Hu et al., 2020 Sinha et al., 2019

Greta Tuckute & Kamoya K Ikhofua

MIT Fall 2020, 6.884 Symbolic Generalization

Motivation

Natural language understanding systems to generalize in a systematic and robust way

- Diagnostic tests how can we probe these generalization abilities?
 - Syntactic generalization (Hu et al., 2020, "SG") and logical reasoning (Sinha et al., 2019, "CLUTRR")
- Evaluation metrics for language models?

SG: Man shall not live by perplexity alone

Perplexity **is not sufficient** to check for human-like syntactic knowledge:

- It basically measures the probability of seeing some collection of words together
- However some words which are rarely seen together are grammatically correct
- Colorless green ideas sleep furiously (Chomsky, 1957)
- Need a **more fine-grained** way to assess learning outcomes of neural language models

SG: Paradigm

Assess NL models on custom sentences designed using psycholinguistic and syntax literature/methodology

- Compare critical sentence regions NOT full-sentence probabilities.
- Factor out confounds (e.g token lexical frequency, n-gram statistics)

SG: Paradigm

- Cover the scope of syntax phenomena: 16/47 (Carnie et al., 2012)
- Group syntax phenomena into 6 circuits based on processing algorithm

SG: Circuits

- 1. Agreement
- 2. Licensing
- 3. Garden-Path Effects
- 4. Gross Syntactic Expectation
- 5. Center Embedding
- 6. Long-Distance Dependencies

SG: Agreement

- (A) The farmer that the clerks embarrassed $knows_{V_{sg}}$ many people.
- (B) *The farmer that the clerks embarrassed $know_{V_{pl}}$ many people.
- (C) The farmers that the clerk embarrassed $know_{V_{pl}}$ many people.
- (D) *The farmers that the clerk embarrassed $knows_{V_{sg}}$ many people.

 $P_{\rm A}({\rm V}_{\rm sg}) > P_{\rm B}({\rm V}_{\rm pl}) \wedge P_{\rm C}({\rm V}_{\rm pl}) > P_{\rm D}({\rm V}_{\rm sg})$

Chance is 25% (or up to 50%)

SG: NPI Licensing

- The word "any" is a negative polarity item (NPI)
- The word "no" can license an NPI when it structurally commands it, such as in A

- A) No managers that respected the guard have had any luck
 >
- B) *The managers {that respected **no** guard} have had **any** luck

(Reflexive Pronoun Licensing was also included in sub-class suites)

SG: NPI Licensing

- (A) No managers that respected the guard have NPI had any luck. [+NEG,-DISTRACTOR]
- (B) *The managers that respected no guard have NPI had any luck. [-NEG,+DISTRACTOR]
- (C) *The managers that respected the guard have NPI had any luck. [-NEG,-DISTRACTOR]
- (D) No managers that respected no guard have NPI had any luck. [+NEG,+DISTRACTOR]

 $P_{A}(NPI) > P_{C}(NPI) \land P_{D}(NPI) > P_{B}(NPI) \land$ $P_{A}(NPI) > P_{B}(NPI)$

Acceptable orderings:

Chance: 5/24

ADBC

ADCB

DABC

DACB

ACDB (?)

SG: Reflexive Pronoun Licensing

- (A) The author that the senators liked hurt $herself_{R_{sg.fem}}$.
- (B) *The authors that the senator liked hurt $herself_{R_{sg.fem}}$.
- (C) The authors that the senator liked hurt themselves R_{pl} .
- (D) *The author that the senator liked hurt themselves R_{pl} .

 $P_{\rm A}({\rm R}_{\rm sg}) > P_{\rm B}({\rm R}_{\rm sg}) \wedge P_{\rm C}({\rm R}_{\rm pl}) > P_{\rm D}({\rm R}_{\rm pl})$

Chance: 25%

SG: NP/Z Garden-Paths

(A) !As the ship crossed the waters remained blue and calm. [TRANS,NO COMMA]

V*

- (B) As the ship crossed, the waters remained blue and calm. [TRANS,COMMA]
- (C) As the ship drifted the waters remained blue and calm. [INTRANS,NO COMMA]

(D) As the ship drifted, the waters remained blue and calm. [INTRANS,COMMA]

 $S_{A}(V^{*}) > S_{B}(V^{*}) \land S_{A}(V^{*}) > S_{C}(V^{*}) \land$ $S_{A}(V^{*}) - S_{B}(V^{*}) > S_{C}(V^{*}) - S_{D}(V^{*})$

SG: Main-Verb Reduced Relative Garden-Paths

- (A) !The child kicked in the chaos found her way back home. [REDUCED, AMBIG]
- (B) The child who was kicked in the chaos found her way back home.
- (C) The child forgotten in the chaos found her way back home.
- (D) The child who was forgotten in the chaos V^* found her way back home.

