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Extracting Automata from

Recurrent Neural Networks
Gail Weiss, Yoav Goldberg, Eran Yahav



Goal: Model Distillation

Can we approximate the operations of an RNN using a
deterministic finite automaton?

Given: Oracle RNN (R) Find: Minimal DFA (L)

Targets {0, 1 }*

Fully Connected
Layer

[~

As measured by
0 & ) ) the classification
output

https://www.arxiv-vanity.com/papers/1801.08322/
https://lwww.brics.dk/automaton/



Core Contributions

Given: Oracle RNN (R) Find: Minimal DFA (L)

Tt
i

Must answer: N
1.  Membership queries : Label the VN

data point \
2. Equivalence queries : Is the

Approximate using the L*

hypothesis equivalent to me? i.e. algorithm (black box)
accept or reject DFA with counter eg/

if reject




Core Contributions

A finite abstraction to the RNN to allow for answering of
equivalence queries:

Finite Abstraction (A)
L* DFA (L)
RNN (R)

== Aif L = R else find counterexample or fix A

2. Equivalence queries : Is the
hypothesis equivalent to me? i.e.
accept or reject DFA with counter eq.
if reject



Brief Recap of Automata
Theory



Deterministic Finite State Automata (DFA)

5tuple (Q,X,8,qo,F) such that:

1. Q all states, i.e. {1,2}

2. X alphabet i.e. {open, close}
3. 8:QxX—=Q transition function e.g § (1, close) = 2
4. qoeQ starting state, assume 1
“DFA can have only 1 start state”
5. FCQ final/ accept state(s)

5:QxX—-Q

transition condition

Q state

transition

close Z

entry action

Regular Language: The set of languages that can be accepted by a DFA

https://commons.wikimedia.org/wiki/File:Finite_state_machine_example_with_comments.svg



DFA Running Example

Regular Expressions are commonly represented with DFAs eg. baabb

qgo=s F={r} Q={s,q,p,r} *={b,a,c}
—> b ;
® b

In Weiss et al, RNN hidden states
are compared to Q

https://levelup.gitconnected.com/an-example-based-introduction-to-finite-state-machines-f908858e450f



RNN - Automata Notations



Notations DFA (L)

5 tuple <Q, Z, 6, qO, F> Q state

and f(Q) --> {Accept, Reject} stf(Q)==1ifQinF 6:QxX—-Q

RNN (R) close E
ﬁ —

transition condition

Fully Connected

SZQXZ—’Q Layer
\ Q

[ ]X_{ ) o entry mcton

>y 0 () ) ) Most importantly, the
hidden state of RNN = each state of DFA

2
closed

E: close
door

https://commons.wikimedia.org/wiki/File:Finite_state_machine_example_with_comments.svg
https://www.arxiv-vanity.com/papers/1801.08322/



Getting the classification decision
RNN (R)

DFA (L)

Each discrete state:
“Am | the final state?”

f(Q) ={0,1}

Each hidden vector:
“Am | the final state?”
f(Q) = {0,1}

Targets

l

Softmax

Fully Connected
8:0xX—-0Q Cove

— — L e e == N
{ { 1 1 S

closed

T @ G : N

https://commons.wikimedia.org/wiki/File:Finite_state_machine_example_with_comments.svg
https://www.arxiv-vanity.com/papers/1801.08322/



How do we map from R to L?

Go from continuous hidden
vectors (R) to discrete states
in DFA (L):

We need Abstractions (A)
I.e. discretization of states of
R.

RNN (R)

6:0Q0xX—-0Q

We need to answer
equivalence question
based on their

classifications:
?
— DFA (L)
f(Q) = {0,1}
f(Q) = {0,1} Q

™



How do we map from R to L?

Abstraction (A) .° yeer

N\ .
Approximate R using A and / \\\ Algorithm

try to answer the simpler

guestion: RNN (R) DF::)‘)SI{:)?1}
isA==L"7 f(Q) = {0,1}
This question can be 8:QxX~Q -
answered using L* 8:QXZ-Q B

\



How do we map from R to L?

Abstraction (A) .° yeer

N .
After comparing / \\\ Algorithm
classifications,

approximation can result in RNN (R) DF@)S'{:))”
Q) = 0,1}
counter examples i.e.
L!=A— find new L 8:QxX~Q i
8:Q0xXT—-Q -
or refinement of \

abstraction i.e. L=A
after finding new A



Results



Brief Recap of Findings

Classification question: Does the input sequence belong to a Tomita Grammar?
RNN: Binary Classification DFA: Reached Accept State or Not

1. Random Regular Languages: Reference Grammars have 5 state DFA over
2 letter alphabet

Table 1. Accuracy of DFAs extracted from GRU networks rep-
resenting small regular languages. Single values represent the
average of 3 experiments, multiple values list the result for each
experiment. Extraction time of 30 seconds is a timeout.

