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What were the shared high
level concepts?




Things to think about

- Benefits of continuous representations

- Different methods of integrating compositionality and
neural models

- Ways to take advantage of hierarchical structures



Pa rSi n g With CVGS (Compositional Vector Grammars)

Socher, Bauer, Manning, Ng (2013)

Presented by Shinjini Ghosh



Motivation Background

Syntactic parsing is crucial e Discrete Representations
How can we learn to parse and o Manual feature engineering - Klein &

represent phrases as both Manning 2003
discrete categories and o  Splitinto subcategories - Petrov et al. 2006
continuous vectors? o Lexicalized parsers - Collins 2003, Charniak
2000
o Combination - Hall & Klein 2012

Representations in the Compositional Vector Grammar

(riding a bike,VP,@®) e Recursive Deep Learning

o RNNs with words as one-on vectors - EIman
1991
Sequence labeling - Clobert & Weston 2008
Parsing based on history - Henderson 2003
RNN + re-rank phrases - Costa et al. 2003
RNN + re-rank parses - Menchetti et al. 2005

(a bike,NP,©2D)

(riding,V,©@©®) (a,Det,©@®) (bike,NN,©®@)

Figure 1: Example of a CVG tree with (cate-
gory,vector) representations at each node. The
vectors for nonterminals are computed via a new

o O O O

type of recursive neural network which is condi-
tioned on syntactic categories from a PCFG.




Compositional Vector Grammars

e Model to jointly find syntactic structure and capture compositional semantic
information

e Intuition: language is fairly regular, and can be captured by well-designed
syntactic patterns...but there are fine-grained semantic factors influencing
parsing. E.g., They ate udon with chicken vs They ate udon with forks

e SO, give parser access to both distributional word vectors and compute
compositional semantic vector representations for longer phrases



Word Vector Representation

e Occurrence statistics and context - Turney and Pantel, 2010

e Neural LM - embedding in n-dimensional feature space - Bengio et al. 2003
E.g., king - man + woman = queen (Mikolov et al. 2013)

e Sentence Sis an ordered list of (word, vector) pairs

= (WL, B0 )y oo Dt Wil ) )



Max-Margin Training Objective for CVGs

e Structured margin loss

Ay )= > w1{d ¢ N(y)}.

e Parsing function deN(3)

go(x) = arg max s(CVG(6, x, 7)),
JEY ()
e Objective function Lo A\
0) =— i =913
I(0) = D2 ril0) + 1013, wher

— s(CVG(w;, yi))




Scoring Trees with CVGs

e Syntactic categories of children determine what composition function to use
for computing the vector of their parents

e [For example, an NP should be similar to its N head and not much to its Det

e So, the CVG uses a syntactically-untied (SU-RNN) which has a set of weights, of
size the # of sibling category combinations in the PCFG



Scoring Trees with CVGs

Standard Recursive Neural Network Syntactically Untied Recursive Neural Network

el el G
(1) @) R - 8,0 | b
e #0350 <o wee 7]

(B,b=©9) (C,c=

(A, a=@9)

Figure 2: An example tree with asimple Recursive ~ Figure 3: Example of a syntactically untied RNN
Neural Network: The same weight matrix is repli-  in which the function to compute a parent vector
cated and used to compute all non-terminal node  depends on the syntactic categories of its children
representations. Leaf nodes are n-dimensional  which we assume are given for now.

vector representations of words.



Parsing with CVGs

e score(CVG) =} score(node)
s(cve(,z,9) = > s (v").
deN(9)
e |If [sentencel = n, Ipossible binary trees| = Catalan(n)
= finding global maximum is exponentially hard

e Compromise: Two-pass algorithm
o Use base PCFG to run CKY DP through the tree and store top 200 best parses
o Beam search with full CVG

e Since each SU-RNN matrix multiplication only needs child vectors and not
whole tree, this is still fairly fast



Subgradient

Training Methods and
SU-RNNSs

AdaGrad

e [wo stage training e Generalize gradient ascent
O Base PCFG trained and top using subgradient method
trees cached . .
. e Uses diagonal variant of
O SU-RNN trained conditioned R
on the PCEG AdaGrad to minimize

objective




Experimentation

e Cross-validating using first 20 files of WSJ Section 22
e 90.44% accuracy on final test set (WSJ Section 23)