 $S_{\rm A}(\mathbf{V}^*) > S_{\rm B}(\mathbf{V}^*) \land S_{\rm A}(\mathbf{V}^*) > S_{\rm C}(\mathbf{V}^*) \land$ $S_{\rm A}(\mathbf{V}^*) - S_{\rm B}(\mathbf{V}^*) > S_{\rm C}(\mathbf{V}^*) - S_{\rm D}(\mathbf{V}^*)$

Chance is 25%

 $P_{\rm A}({\rm END}) > P_{\rm B}({\rm END}) \land P_{\rm D}({\rm MC}) < P_{\rm C}({\rm MC})$

SG: Center Embedding

- (A) The painting_{N1} that the $artist_{N2}$ who lived long ago painted_{V2} deteriorated_{V1}. [correct]
- (B) #The painting_{N1} that the artist_{N2} who lived long ago deteriorated_{V1} painted_{V2}. [incorrect]

 $P_{\mathrm{A}}(\mathrm{V}_{2}\mathrm{V}_{1}) > P_{\mathrm{B}}(\mathrm{V}_{1}\mathrm{V}_{2})$

P(painted deteriorated|The painting that the artist) > P(deteriorated painted|The painting that the artist)

SG: Long Distance Dependencies

 α

- (A) I know that our uncle grabbed the food in front of the guests at the holiday party.[THAT, NO GAP]
- (B) *I know what our uncle grabbed the food in front of the guests at the holiday party. [WH, NO GAP]
- (C) ??I know that our uncle grabbed in front of the guests at the holiday party. [THAT, GAP]
- (D) I know what our uncle grabbed in front of in front of the guests at the holiday party. [WH, GAP]

 $S_{\rm B}(\alpha) > S_{\rm A}(\alpha) \wedge S_{\rm C}(\beta) > S_{\rm D}(\beta)$

SG: Pseudo-Clefting

VP

NP

NP

(B) ?What the worker did was the plane.

- (C) What the worker repaired was the plane.
- (D) *What the worker repaired was \overrightarrow{VP} board the plane.

SG: Assessment

accuracy_per_test_suite = correct predictions / total items

- Test for stability by including syntactically irrelevant but semantically plausible syntactic content before the critical region
 - **E.g**:
 - The keys to the cabinet on the left are on the table
 - *The keys to the cabinet on the left is on the table
- Compare model class to dataset size

SG: Score by Model Class

Figure 1: Average SG score by model class. Asterisks denote off-the-shelf models. Error bars denote boot-strapped 95% confidence intervals of the mean.

SG: Perplexity and SG Score

- BLLIP-XS: 1M tokens
- BLLIP-S: 5M tokens
- BLLIP-M: 14M tokens
- BLLIP-LG: 42M tokens

SG: Perplexity and SG Score

SG: Perplexity and Brain-Score

Schrimpf et al., 2020

SG: The Influence of Model Architecture

SG: The Influence of Model Architecture

- Architectures as priors to the linguistic representation that can be developed
- Robustness depends on model architecture

- Increasing amount of training data yields diminishing returns:
 - "(...) require over 10 billion tokens to achieve human-like performance, and most would require trillions of tokens to achieve perfect accuracy – an impractically large amount of training data, especially for these relatively simple syntactic phenomena." (van Schijndel et al., 2019)
- Limited data efficiency
- Structured architectures or explicit syntactic supervision
- Humans? 11-27 million total words of input per year? (Hart & Risley, 1995; Brysbaert et al., 2016)

Figure 5: Evaluation results on all models, split across test suite circuits.

