
Tree(t)-Shaped Models
Socher et al, Dyer et al & Andreas et al

By Shinjini Ghosh, Ian Palmer, Lara Rakocevic



Format

15 + 10 mins

Breakout 
Rooms + Break
Discussion

  

25 mins

Paper 3

Neural Networks for 
Question Answering

  

40 mins

Papers 1 & 2

Parsing with CVGs
RNNGs

  

10 mins

Breakout 
Rooms
Discussion

  

5 mins

Introduction

How the three papers 
tie together

  



What were the shared high 
level concepts? 



Things to think about

- Benefits of continuous representations
- Different methods of integrating compositionality and 

neural models
- Ways to take advantage of hierarchical structures



Parsing with CVGs (Compositional Vector Grammars)

Socher, Bauer, Manning, Ng (2013)

Presented by Shinjini Ghosh



Motivation
● Syntactic parsing is crucial
● How can we learn to parse and 

represent phrases as both 
discrete categories and 
continuous vectors?

● Discrete Representations
○ Manual feature engineering - Klein & 

Manning 2003
○ Split into subcategories - Petrov et al. 2006
○ Lexicalized parsers - Collins 2003, Charniak 

2000
○ Combination - Hall & Klein 2012

● Recursive Deep Learning
○ RNNs with words as one-on vectors - Elman 

1991
○ Sequence labeling - Clobert & Weston 2008
○ Parsing based on history - Henderson 2003
○ RNN + re-rank phrases - Costa et al. 2003
○ RNN + re-rank parses - Menchetti et al. 2005

Background



Compositional Vector Grammars

● Model to jointly find syntactic structure and capture compositional semantic 
information

● Intuition: language is fairly regular, and can be captured by well-designed 
syntactic patterns...but there are fine-grained semantic factors influencing 
parsing. E.g., They ate udon with chicken vs They ate udon with forks

● So, give parser access to both distributional word vectors and compute 
compositional semantic vector representations for longer phrases



Word Vector Representation

● Occurrence statistics and context - Turney and Pantel, 2010
● Neural LM - embedding in n-dimensional feature space - Bengio et al. 2003

E.g., king - man + woman = queen (Mikolov et al. 2013)
● Sentence S is an ordered list of (word, vector) pairs



Max-Margin Training Objective for CVGs

● Structured margin loss

● Parsing function

● Objective function



Scoring Trees with CVGs

● Syntactic categories of children determine what composition function to use 
for computing the vector of their parents

● For example, an NP should be similar to its N head and not much to its Det
● So, the CVG uses a syntactically-untied (SU-RNN) which has a set of weights, of 

size the # of sibling category combinations in the PCFG



Scoring Trees with CVGs



Parsing with CVGs

● score(CVG) = ∑ score(node)

● If |sentence| = n, |possible binary trees| = Catalan(n)
⇒ finding global maximum is exponentially hard

● Compromise: Two-pass algorithm
○ Use base PCFG to run CKY DP through the tree and store top 200 best parses
○ Beam search with full CVG

● Since each SU-RNN matrix multiplication only needs child vectors and not 
whole tree, this is still fairly fast



Training 
SU-RNNs

● Generalize gradient ascent 
using subgradient method

● Uses diagonal variant of 
AdaGrad to minimize 
objective

Subgradient 
Methods and 

AdaGrad
● Two stage training

○ Base PCFG trained and top 
trees cached

○ SU-RNN trained conditioned 
on the PCFG



Experimentation

● Cross-validating using first 20 files of WSJ Section 22
● 90.44% accuracy on final test set (WSJ Section 23)



Model Analysis: Composition Matrices

● Model learns a soft vectorized notion of head words: 
○ Head words are given larger weights and importance when computing the parent 

vector
○ For the matrices combining siblings with categories VP:PP, VP:NP and VP:PRT, the 

weights in the part of the matrix which is multiplied with the VP child vector dominates
○ Similarly NPs dominate DTs



Model Analysis: Semantic Transfer for PP Attachments



Conclusion

● Paper introduces CVGs
● Parsing model that combines speed of small state PCFGs with semantic 

richness of neural word representations and compositional phrase vectors
● Learns compositional vectors using new syntactically untied RNN
● Linguistically more plausible since it chooses composition function for parent 

node based on children
● 90.44% F1 on full WSJ test set
● 20% faster than previous Stanford parser



Discussion

● Is basing composition 
functions just on children 
nodes enough? (Garden 
path sentences? 
Embedding? Recursive 
nesting?)