. Hidden DFA Average Accuracy on Length
Overall, RNN trained Size Time (s) ‘ Size “ 10| 50| 100 | 1000 | Train
50 30,30,30 || I1,I1,155 |[ 999 [ 998 [ 999 | 999 [ 999
o 100 1.0 || 11,1001 | 100 | 999 | 999 | 999 | 100
to 100% accuracy 500 30,30,30 || 10,1010 | 100 | 999 | 100 | 999 | 100.0




Brief Recap of Findings

2. Comparison with a-priori Quantization: Network state space divided into q
equal intervals. A different method of network abstraction than that proposed
in this paper.

This paper: extracted small and accurate DFAs in 30s

A-priori: With quantization of 2, time limit of 1000s was not enough and
extracted DFAs were large (60,000 states) and sequences of length 1000
would get 0% accuracy. For others, 99%+



Brief Recap of Findings

3. Comparison with Random Sampling: For counterexample generation, their
method is superior to random sampling, which could often become
intractable.

Table 2. Accuracy and maximum nesting depth of extracted au-
tomata for networks trained on BP, using either abstractions (“Ab-
str’”) or random sampling (“RS”) for equivalence queries. Accuracy
is measured with respect to the trained RNN.

Train Set Accuracy || Max Nest. Depth
Network | Abstr | RS || Abstr | RS
GRU 99.98 87.12 8 2

LSTM 99.98 94.19 8 3




Brief Recap of Findings

3.

Comparison with Random Sampling: For counterexample generation, their
method is superior to random sampling (RS), which could often become
intractable. Their method is also able to find adversarial inputs compared to

none for RS.

Table 2. Accuracy and maximum nesting depth of extracted au-
tomata for networks trained on BP, using either abstractions (“Ab-
str’”) or random sampling (“RS”) for equivalence queries. Accuracy
is measured with respect to the trained RNN.

Train Set Accuracy

Max Nest. Depth

Network || Abstr | RS || Abstr | RS
GRU 99 98 87.12 8 2
LSTM 99 .98 94.19 8 3



Brief Recap of Limitations

Due to L* polynomial complexity:

- Extraction can be very slow
- Large DFAs can be returned

When RNN doesn’t generalize well to input, this method finds various
adversarial inputs, builds a large DFA and times out.

Takeaway? RNNs are brittle and test set performance evidence should be
interpreted with extreme caution.



Breakout Room Activity

1. Where does model distillation fit in with the symbolism vs
connectionism debate?
2. Were we successfully able to show equivalence between
symbolic and connectionist architectures?



What Is One Grain of Sand
In the Desert?

Fahim Dalvi, Nadir Durrani, Hassan Sajjad, Yonatan
Belinkov, Anthony Bau, James Glass



Neural networks learn distributed
representations.




Neural networks learn distributed
representations.

Many neurons, or “grains of sand,”
comprise the meaning, or “the desert.”
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Neural networks learn distributed
representations.

If we zoom in on a small slice of the
representation, what would we find?

What if we look at only a single
neuron?
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F&P argue that although neural networks can implement symbolic computation,
they need not explicitly represent discrete symbols or operations on them.
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Inside the black box

F&P argue that although neural networks can implement symbolic computation,
they need not explicitly represent discrete symbols or operations on them.

However, it might be the case that neural networks implicitly learn to represent
and manipulate discrete units.

Here, we investigate whether neurons behave like discrete concept detectors,
and whether this local representation mechanism determines network behavior.



Neurons as concept detectors

Consider a hidden layer in some neural network.

the Hidden Layer
large

dog

ran Neural Model

Neural Model

through

green

<P

grass




Neurons as concept detectors

Consider a hidden layer in some neural network.

the

Hidden Layer In response to a stimulus

large (e.g. a word), it either does

o A not fire or it fires with some
/O\ magnitude.

ran Neural Model \Oi Neural Model

grass




Neurons as concept detectors

Consider a hidden layer in some neural network.

the

large

dog

ran

through

green

grass

Neural Model

Hidden Layer

P

Neural Model

In response to a stimulus
(e.g. a word), it either does
not fire or it fires with some
magnitude.