CLUTRR: Motivation and Paradigm

- Compositional Language Understanding and Text-based Relational Reasoning
- Kinship inductive reasoning
- Unseen combinations of logical rules
- Model robustness

CLUTRR: Motivation and Paradigm

- Productivity
 - mother(mother(Justin))) ~ great grandmother of Justin
- Systematicity
 - Only certain sets allowed with symmetries: son(Justin, Kristin) ~ mother(Kristin, Justin)
- Compositionality
 - son(Justin, Kristin) consists of components
- Memory (compression)
- Children are not exposed to systematic dataset

CLUTRR: Dataset Generation & Paradigm

CLUTRR: Model Robustness

CLUTRR: Systematic Generalization

CLUTRR: Model Robustness

	Models Unstructured models (no graph)					Structured model (with graph)		
Training	Testing	BiLSTM - Attention	BiLSTM - Mean	RN	MAC	BERT	BERT-LSTM	GAT
Clean	Clean Supporting Irrelevant Disconnected	$\begin{array}{c} 0.58 \pm 0.05 \\ \textbf{0.76} \pm 0.02 \\ 0.7 \pm 0.15 \\ 0.49 \pm 0.05 \end{array}$	$\begin{array}{c} 0.53 \pm 0.05 \\ 0.64 \pm 0.22 \\ \textbf{0.76} \pm 0.02 \\ 0.45 \pm 0.05 \end{array}$	$\begin{array}{c} 0.49 \pm 0.06 \\ 0.58 \pm 0.06 \\ 0.59 \pm 0.06 \\ 0.5 \pm 0.06 \end{array}$	$\begin{array}{c} 0.63 \pm 0.08 \\ 0.71 \pm 0.07 \\ 0.69 \pm 0.05 \\ 0.59 \pm 0.05 \end{array}$	$\begin{array}{c} 0.37 \pm 0.06 \\ 0.28 \pm 0.1 \\ 0.24 \pm 0.08 \\ 0.24 \pm 0.08 \end{array}$	$\begin{array}{c} 0.67 \pm 0.03 \\ 0.66 \pm 0.06 \\ 0.55 \pm 0.03 \\ 0.5 \pm 0.06 \end{array}$	$\begin{array}{c} \textbf{1.0} \pm 0.0 \\ \textbf{0.24} \pm 0.2 \\ \textbf{0.51} \pm 0.15 \\ \textbf{0.8} \pm 0.17 \end{array}$
Supporting	Supporting	0.67 ± 0.06	$0.66{\scriptstyle~\pm0.07}$	$0.68 \scriptstyle \pm 0.05$	$0.65{\scriptstyle~\pm 0.04}$	$0.32{\scriptstyle~\pm 0.09}$	$0.57 \scriptstyle \pm 0.04$	0.98 ±0.01
Irrelevant	Irrelevant	0.51 ±0.06	0.52 ± 0.06	$0.5{\scriptstyle~\pm 0.04}$	$0.56{\scriptstyle~\pm 0.04}$	0.25 ± 0.06	$0.53{\scriptstyle~\pm 0.06}$	0.93 ±0.01
Disconnected	Disconnected	0.57 ±0.07	$0.57_{\pm 0.06}$	$0.45{\scriptstyle~\pm 0.11}$	0.4 ± 0.1	$0.17{\scriptstyle~\pm 0.05}$	$0.47{\scriptstyle~\pm 0.06}$	0.96 ±0.01
Average		0.61 ±0.08	$0.59{\scriptstyle~\pm 0.08}$	$0.54{\scriptstyle~\pm 0.07}$	0.61 ± 0.06	$0.30{\scriptstyle~\pm 0.07}$	$0.56{\scriptstyle~\pm 0.05}$	0.77 ±0.09

CLUTRR: Model Robustness (noisy training)

