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(courtesy Percy Liang)



at least 2 red squares

(courtesy Percy Liang)



How can language guide representation
learning, especially when data is scarce?



How can language guide representation
learning, especially when data is scarce?

We study the (underexplored!) setting where
language is available at train time, but
unavailable for new tasks at test time
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Prototype networks (Snell et al., 2017)
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Prototype networks (Snell et al., 2017)
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Language-shaped Iearning (LSL): Train
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Language-shaped learning (LSL): Test




Learning with latent language (L3): Train

Description

a red cross is below
a square

Andreas et al., 2018



Learning with latent language (L3): Train

- . Description
av '
5§ — a red cross is below
X( . ) a square

| -

Test Andreas et al., 2018

Train




Learning with latent language (L3): Train

)

Use language
as a concept

~

N

N Eae=
(veoe®
EE
Train
\_
(@

Description

a red cross is below

a square

Andreas et al., 2018
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Learning with latent language (L3): Test
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Learning with latent language (L3): Test
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Two Questions

1. Does a model trained with language (LSL) do better than a
model trained without (Meta)?

2. Is there any benefit to using language as a discrete bottleneck
(L3), rather than just an auxiliary training objective (LSL)?
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Natural language annotations (rReed et al., 2016)

The bird has a white
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feathers in the wings,
a large wingspan, and
a white beak.

This bird has

distinctive-looking

brown and white

- stripes all over its
£ Dbody, and its brown

>

- tail sticks up.




Natural language annotations (rReed et al., 2016)

The bird has a white
underbelly, black
feathers in the wings,
a large wingspan, and
a white beak.

This bird has
distinctive-looking

brown and white

- stripes all over its
£ Dbody, and its brown

-

- tail sticks up.

Assume limited, class-level language:
sample D = 20 captions per class (~2000 captions total)



Birds: results

5-way, 1-shot classification
Accuracy
(£ 95% ClI)
58.0 £ .96
LSL 61.2+£.96 +3.3
L3 54.0+ 1.1 -4.0



Birds: results

5-way, 1-shot classification
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What about language helps?
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Two Questions

1. Does a model trained with language (LSL) do better than a
model trained without (Meta)?
> Yes! Language is a promising source of supervision for vision

models.

2. Is there any benefit to using language as a discrete bottleneck
(L3), rather than just an auxiliary training objective (LSL)?
> No, at least for the tasks explored here.



Questions for discussion

1. This paper looked at using language as (1) a regularizer, or (2) a
bottleneck for class-level representations. How / where else
could we use language to support the training process?

2. What do we expect to be the comparative strengths of LSL/ L3/
other language-based training procedures?
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