Neurons as concept detectors

Consider a hidden layer in some neural network.

the Hidden Layer In response to a stimulus

large (e.g. a word), it either does

o not fire or it fires with some
/O\ magnitude.

ran Neural Model  SRGus@)Rm=)  Neural Model

through \\Cg//

green

grass




Neurons as concept detectors

Consider a hidden layer in some neural network.

the

Hidden Layer In response to a stimulus

large (e.g. a word), it either does
o A not fire or it fires with some
/O\ magnitude.
ran Neural Model \Oi Neural Model
Chrough W Neurons that consistently,
strongly fire for specific

green

classes of stimuli can be

said to detect those stimuli.

grass




Neurons as concept detectors

Consider a hidden layer in some neural network.

the

large

dog

ran

through

green

grass

Neural Model

Hidden Layer

€

Neural Model

This neuron strongly activated for both
‘large” and “green,” so maybe it detects
adjectives!

In response to a stimulus
(e.g. a word), it either does
not fire or it fires with some
magnitude.

Neurons that consistently,
strongly fire for specific
classes of stimuli can be
said to detect those stimuli.



Neurons as concept detectors

In the previous example, we saw neurons that detect specific parts of speech.
What if we don’t know what concepts to look for?



Neurons as concept detectors

In the previous example, we saw neurons that detect specific parts of speech.
What if we don’t know what concepts to look for?

the Network A
large (:>
) O
og (:>
ran (:)
through <:>
O
green (:>

grass




Neurons as concept detectors

In the previous example, we saw neurons that detect specific parts of speech.
What if we don’t know what concepts to look for?

the Network A Idea: If the concept is
large O important for the task,
oo O then any neural

O network solving the
ran O task should encode
through O the concepit.
- |8

grass




Neurons as concept detectors

In the previous example, we saw neurons that detect specific parts of speech.
What if we don’t know what concepts to look for?

the Network A Network B Network C Idea: If the Concept IS
large O O O important for the task,
i, O O O then any neural

’ O O O network solving the
ran O O O task should encode
through O O O the concepit.

O O O

green O O O

grass




Neurons as concept detectors

In the previous example, we saw neurons that detect specific parts of speech.
What if we don’t know what concepts to look for?

the Network A Network B Network C Idea: If the Concept IS
large @ @ O important for the task,
i, O O O then any neural

’ O O ® network solving the
ran O O O task should encode
through O O O the concepit.

O [ _ O

green O O O

grass




Neurons as concept detectors

In the previous example, we saw neurons that detect specific parts of speech.
What if we don’t know what concepts to look for?

the Network A Network B Network C Idea: If the Concept IS
large O O O important for the task,
” O @) O then any neural

> O O O network solving the
ran o O O task should encode
through O O O the concepit.

O O O

green O O P

grass




Neurons as concept detectors
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Neurons as concept detectors

In the previous example, we saw neurons that detect specific parts of speech.
What if we don’t know what concepts to look for?

the

large

dog

ran

through

green

grass

Network A

OOOOOO/’

Network B

Network C

O

3

Idea: If the concept is
important for the task,
then any neural
network solving the
task should encode
the concept.

\

These neurons tend to fire
together, so they probably encode
the same (important) thing.




Discussion

10 minutes

Before we dive into experiments:

e |s this a reasonable way to
interpret neuron activations?

e \We've described a sort of local
representation; can we call it
“symbolic™?



This neuron strongly activated for both

Ll ng u |St|C CO rrelatlon anaIyS|S “large” and “green,” so maybe it detects

adjectives!

the Hidden Layer
large

dog

ran Neural Model

Neural Model

through

green

<

grass




This neuron strongly activated for both

Ll ng u |St|C CO rrelatlon anaIyS|S “large” and “green,” so maybe it detects

adjectives!

the Hidden Layer
large

/.< Goal: Identify neurons that
- A detect linguistically
ran Neural Model  SSSS@EESE!  Neural Model meaningful concepts: part of
through \O/ speech, morphological
reon features, or semantic tags.

The linguistic concepts are

grene known a priori.
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Setup

Sequence of words (x,;, ...,

Set of word and label tuples (x;, I.)

X )

E.g., (“green”, JJ) for POS. The
authors experiment with POS and
semantic tags.

Model f mapping words to vector representations f(x.) = z.

E.g., the hidden state of an RNN after
the i-th input. The authors use the
hidden states of RNNs trained on MT
(EN — FR, DE — EN) and LM.