Parser dev (all) test< 40  test (all) Error Type Stanford CVG Berkeley Char-RS
Stanford PCFG 85.8 86.2 85.5 PP Attach 1.02 0.79 0.82 0.60
Stanford Factored 87.4 87.2 86.6 Clause Attach 0.64 043 0.50 0.38
Factored PCFGs 89.7 90.1 894 Diff Label 0.40 0.29 0.29 0.31
Collins 87.7 Mod Attach 0.37 0.27 0.27 0.25
SSN (Henderson) 894 NP Attach 0.44 0.31 0.27 0.25
Berkeley Parser 90.1 Co-ord 0.39 0.32 0.38 0.23
CVG (RNN) 85.7 85.1 85.0 1-Word Span 0.48 0.31 0.28 0.20
CVG (SU-RNN) 91.2 91.1 90.4 Unary 0.35 0.22 0.24 0.14
Charniak-SelfTrain 91.0 NP Int 0.28 0.19 0.18 0.14
Charniak-RS 92.1 Other 0.62 041 0.41 0.50

Table 1: Comparison of parsers with richer state  Table 2: Detailed comparison of different parsers.
representations on the WSJ. The last line is the

self-trained re-ranked Charniak parser.



Model Analysis: Composition Matrices

e Model learns a soft vectorized notion of head words:
o Head words are given larger weights and importance when computing the parent
vector
o For the matrices combining siblings with categories VP:PP, VP:NP and VP:PRT, the
weights in the part of the matrix which is multiplied with the VP child vector dominates

o Similarly NPs dominate DTs




Model Analysis: Semantic Transfer for PP Attachments

s (a) Stanford factored parser

N/\P NP/S\VP
N P{u, /\NP

J VBZ NP VBZ
e | /\ e | /\
eals eats
NP PP NIP PP
NNs ,m nbs I Re
| Lo | |
pugheti T NN spaghetti  with pr
| | meat
a spoon
g (b) Compositional Vector Grammar .
/\ NP vp
NP vp |
| PRP /\P
PRP | VBZ
ch He | /\
W v /PP\ RN b
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a spoon mleal
Figure 4: Test sentences of semantic transfer for PP attachments. The CVG was able to transfer se-
mantic word knowledge from two related training sentences. In contrast, the Stanford parser could not

distinguish the PP attachments based on the word semantics.




Conclusion

e Paper introduces CVGs

e Parsing model that combines speed of small state PCFGs with semantic
richness of neural word representations and compositional phrase vectors

e |earns compositional vectors using new syntactically untied RNN

e Linguistically more plausible since it chooses composition function for parent
node based on children

e 90.44% F1 on full WSJ test set

e 20% faster than previous Stanford parser



® |s basing composition
functions just on children
nodes enough? (Garden
path sentences?
Embedding? Recursive

. . nesting?)
DlSCUSSlOn Is this really incorporating

both syntax and semantics
at once? Or merely a
two-pass algorithm?

e Other ways to combine

syntax and semantics?




Recurrent Neural Net Grammars

Dyer et al



Why not just Sequential RNNs?

“Relationships among words are largely organized in terms of
latent nested structure rather than sequential surface order”



Definition of RNNG

A triple consisting of:

- N: finite set of nonterminal symbols
- 2. finite set of terminal symbols stN N X =9
- ©: collection of neural net parameters




Parser Transitions

Stack; Buffer; Open NTs; | Action | Stack;,; Buffer;.; Open NTs;,;
S B n NT(X) [ ST(X B n+1

S z|B n SHIFT | S| z B n
S|(X|n|...|m B n REDUCE | S| (X7 ... %) B n-—1

NT(X) = introduces an “open nonterminal” X onto the top of the stack.

SHIFT = removes the terminal symbol x from the front of the input buffer, and
pushes it onto the top of the stack

REDUCE = repeatedly pops completed subtrees or terminal symbols from the stack
until an open NT is encountered, then pops NT and uses as label of a new
constituent with popped subtrees as children



Example of Top-Down Parsing in action

Input: The hungry cat meows .