1

	Models		Unstructured models (no graph)					
Training	Testing	BiLSTM - Attention	BiLSTM - Mean	RN	MAC	BERT	BERT-LSTM	GAT
Supporting	Clean	0.38 ±0.04	0.32 ±0.04	0.4 ±0.09	0.45 ±0.03	0.19 ±0.06	0.39 ±0.06	0.92 ±0.17
	Supporting	0.67 ±0.06	0.66 ±0.07	0.68 ±0.05	0.65 ± 0.04	0.32 ±0.09	0.57 ±0.04	0.98 ±0.01
	Irrelevant	0.44 ±0.03	0.39 ±0.03	0.51 ±0.08	0.46 ±0.09	0.2 ±0.06	0.36 ±0.05	0.5 ±0.23
	Disconnected	0.31 ±0.21	0.25 ±0.16	0.47 ± 0.08	$0.41{\scriptstyle~\pm 0.06}$	$0.2{\scriptstyle~\pm 0.08}$	$0.32{\scriptstyle~\pm 0.04}$	0.92 ±0.05
Irrelevant	Clean	0.57 ±0.05	0.56 ±0.05	0.46 ±0.13	0.67 ±0.05	0.24 ±0.06	0.46 ±0.08	0.92 ±0.0
	Supporting	0.38 ±0.22	0.31 ±0.16	0.61 ±0.07	0.61 ± 0.04	$0.27 \scriptstyle \pm 0.06$	0.46 ± 0.04	0.77 ±0.12
	Irrelevant	0.51 ±0.06	0.52 ±0.06	$0.5_{\pm 0.04}$	0.56 ± 0.04	0.25 ±0.06	0.53 ±0.06	0.93 ±0.01
	Disconnected	0.44 ±0.26	0.54 ±0.27	0.55 ±0.05	$0.61 \scriptstyle \pm 0.06$	$0.26{\scriptstyle~\pm 0.03}$	0.45 ± 0.08	0.85 ±0.25
	Clean	0.45 ±0.02	0.47 ±0.03	0.53 ±0.09	0.5 ±0.06	0.22 ±0.09	0.44 ±0.05	0.75 ±0.07
Disconnected	Supporting	0.47 ±0.03	0.46 ±0.05	$0.54{\scriptstyle~\pm 0.03}$	0.58 ± 0.06	0.22 ±0.06	0.38 ± 0.08	0.78 ±0.12
	Irrelevant	0.47 ±0.05	0.48 ±0.03	0.52 ± 0.04	0.51 ±0.05	0.17 ±0.04	0.38 ±0.05	0.56 ±0.26
	Disconnected	0.57 ±0.07	$0.57 \scriptstyle \pm 0.06$	0.45 ± 0.11	$0.4_{\pm 0.1}$	$0.17 \scriptstyle \pm 0.05$	$0.47{\scriptstyle~\pm 0.06}$	0.96 ±0.01
Average		0.47 ±0.08	$0.46{\scriptstyle~\pm 0.08}$	0.52 ±0.07	0.53 ± 0.06	0.23 ±0.07	$0.43{\scriptstyle~\pm 0.05}$	0.82 ±0.09

Table 3: Testing the robustness of the various models when trained various types of noisy facts and evaluated on other noisy / clean facts. The types of noise facts (supporting, irrelevant and disconnected) are defined in Section 3.5 of the main paper.

Future work & Perspectives

- Sub-word tokenization
- Active attention and reasoning
- Generalization across tasks
- Abstractions as probabilistic
- Architecture and dimensionality reduction

References

Brysbaert, M., Stevens, M., Mandera, P., & Keuleers, E. (2016). How Many Words Do We Know? Practical Estimates of Vocabulary Size Dependent on Word Definition, the Degree of Language Input and the Participant's Age. *Frontiers in psychology*, 7, 1116. <u>https://doi.org/10.3389/fpsyg.2016.01116</u>

Hart, B., & Risley, T. R. (1995). *Meaningful differences in the everyday experience of young American children*. Baltimore, MD: Paul H. Brookes Publishing Company.

Schrimpf, M., Blank, I., Tuckute, G., Kauf, C., Hosseini, E. A., Kanwisher, N., Tenenbaum, J., Fedorenko, E (2020): Artificial Neural Networks Accurately Predict Language Processing in the Brain, *bioRxiv* 2020.06.26.174482; doi: <u>https://doi.org/10.1101/2020.06.26.174482</u>.

Van Schijndel, M., Mueller, A., & Linzen, T. (2019). Quantity doesn't buy quality syntax with neural language models. *arXiv preprint arXiv:1909.00111*.