Method

Train logistic regression classifier on (z,, 1) pairs



Method

Train logistic regression classifier on (z,, 1) pairs

Minimize regularized cross entropy:

L(0) == log Py(Li|x;) + Aull0]l1 + A216]I3



Method

Train logistic regression classifier on (z,, 1) pairs

Minimize regularized cross entropy:

L(0) == log Py(L;|x;) HAwll0]l1[+ A216]I3

N

Encourages sparsity, i.e.
selection of only a few neurons




Results: classifier accuracy

| French | English |  German

| POS Morph | POS SEM | POS Morph
MAJ | 92.8 89.5 | 91.6 842 | 893 83.7
NMT | 93.2 88.0 ‘ 93.5 90.1 ‘ 93.6 87.3

NLM | 924  90.1 929 860 | 923 86.5

Table 1: Classifier accuracy when trained on activations of
NMT and NLM models. MAJ: local majority baseline.

Takeaway: The neural representations do contain (potentially distributed) signal
about part of speech, morphology, and semantic tags.



Results: ablating important neurons

| I Masking-out

Task ALL 10% 15% 20%
Top | Bot | Top| Bot | Top|] Bot

FR (POS) | 932 |||63.2| 23.8 | 73.0] 24.8 | 79.4] 249
EN (POS) | 93.5 |||69.8 ) 15.8 | 78.3) 179 | 84.1| 21.5
EN (SEM) | 90.1 |||51.5) 163 § 65.3] 189 | 742} 20.7
DE (POS) | 93.6 |[||659] 15.7 | 78.0| 15.6 | 88.2] 15.7

FR (POS) | 924 |||41.6] 23.8 § 53.6] 23.8 | 59.6] 24.0
EN (POS) | 92.9 |||54.2] 18.4 | 66.1| 20.4 | 72.4) 24.7
= | EN(SEM) | 86.0 |149.7] 219 |56.8]| 22.3 | 65.2] 25.1
E DE (POS) | 92.3 |||39.7) 16.7 | 51.7| 16.7 | 67.2] 16.9

NMT

Table 2: Classification accuracy on different tasks using all
neurons (ALL). Masking-out: all except top/bottom N% of
neurons are masked when testing the trained classifier.

Takeaway 1: The MT and LM systems do distribute information across neurons.



Results: ablating important neurons

| I Masking-out

Task ALL 10% 15% 20%
Top | Bot | Top | Bot || Top | Bot

FR (POS) | 932 || 632 |23.8 ) 73.0 |24.8] 79.4 | 24.9
EN (POS) | 935 || 698 J15.8 ) 783 |17.9] 84.1 | 21.5
EN (SEM) | 90.1 || 51.5 J163 ) 653 | 189 742 | 20.7
DE (POS) | 93.6 || 659 157 78.0 | 15.6) 88.2 | 15.7

FR (POS) | 924 || 41.6 |23.8 ) 53.6 |23.8] 59.6 | 24.0
EN (POS) | 92.9 || 54.2 |18.4 | 66.1 |20.4]) 72.4 | 24.7
= | EN(SEM) | 86.0 | 49.7 219 56.8 |22.3] 652 | 25.1
E DE (POS) | 92.3 || 39.7 J16.7 ) 51.7 | 16.7] 67.2 | 16.9

NMT

Table 2: Classification accuracy on different tasks using all
neurons (ALL). Masking-out: all except top/bottom N% of
neurons are masked when testing the trained classifier.

Takeaway 2: ...but the systems rely more on neurons that detect linguistically
meaningful symbols.



Examples of linguistically meaningful neurons

he efforts of the Libyan authorities to recover
priated under the Qadhafi regime

(a) English Verb (#1902)
einige von Ihnen haben vielleicht davon gehort , dass ich

vor Bifillpaar Wochen @i@NAnzeige bei Ebay geschaltet habe .
(b) German Article (#590)

, in particular resolution 2216 ( 2015

(c) Position Neuron (#1903)

Figure 3: Activations of top neurons for specific properties



Which linguistic concepts are most distributed?

120
110
100
90
80
70
60
50

Number of salient neurons

40
30
20
10

English-French
POS Tagging

98

French-English
POS Tagging

94

Properties from various language pairs and tasks

Information about open-class categories
(e.g. noun and verb parts of speech) is
highly distributed.

Information about closed-class categories
(e.g. month of year, end of sentence) is local
to a few neurons.




Discussion

10 minutes

Model performance still drops
substantially when the least salient
neurons are ablated. What can we
conclude?

Why should open class concepts
(e.g. noun/verb POS) be more
distributed than closed class
concepts?