Stack Buffer Action

0 The | hungry | cat meows |. | NT(S)

v | (S The | hungry | cat meows |. | NT(NP)
> | (S| (NP The | hungry | cat meows |. | SHIFT

s | (S| (NP | The hungry | cat | meows | . SHIFT

: | (S| (NP The | hungry cat meows | . SHIFT

s | (S| (NP The| hungry| cat meows | . REDUCE
& | (S| (NP The hungry cat) meows . NT(VP)
1 | (S| (NP The hungry cat) | (VP meows . SHIFT

s | (S| (NP The hungry cat) | (VP meows . REDUCE
o | (S| (NP The hungry cat) | (VP meows) > SHIFT
w | (S| (NP The hungry cat) | (VP meows) . REDUCE
n | (S (NP The hungry car) (VP meows) .)




Constraints on Parsing

- The NT(X) operation can only be applied if B is not empty and n <100. 4
- The SHIFT operation can only be applied if B is not empty and n > 1.

- The REDUCE operation can only be applied if the top of the stack is not an open
nonterminal symbol.

- The REDUCE operation can only be applied if n > 2 or if the buffer is empty



Generator Transitions

Start with parser transitions and add in the following changes:

1. there is no input buffer of unprocessed words, rather there is an output
buffer (T)
2. instead of a SHIFT operation there are GEN(x) operations which generate

terminal symbol x € 2 and add it to the top of the stack and the output
buffer



Example of Generation Sequence

Stack Terminals Action

0 NT(S)

1| (S NT(NP)

> | (S| (NP GEN(The)

3| (S| (NP The The GEN(hungry)
i | (S| (NP The| hungry The | hungry GEN(cat)

s | (S| (NP | The| hungry cat The | hungry | cat REDUCE

s | (S| (NP The hungry cat) The | hungry | cat NT(VP)

7 | (S| (NP The hungry cat) | (VP The | hungry | cat GEN(meows)
s | (S| (NP The hungry cat) | (VP meows The | hungry | cat | meows | REDUCE

s | (S| (NP The hungry cat) | (VP meows) The | hungry | cat meows | GEN(.)
w | (S| (NP The hungry cat) | (VP meows) |. | The | hungry|cat meows|. | REDUCE

1 | (S (NP The hungry catr) (VP meows) .)

The | hungry | cat | meows |.




Constraints on Generation

- The GEN(x) operation can only be applied ifn >1.

- The REDUCE operation can only be applied if the top of the stack is not an open
nonterminal symbol and n > 1.



Transition Sequences from Trees

- Any parse tree can be converted to a sequence of transitions via a depth-first,
left-to-right traversal of a parse tree.

- Since there is a unique depth-first, left to-right traversal of a tree, there is
exactly one transition sequence of each tree



Generative Model

la{z.y)|
p(z’ y) = H p(at | a.<¢)
f=]

la{z.y)|

expr,, u; + by,
t=1 ZG'GAG(Tt,St M) €xXp rI'ut + ba'

Where wu; = tanh (W[Og;st;hg] + C)




Generative Model - Neural Architecture

é{ﬁ%‘?
p(a;)
S i Tt
" { J Uy “
S NP (VP cat  hungry The
at

The hungry cat

Neural architecture for defining a distribution over a_t given representations of the stack, output buffer and history of actions.




Syntactic Composition Function

E x
X 1
/NPR E
u v w §
\ NP P

Composition function based on bidirectional LSTMS



Evaluating Generative Model

To evaluate as LM:
- Compute marginal probability
To evaluate as parser:

- Find MAP parse tree =» tree y that maximizes joint distribution defined by
generative model



Inference via Importance Sampling

Uses conditional proposal distribution g(x | y) with following properties:

1. pxy)>0=qlylx)>0
2. samplesy ~ g(y | x) can be obtained efficiently
3. the conditional probabilities g(y | x) of these samples are known

Discriminative parser fulfills these properties, so this is used as the proposal
distribution.



Deriving Estimator ...

ple)= Y pley) = ) qoyl|z)w(zy)

yey(z) yeY(z)
= Ey(yyw(z, y).