Supplementary

CLUTTR, Fig. 6

Figure 6: Systematic Generalizability of different models on CLUTRR-Gen task (having 20% less placeholders and without training and testing placeholder split), when **Left:** trained with k = 2 and k = 3 and **Right:** trained with k = 2, 3 and 4

CLUTTR, Table 5

Dalatian Lanath	Human Perform	Demente I Differentes			
Relation Length	Time Limited	Unlimited Time	Reported Difficulty		
2	0.848	1	1.488 +- 1.25		
3	0.773	1	2.41 +- 1.33		
4	0.477	1	3.81 +- 1.46		
5	0.424	1	3.78 +- 0.96		
6	0.406	1	4.46 +- 0.87		

Table 5: Human performance accuracies on CLUTRR dataset. Humans are provided the Clean-Generalization version of the dataset, and we test on two scenarios: when a human is given limited time to solve the task, and when a human is given unlimited time to solve the task. Regardless of time, our evaluators provide a score of difficulty of individual puzzles.

CLUTTR, Table 4

	Models		Unstructured models (no graph)						
Training	Testing	BiLSTM - Attention	BiLSTM - Mean	RN	MAC	BERT	BERT-LSTM	GAT	
Supporting	Clean	0.96 ±0.01	0.97 ±0.01	0.88 ±0.05	$0.94{\scriptstyle~\pm 0.02}$	0.48 ± 0.08	0.57 ±0.08	0.92 ±0.17	
	Supporting	0.96 ±0.03	0.96 ±0.03	0.97 ±0.01	0.97 ±0.01	0.75 ±0.07	0.88 ±0.05	0.98 ±0.01	
	Irrelevant	0.92 ±0.02	0.93 ±0.01	$0.9_{\pm 0.03}$	$0.91{\scriptstyle~\pm 0.01}$	0.56 ±0.04	0.54 ±0.06	$0.5_{\pm 0.23}$	
	Disconnected	0.8 ± 0.04	$0.83{\scriptstyle~\pm 0.04}$	0.76 ±0.08	$0.86{\scriptstyle~\pm 0.04}$	0.27 ±0.06	$0.42{\scriptstyle~\pm 0.08}$	0.92 ±0.05	
Irrelevant	Clean	0.63 ±0.02	0.61 ±0.07	0.85 ±0.09	0.8 ±0.07	0.53 ±0.09	0.44 ±0.06	0.92 ±0.0	
	Supporting	0.66 ±0.03	0.64 ± 0.04	0.69 ±0.06	$0.76{\scriptstyle~\pm 0.06}$	0.42 ± 0.08	0.43 ± 0.08	0.77 ±0.12	
	Irrelevant	0.89 ±0.04	0.86 ±0.1	$0.74_{\pm 0.11}$	0.78 ±0.06	0.61 ±0.1	0.83 ±0.06	0.93 ±0.01	
	Disconnected	0.64 ±0.02	0.62 ±0.05	0.72 ±0.05	0.73 ± 0.04	$0.41 \scriptstyle \pm 0.04$	0.61 ±0.05	0.85 ± 0.25	
(4	Clean	0.9 ±0.05	0.82 ±0.12	0.94 ±0.02	0.93 ± 0.04	0.68 ±0.07	0.64 ±0.02	0.75 ±0.07	
Disconnected	Supporting	0.87 ±0.04	0.82 ±0.05	0.85 ±0.03	0.88 ± 0.04	0.54 ±0.08	0.5 ±0.05	0.78 ±0.12	
	Irrelevant	0.87 ±0.03	0.85 ±0.03	0.83 ±0.03	$0.87_{\pm 0.02}$	0.59 ±0.09	0.58 ±0.09	0.56 ±0.26	
	Disconnected	0.91 ± 0.04	0.91 ±0.03	0.8 ± 0.17	$0.71 \scriptstyle \pm 0.11$	$0.49{\scriptstyle~\pm0.1}$	$0.79_{\pm 0.1}$	0.96 ±0.01	
Average		0.83 ±0.08	$0.82{\scriptstyle~\pm 0.08}$	0.83 ±0.07	$0.84 \scriptstyle \pm 0.06$	0.58 ±0.07	0.60 ±0.05	0.82 ±0.09	

Table 4: Testing the robustness on toy placeholders of the various models when trained various types of noisy facts and evaluated on other noisy / clean facts. The types of noise facts (supporting, irrelevant and disconnected) are defined in Section 3.5 of the main paper.

CLUTTR, Fig. 7

Figure 7: Systematic Generalization comparison with different Embedding policies

```
Van Schijndel et al., 2019
```


Figure 2: Lines depict number of training tokens needed for LSTMs to achieve human-like (left) or 99.99% accuracy (right) in each syntactic agreement condition, according to our estimates. Bars depict the amount of data on which each model was trained.