyle~\pm1.4}$	$100.0{\scriptstyle \pm 0.0}$	47.0 ±10.0	$15.2{\scriptstyle~\pm13.0}$	$83.2{\scriptstyle~\pm18.2}$	0.0	$1.1{\scriptstyle~\pm 0.6}$	$18.9{\scriptstyle~\pm1.4}$
Evol. Trans.	$0.6{\scriptstyle~\pm 0.6}$	$100.0{\scriptstyle \pm 0.0}$	$100.0{\scriptstyle \pm 0.0}$	$30.2{\scriptstyle~\pm 28.4}$	$11.6{\scriptstyle~\pm14.6}$	$\textbf{99.9}{\scriptstyle \pm 0.3}$	$19.8{\scriptstyle~\pm 0.0}$	$1.6{\scriptstyle~\pm 0.6}$	$20.8{\scriptstyle~\pm 0.7}$
Syn-att	$91.0{\scriptstyle~\pm 27.4}$	$99.9{\scriptstyle~\pm 0.2}$	$98.9{\scriptstyle~\pm 2.3}$	$28.9{\scriptstyle~\pm34.8}$	10.5 ± 8.8	$99.1{\scriptstyle~\pm1.8}$	$15.2{\scriptstyle~\pm 0.7}$	20	-
CGPS	$98.8{\scriptstyle~\pm1.4}$	$99.7{\scriptstyle~\pm 0.4}$	$100.0{\scriptstyle \pm 0.0}$	$83.2_{\pm 13.2}$	$89.3{\scriptstyle~\pm 5.5}$	$99.7{\scriptstyle~\pm 0.5}$	$20.3{\scriptstyle~\pm1.1}$	$2.0{\scriptstyle~\pm 0.7}$	$7.1{\scriptstyle~\pm1.8}$
Equivariant*	$99.1{\scriptstyle~\pm 0.0}$	-	-	$92.0{\scriptstyle~\pm 0.2}$	-	-	$15.9{\scriptstyle~\pm 3.2}$	-	-
GECA*	$87.0{\scriptstyle~\pm1.0}$	-	2	$82.0{\scriptstyle~\pm4.0}$	-	<u>_</u>	<u>-</u>	2	
LANE	100.0	-	2	100.0	-	1 <u>1</u> 1	100.0	100.0	-
Meta seq2seq*	99.9	-	2	99.9	-	-	16.6	-	-
Synth*	100.0	-	-	100.0	-	-	100.0	-	-
NSEN	0.0 ± 0.0	$0.0{\scriptstyle~\pm 0.0}$	0.0 ± 0.0	$0.0{\scriptstyle~\pm 0.0}$	0.0 ± 0.0	$0.0{\scriptstyle~\pm 0.0}$	0.0 ± 0.0	1.7 ± 0.9	$2.8{\scriptstyle~\pm 0.3}$
T5-small-NP	1.4 ± 0.8	$45.7{\scriptstyle~\pm 15.4}$	$100.0{\scriptstyle \pm 0.0}$	$5.3{\scriptstyle~\pm4.6}$	$30.5{\scriptstyle~\pm 8.7}$	$44.6{\scriptstyle~\pm 11.2}$	$19.4{\scriptstyle~\pm 0.8}$	$0.9{\scriptstyle~\pm 0.5}$	$21.4{\scriptstyle~\pm1.5}$
T5-small	$84.1{\scriptstyle~\pm1.0}$	$73.0{\scriptstyle~\pm 5.8}$	$100.0{\scriptstyle \pm 0.0}$	31.8 ± 1.0	$58.2{\scriptstyle~\pm10.4}$	$88.7{\scriptstyle~\pm 8.9}$	10.9	$6.9{\scriptstyle~\pm1.1}$	$28.0{\scriptstyle~\pm 0.6}$
T5-base	$99.5{\scriptstyle~\pm 0.0}$	$62.0{\scriptstyle~\pm 0.9}$	$99.3{\scriptstyle~\pm 0.3}$	$33.2{\scriptstyle~\pm 0.5}$	$99.2{\scriptstyle~\pm 0.2}$	$73.5{\scriptstyle~\pm1.8}$	14.4	$15.4{\scriptstyle~\pm1.1}$	$31.2{\scriptstyle~\pm1.3}$
T5-large	98.3	69.2	99.9	46.8	100.0	91.0	5.2	$10.1{\scriptstyle~\pm1.6}$	$34.8{\scriptstyle~\pm1.5}$
T5-3B	99.0	65.1	100.0	27.4	90.0	76.6	3.3	11.6	$40.2{\scriptstyle~\pm 4.2}$
T5-11B	98.3	87.9	100.0	49.2	99.1	91.1	2.0	9.1	$40.9{\scriptstyle~\pm 4.3}$
T5-11B-mod	-		2	(23)	2	123	2	-	$\textbf{42.1}{\scriptstyle \pm 9.1}$

Pretraining success?

- Length split accuracy **decreases** as model size increases! **19.4, 10.9, 14.4, 5.2, 3.3, 2.0**
- SCAN MCD split accuracy with size shows no clear relation
 0.9, 6.0, 15.4, 10.1, 11.6, 9.1
- CFQ accuracy increases with size: **21.5. 28.0. 31.2. 34.8. 40.2. 40.9**
- Intermediate representation gives **+1.2%** accuracy boost
- Hypothesized benefit of pretraining: "improve model's ability to substitute similar words by ensuring they are close to each other in representation space"
 - Achieves near-perfect performance on Add jump split, lesser gains on others.

Discussion

Symbolic approach: LANE

- Two modules, Composer and Solver, plus memory. Trained with curriculum and hierarchical RL.
- 100% accuracy on SCAN MCD split.

Figure 1: The schematic illustration of our idea on learning analytical expressions (see text).

Meta-learning: Meta seq2seq

- Trains over permutations of the SCAN grammar by remapping primitives to different outputs, e.g. jump -> WALK.
- Highly augmented training data fair comparison?
- Builds invariance to primitive replacement in similar manner to Synth, Equivariant, and GECA approaches

Meta-learning: Synth

- seq2seq model takes in i/o examples and generates single program (interpretation grammar) which is symbolically evaluated to solve all examples.
- Trained by sampling grammars from a meta-grammar, and learning to output the correct program given examples generated with the sampled grammar.

Figure 9. Samples from the training meta-grammar for SCAN.

GECA

- Simple, effective approach: detects templates repeated during training, generates new training examples by filling with different fragments
- Augmenting training set so helps build invariance to compositional shifts in distribution

CGPS and Syn-att

- Separates syntax (output action type) from semantics (output action order), each having a separate representation.
- CGPS chosen representative of SCAN-inspired approaches
- Bad performance on SCAN MCD

"It appears rather that the CGPS mechanism, unlike pre-training, is not robust to shifts in compound distribution and even introduces negative effects in such circumstances."

NSEN

- Learns O(n log n) seq2seq algorithms with a shuffle-exchange architecture. Successor to Neural GPU.

Conclusions

- 1. Pretraining helps for compositional generalization, but does not solve it.
- 2. Specialized architectures often do not transfer to new compositional generalization benchmarks
- 3. Improvements in seq2seq architectures leads to corresponding incremental improvements in compositional settings
- 4. MCD likely measures compositional generalization more thoroughly than the traditional SCAN splits

Discussion