Where “importance weights” w(x,y) = p(x,y) / a(y | x)



... then replace the expectation with it's Monte Carlo estimate

y(‘)~q(y|m) forie{l 2,...,N}

Egiylyw(z, y Zw(m y)




Experimental Setup

Discriminative Model:

- Hidden dimensions of 128, 2 Layer LSTMs
Generative Model:

- Hidden dimensions of 256, 2 Layer LSTMs

Both

- Dropout rate to maximize validation set likelihood
- For training, SGD with learning rate of 0.1



English Parsing Results Chinese Parsing Results

Model type | Fy Model type
Vin);jals et a(l.z(()%)% 5)* — WSJ only g ggi Zhu et al. (2013) D
Henderson ;
Socher et al. (2013a) D |[904 Wang et al. (2015) D
Zhu et al. (2013) D |904 Huang and Harper (2009) D
Petrov and Klein (2007) G |90.1 Charniak (2000) G
Bod (2003) G 90.7 Bikel (2004) G
Shindo et al. (2012) — single G |91.1 Petrov and Klein (2007) G
Shindo et al. (2012) — ensemble G 02.4 Zhu et al. (2013) g
s sl s i Mg ind i T S
cClosky et al. :
Vinyals et al. (2015) s | 921 Napeiik () : -
Discriminative, g(y | )" —buggy | D | 89.8 Discr lm.lnatlve, q(y |.:B) - buggy D
Generative, p(y | )" — buggy G | 924 Generative, p(y | ) - buggy G
Discriminative, ¢(y | ) —correct | D | 91.7 Discriminative, ¢(y | ) —correct | D
Generative, p(y | ) — correct G | 933 Generative, f(y | @) - correct G




Language Model Results

Model test ppl (PTB) | test ppl (CTB)
IKN 5-gram 169.3 255.2
LSTM LM 113.4 207.3
RNNG 102.4 171.9




Takeaways

1. Effective at both language modeling and parsing

2. Generative model obtains :
a. Best known parsing results using a single supervised generative model and
b. Better perplexities in LM than state-of-the-art sequential LSTM LMs

3. Parsing with generative model better than with discriminative model



Discussion

Why does the discriminative
model perform worse than the
generative model?

Ways to extend this, outlook for
future uses?

What structural difference in

English vs Chinese grammar
that might be contributing to a
higher accuracy in parsing?




Learning to Compose Neural
Networks for Question
Answering

Andreas et. al. 2016

Presen ted by lan Palmer



Motivation: We want to interact with machines via natural language (Q&A)

Database QA Visual QA
- Logical forms - RNN-based approaches®
- Train on logical form - Attention-based models®

examples' or QA pairs?

- Neural models
- Shared embedding space?
- Attention-based models*

1. Wong and Mooney 2007; 2. Kwiakowski et. al. 2010; 3. Bordes et. al. 2014; 4. Hermann et. al. 2015;
5. Ren et. al. 2015; 6. Yang et. al. 2015




...but all of these approaches have one thing in common

N

Question w

/ z(x, w) - AC]
nswer y

World representation x

Can we allow z to vary?



Neural Module Networks (Andreas et. al. 2016)

e Define a network layout predictor P, which maps from strings to network
layouts
e P has atoolbox of modules it can construct networks from

Find
Image — Attention

find[red]

Convolution

Transform
Attention — Attention

transform[above]

B i
@

Combine
Attn x Attn — Attn

combine[or]

S e e T e

P
[ ]

Describe
Image x Attention —
Label

Measure
Attention — Label

Extract model layout from P(w), then compute p(y | w, x, 6)



Revised process

Question w

World representation x



Revised process

>

Question w

World representation x

P(w)

Hand-designed




Revised process

Question w

World representation x

P(w)

Hand-designed

v

z(w, x; 0)




Revised process

Question w

P(w)

Hand-designed

World representation x

Can we learn P?

z(w, x; 0)

=

ply|w x; 0)



Dynamic Neural Module Networks

Comprised of a layout model p(z

x,; 0)) and an execution model p (v | w; 6)

Two major contributions:

1. Jointly learn network structure predictor with module parameters
2. Extend reasoning to any structured domains



Layout Model Overview

1.

w

Create a dependency parse using the Stanford dependency
parser

Collect phrases attached to wh-words or copulas

Associate these phrases with modules

Combine layout fragments using combinatorial modules, then
add a top-level labeling module

Score layout candidates



Stanford Dependency (SD) Parse

“Bell, based in Los Angeles, makes
and distributes electronic, “What does he think?”
computer and building products”