Cross-model correlations

\

Large O O
d 8\\ O O
og O \K
O O O
O O [™M_O
o | e
green O O \'\

These neurons tend to fire
together, so they probably encode
the same (important) thing.
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Method

Train the same architecture on the original task with multiple random seeds.

In each model, look for neurons whose activations are highly correlated with a
neuron from a different initialization.

Activation values

for i-th model, j-ith
/ neuron

score(M;;) = max p(M;;|, M/ ;)
1<i'<N
1<j'<D

i’

Same architectures (RNNs) and tasks (LM/MT) as before.



Results: ablating correlated neurons

BLEU score

40

FR-EN Top F-FR-EN Bottom - FR Top -{F-FR Bottom
~O~DE-EN Top  -O--DE-EN Bottom ~O~DE Top -~O--DE Bottom
~4~EN-FRTop  -#--EN-FR Bottom - —4—EN Top -#--EN Bottom
525 A
450
2 375 e
Q .
3 300
e
225
150
, 75
el A A
LR __A:A;-A_:A;-A 0 b
400 600 800 1000 1200 0 100 200 300 400 500 600 700

Number of ablated neurons Number of ablated neurons

Takeaway: Cross-model correlations select for salient neurons, and the
network is most sensitive to the most correlated neurons. These
neurons likely select for task-essential concepts.



Results: comparison to single-model correlations

BLEU score

{7~ Cross-model Top -{F-Cross-model Bottom
~O—Variance Top -~ Variance Bottom
&~ Mean Top -4+~ Mean Bottom

y Variance
\

0 200 400 600 800 100

Number of ablated neurons

Takeaway: We’re not hallucinating. Neurons
with cross-model correlation select for more

task-essential concepts than e.g. the highest
variance neurons.



Results: comparison to linguistic correlations

~{1~ Cross-model Top
% g, -3 - Cross-mogel Botom Takeaway: Some classes of neurons are
Y O~ Linguistic-Correlation (POS)
more essential for NMT than others.

Linguistic-Correlation (SEM)

BLEU score
n
(=]

¥ In particular, the model relies most neurons
FoE W E B with cross-model correlations. These
probably select for concepts essential to MT.




Breakout
Rooms

For the remaining time...

Is it fair to assume different
initializations of an NN will learn
similar concept detectors?

How does this method for
identifying symbolic computation
compare to the method used in
[Weiss et al., 2018]?

These results are somewhat noisy;
can we conclude these models are
learning discrete structures?



Appendix



| | Re-training

Task ALL 10% 15% 20%
Top Bot | Top Bot | Top Bot

FR (POS) | 932 884 721 | 90.0 778 | 91.1 818
EN (POS) | 935 89.1 80.6 | 90.5 848 | 91.2 872
EN (SEM) | 90.1 85.6 734 | 87.0 778 | 87.8 80.8
DE (POS) | 936 || 914 77.1 | 923 819 | 928 853

FR (POS) | 924 83.7 618 | 86.2 717 | 878 774
EN (POS) | 929 858 624 | 882 725 | 894 792
= | EN(SEM) | 860 || 789 67.8 | 814 74.1 | 827 776
E DE (POS) | 923 87.2 417 | 89.6 67.0 | 904 76.5

NMT

Table 4: Classification accuracy on different tasks using all
neurons (ALL). Re-training: only top/bottom N% of neurons
are kept and the classifier is retrained



| I Masking-out

Task ALL 10% 15% 20%
Top Bot | Top Bot | Top Bot

& | FR (Morph) | 88.0 || 25.2 173 | 39.0 203 | 56.3 243
E DE (Morph) | 87.3 || 21.8 15.7 | 333 20.8 | 53.2 293
]

FR (Morph) | 90.1 || 36.3 139 | 451 155 | 584 19.0
DE (Morph) | 86.5 || 24.2 10.7 | 40.7 13.0 | 528 19.2

Table 5: Classification accuracy on morphological tags for
French and German using all neurons (ALL). Masking-out:
all except top/bottom N% of neurons are masked when test-
ing the trained classifier.



| I Retraining

Task ALL 10% 15% 20%
Top Bot | Top Bot | Top Bot

FR (Morph) | 88.0 || 73.5 65.8 | 780 71.6 | 80.6 75.1
DE (Morph) | 87.3 793 754 | 82.1 789 | 835 805

= | FR Morph) | 90.1 79.5 616 | 825 703 | 849 75.7
DE (Morph) | 86.5 783 66.1 | 81.6 724 | 83.0 77.1

Table 6: Classification accuracy on morphological tags for
French and German using all neurons (ALL). Re-training:
only top/bottom N% of neurons are kept and the classifier is
retrained