● Is this really incorporating 
both syntax and semantics 
at once? Or merely a 
two-pass algorithm?

● Other ways to combine 
syntax and semantics?



Recurrent Neural Net Grammars 

Dyer et al



Why not just Sequential RNNs? 

“Relationships among words are largely organized in terms of 
latent nested structure rather than sequential surface order”



Definition of RNNG

A triple consisting of: 

- N:  finite set of nonterminal symbols
- Σ:  finite set of terminal symbols st N ∩ Σ = ∅
- Θ: collection of neural net parameters



Parser Transitions

NT(X) = introduces an “open nonterminal” X onto the top of the stack.

SHIFT = removes the terminal symbol x from the front of the input buffer, and 
pushes it onto the top of the stack

REDUCE = repeatedly pops completed subtrees or terminal symbols from the stack 
until an open NT is encountered, then pops NT and uses as label of a new 
constituent with popped subtrees as children



Example of Top-Down Parsing in action



Constraints on Parsing

 • The NT(X) operation can only be applied if B is not empty and n < 100. 4 

• The SHIFT operation can only be applied if B is not empty and n ≥ 1. 

• The REDUCE operation can only be applied if the top of the stack is not an open 
nonterminal symbol. 

• The REDUCE operation can only be applied if n ≥ 2 or if the buffer is empty



Generator Transitions

Start with parser transitions and add in the following changes:

1. there is no input buffer of unprocessed words, rather there is an output 
buffer (T)

2. instead of a SHIFT operation there are GEN(x) operations which generate 
terminal symbol x ∈ Σ and add it to the top of the stack and the output 
buffer



Example of Generation Sequence



Constraints on Generation

• The GEN(x) operation can only be applied if n ≥ 1. 

• The REDUCE operation can only be applied if the top of the stack is not an open 
nonterminal symbol and n ≥ 1.



Transition Sequences from Trees

- Any parse tree can be converted to a sequence of transitions via a depth-first, 
left-to-right traversal of a parse tree. 

- Since there is a unique depth-first, left to-right traversal of a tree, there is 
exactly one transition sequence of each tree



Generative Model

Where                        



Generative Model - Neural Architecture 

Neural architecture for defining a distribution over a_t given representations of the stack, output buffer and history of actions.



Syntactic Composition Function

Composition function based on bidirectional LSTMS



Evaluating Generative Model

To evaluate as LM: 

- Compute marginal probability 

To evaluate as parser:

- Find MAP parse tree → tree y that maximizes joint distribution defined by 
generative model



Inference via Importance Sampling

Uses conditional proposal distribution q(x | y) with following properties: 

1. p(x, y) > 0 ⇒ q(y | x) > 0
2.  samples y ∼ q(y | x) can be obtained efficiently
3. the conditional probabilities q(y | x) of these samples are known

Discriminative parser fulfills these properties, so this is used as the proposal 
distribution.



Deriving Estimator ...

Where “importance weights” w(x,y) = p(x,y) / q(y | x) 



… then replace the expectation with it’s Monte Carlo estimate



Experimental Setup
Discriminative Model: 

- Hidden dimensions of 128, 2  Layer LSTMs

Generative Model: 

- Hidden dimensions of 256, 2 Layer LSTMs

Both

- Dropout rate to maximize validation set likelihood
- For training, SGD with learning rate of 0.1



English Parsing Results Chinese Parsing Results



Language Model Results



Takeaways

1. Effective at both language modeling and parsing 
2. Generative model obtains :

a. Best known parsing results using a single supervised generative model and 
b. Better perplexities in LM than state-of-the-art sequential LSTM LMs 

3.  Parsing with generative model better than with discriminative model 



Discussion

● Why does the discriminative 
model perform worse than the 
generative model? 

● Ways to extend this, outlook for 
future uses?

● What structural difference in 
English vs Chinese grammar 
that might be contributing to a 
higher accuracy in parsing? 