SD |nsubj(makes-8, Bell-1) <+—— \erbs SD | dobj(think-4, What-1) | <+— Copulas
nsubj(distributes-10, Bell-1) aux(think-4, does-2)
partmod(Bell-1, based-3) nsubj(think-4, he-3)

nn(Angeles-6, Los-5)

prep_in(based-3, Angeles-6)  <-—— Prepositional

conj_and(makes-8, distributes-10) phrases

amod(products- 16, electronic-11)

conj_and(electronic-11, computer-13)

amod(products- 16, computer-13)

conj_and(electronic-11, building-15)

amod(products- 16, building-15)

dobj(makes-8. products-16) | «—— Nouns de Marneffe & Manning 2008




Module Library

Lookup

— Attention

Produces an attention map
focused at the argument

Find

— Attention

Computes a distribution over
indices in the representation

Relate
Attention — Attention

Directs attention from one part
to another

And
Attention* — Attention

Returns intersection of
attentions

Describe
Attention — Labels

Computes an average of w
under attention, then labels it

Exists
Attention — Labels

Inspects attention to produce
a label




Module Association

. Find
Ordinary nouns & verbs [ — | 0
Proper nouns — 5 | Lookup
p u — Attention

Find + relate
— Attention

Prepositional phrases | —»

Next, assemble all subsets of these fragments into layout candidates



Scoring Candidates

Obtain scores for each layout, where:
- h (x) is a LSTM encoding of the question
- z are the layouts, f{z ) are feature vectors for the layouts

s(zi|z) = aTa(th(:L') + Cf(z)+d)

n
p(zilz; 0¢) = es(z‘m/zes(zjlw)
J=1

- Lastly, train the layout model with a gradient step:

VJ(0r) = E[(Vlogp(z|x; 6¢)) - log p(y|z, w; bc)]




Example

“What cities are in Georgia?”
(:) and
. o
b d ( relate[in]

e ~
A/ \ O : find[city] lookup[Georgia]

city Georgia

} }

what in o : relate[in]

C) relate[in]
find[city]

lookup[Georgia]

lookup[Georgia]




Generating Answers

Given a choice of z from the layout
model:

- Apply the world w to the network
zto get [z/ (a probability
distribution)

- Definep (v|w) = ([Z]W)y

black and white

(C) I describe color |

What color is this bird?

true

1

| exists

| @)

Montgomery @
Georgia (CX ) )
@cce

Atlanta

Are there any states?



Evaluation

What color is she What is the man

What is in the sheep’s ear?

wearing? dragging?
(describe [what] (describe[color] (describe[what]
(and find[sheep] find[wear]) find[man])
find(ear]))
tag white boat (board)

Image-grounded questions
- D-NMN achieved state-of-the-art
performance on VQA 2015
challenge
- Outperforms NMN with
hand-designed layout model

test-dev test-std

Yes/No Other All All

Zhou (2015) 76.6 35.0 42.6 557 559
Noh (2015)  80.7 37.2 41.7 572 574
Yang (2015) 79.3 36.6 46.1  58.7 58.9
NMN 81.2 38.0 44.0 58.6 58.7
D-NMN 81.1 38.6 455 594 59.4

Number




Evaluation

Text-grounded questions
- Introduce GeoQA+Q, which
provides more detailed answers to
GeoQA questions
- D-NMN performs better than
baselines and has a 7% accuracy
increase over NMN

Accuracy
Model GeoQA  GeoQA+Q
LSP-F 48 -
LSP-W 51 -
NMN ol.7 35.7
D-NMN 54.3 42.9

Is Key Largo an island?
(exists (and lookup[key-largo] find[island]))

yes: correct

What national parks are in Florida?
(and find[park] (relate[in] lookup[floridal))

everglades: correct

What are some beaches in Florida?

(exists (and lookup[beach]
(relate[in] lookup[florida])))

yes (daytona-beach): wrong parse

What beach city is there in Florida?

(and lookup[beach] lookup[city]
(relate[in] lookup[florida]))

[none] (daytona-beach): wrong module behavior



Takeaways

Advantage of continuous Semantic structure prediction
representations - Use only the parameters
- Neural representations allow required for the problem
cross-modality and can be - Save computation on small
learned via gradients problems

- Use larger networks for
harder problems




Discussion

How could this framework
be extended to other
domains (e.g. speech, game

playing)?
Is it possible to learn a

library of modules from
scratch?

What classes of queries can
you/can you not represent?




Key Takeaways + Final Questions

Benefits of continuous representations

Integrating compositionality and neural models

Ways to take advantage of hierarchical structures

How to reduce/change one model (RNNGs) to another (CVGs)?
Formally, what’s the relationship btwn the different models?