Learning to Compose Neural 
Networks for Question 
Answering

Andreas et. al. 2016

Presented by Ian Palmer



Motivation: We want to interact with machines via natural language (Q&A)

Database QA
- Logical forms

- Train on logical form 
examples1 or QA pairs2

- Neural models
- Shared embedding space3

- Attention-based models4

Visual QA
- RNN-based approaches5

- Attention-based models6

1. Wong and Mooney 2007; 2. Kwiakowski et. al. 2010; 3. Bordes et. al. 2014; 4. Hermann et. al. 2015;
5. Ren et. al. 2015; 6. Yang et. al. 2015



...but all of these approaches have one thing in common

…?

Question w

World representation x

z(x, w)
…

Answer y

Can we allow z to vary?



Neural Module Networks (Andreas et. al. 2016)

● Define a network layout predictor P, which maps from strings to network 
layouts

● P has a toolbox of modules it can construct networks from

Find
Image → Attention

Transform
Attention → Attention

Combine
Attn x Attn → Attn

Describe
Image x Attention → 
Label

Measure
Attention → Label

● Extract model layout from P(w), then compute p(y | w, x; θ)



Revised process

…?

Question w

World representation x



Revised process

…?

Question w

World representation x

P(w)
Hand-designed



Revised process

z(w, x; θ)

…?

Question w

World representation x

P(w)
Hand-designed



Revised process

z(w, x; θ)

…?

Question w

World representation x

…

p(y | w, x; θ)

Can we learn P?

P(w)
Hand-designed



Dynamic Neural Module Networks

Two major contributions:

Comprised of a layout model p(z | x; θl) and an execution model pz(y | w; θe)

1. Jointly learn network structure predictor with module parameters
2. Extend reasoning to any structured domains



Layout Model Overview

1. Create a dependency parse using the Stanford dependency 
parser

2. Collect phrases attached to wh-words or copulas
3. Associate these phrases with modules
4. Combine layout fragments using combinatorial modules, then 

add a top-level labeling module
5. Score layout candidates



Stanford Dependency (SD) Parse

“Bell, based in Los Angeles, makes 
and distributes electronic, 

computer and building products”
“What does he think?”

Verbs

Prepositional 
phrases

Nouns

Copulas

de Marneffe & Manning 2008



Module Library

Lookup
→ Attention

Produces an attention map 
focused at the argument

Find
→ Attention

Computes a distribution over 
indices in the representation

Relate
Attention → Attention

Directs attention from one part 
to another

And
Attention* → Attention

Returns intersection of 
attentions

Describe
Attention → Labels

Computes an average of w 
under attention, then labels it

Exists
Attention → Labels

Inspects attention to produce 
a label



Module Association

Ordinary nouns & verbs Find
→ Attention

Proper nouns Lookup
→ Attention

Prepositional phrases Find + relate
→ Attention

Next, assemble all subsets of these fragments into layout candidates



Scoring Candidates

Obtain scores for each layout, where:
- hq(x) is a LSTM encoding of the question
- zn are the layouts, f(zn) are feature vectors for the layouts

- Lastly, train the layout model with a gradient step:



Example

“What cities are in Georgia?”



Generating Answers

Given a choice of z from the layout 
model: 

- Apply the world w to the network 
z to get [z]w (a probability 
distribution)

- Define pz(y | w) = ([z]w)y

What color is this bird? Are there any states?



Evaluation

Image-grounded questions
- D-NMN achieved state-of-the-art 

performance on VQA 2015 
challenge

- Outperforms NMN with 
hand-designed layout model



Evaluation

Text-grounded questions
- Introduce GeoQA+Q, which 

provides more detailed answers to 
GeoQA questions

- D-NMN performs better than 
baselines and has a 7% accuracy 
increase over NMN



Takeaways

Advantage of continuous 
representations

- Neural representations allow 
cross-modality and can be 
learned via gradients

Semantic structure prediction
- Use only the parameters 

required for the problem
- Save computation on small 

problems
- Use larger networks for 

harder problems



Discussion

● How could this framework 
be extended to other 
domains (e.g. speech, game 
playing)?

● Is it possible to learn a 
library of modules from 
scratch?

● What classes of queries can 
you/can you not represent?



Key Takeaways + Final Questions

- Benefits of continuous representations
- Integrating compositionality and neural models
- Ways to take advantage of hierarchical structures
- How to reduce/change one model (RNNGs) to another (CVGs)? 
- Formally, what’s the relationship btwn the different models?


