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An alien broadcast

f84hh4zl8da4dzwrzo40hizeb3zm8bbz9e8dzj74z1e0h3z0iz0zded4n42kj8l4z38h42jehzdels9z	

chzl8da4dz8iz2708hc0dze5z4bi4l84hzdlzj74z3kj27zfk1b8i78d6z6hekfhk3ebf7z06d4mzvvz	

o40hizeb3z0d3z5ehc4hz2708hc0dze5z2edieb830j43z6eb3z584b3izfb2m0izd0c43z0zded4n42	

kj8l4z38h42jehze5zj78iz1h8j8i7z8d3kijh80bz2ed6bec4h0j4z05ehcze5z0i14ijeized24zki	

43zjezc0a4za4djz2860h4jj4z58bj4hiz70iz20ki43z0z7867f4h24dj064ze5z20d24hz340j7iz0	

ced6z0z6hekfze5zmeha4hiz4nfei43zjez8jzceh4zj70dztqo40hiz06ezh4i40h274hizh4fehj43	

zj74z0i14ijeiz5814hz2he283eb8j4z8izkdkik0bboh4i8b84djzed24z8jz4dj4hizj74zbkd6izm	

8j7z4l4dz1h845z4nfeikh4izjez8jz20ki8d6iocfjecizj70jzi7emzkfz342034izb0j4hzh4i40h



Predictability

f84hh4zl8da4dzwrzo40hizeb3zm8bbz9e8dzj74z1e0h3z0iz0zded4n42kj8l4z38h42jehzdels9z	

chzl8da4dz8iz2708hc0dze5z4bi4l84hzdlzj74z3kj27zfk1b8i78d6z6hekfhk3ebf7z06d4mzvvz	

o40hizeb3z0d3z5ehc4hz2708hc0dze5z2edieb830j43z6eb3z584b3izfb2m0izd0c43z0zded4n42

p(Xt ∣ X1:t−1)
Can I guess what character is coming next?



Predictability

f84hh4zl8da4dzwrzo40hizeb3zm8bbz9e8dzj74z1e0h3z0iz0zded4n42kj8l4z38h42jehzdels9z	

chzl8da4dz8iz2708hc0dze5z4bi4l84hzdlzj74z3kj27zfk1b8i78d6z6hekfhk3ebf7z06d4mzvvz	

o40hizeb3z0d3z5ehc4hz2708hc0dze5z2edieb830j43z6eb3z584b3izfb2m0izd0c43z0zded4n42

p(𝟾 ∣ 𝟼𝟹𝚋𝟹𝚣)
Can I guess what character is coming next?



Predictability

f84hh4zl8da4dzwrzo40hizeb3zm8bbz9e8dzj74z1e0h3z0iz0zded4n42kj8l4z38h42jehzdels9z	

chzl8da4dz8iz2708hc0dze5z4bi4l84hzdlzj74z3kj27zfk1b8i78d6z6hekfhk3ebf7z06d4mzvvz	

o40hizeb3z0d3z5ehc4hz2708hc0dze5z2edieb830j43z6eb3z584b3izfb2m0izd0c43z0zded4n42

p(𝟾 ∣ 𝟼𝟹𝚋𝟹𝚣) = #(z	8)

#(z)
e.g. by counting frequencies?



Predictability

f84hh4zl8da4dzwrzo40hizeb3zm8bbz9e8dzj74z1e0h3z0iz0zded4n42kj8l4z38h42jehzdels9z	

chzl8da4dz8iz2708hc0dze5z4bi4l84hzdlzj74z3kj27zfk1b8i78d6z6hekfhk3ebf7z06d4mzvvz	

o40hizeb3z0d3z5ehc4hz2708hc0dze5z2edieb830j43z6eb3z584b3izfb2m0izd0c43z0zded4n42

H(Xt ∣ 𝚣) = − ∑
x

p(xt ∣ 𝚣) log p(xt ∣ 𝚣)

How much uncertainty do I have about the next character, 
given that the last one was a z?



Predictability
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H(Xt ∣ xt−1)xt−1



Predictability

f84hh4zl8da4dzwrzo40hizeb3zm8bbz9e8dzj74z1e0h3z0iz0zded4n42kj8l4z38h42jehzdels9z	

chzl8da4dz8iz2708hc0dze5z4bi4l84hzdlzj74z3kj27zfk1b8i78d6z6hekfhk3ebf7z06d4mzvvz	

o40hizeb3z0d3z5ehc4hz2708hc0dze5z2edieb830j43z6eb3z584b3izfb2m0izd0c43z0zded4n42

Hypothesis: “islands of local predictability” 



Discrete structure?

f84hh4-l8da4d-wr-o40hi-eb3-m8bb-9e8d-j74-1e0h3-0i-0-ded4n42kj8l4-38h42jeh-dels9-	

ch-l8da4d-8i-2708hc0d-e5-4bi4l84h-dl-j74-3kj27-fk1b8i78d6-6hekfhk3ebf7-06d4m-vv-	

o40hi-eb3-0d3-5ehc4h-2708hc0d-e5-2edieb830j43-6eb3-584b3i-fb2m0i-d0c43-0-ded4n42

Hypothesis: “islands of local predictability” 



Discrete structure?

f84hh4-l8da4d-wr-o40hi-eb3-m8bb-9e8d-j74-1e0h3-0i-0-ded4n42kj8l4-38h42jeh-dels9-	

ch-l8da4d-8i-2708hc0d-e5-4bi4l84h-dl-j74-3kj27-fk1b8i78d6-6hekfhk3ebf7-06d4m-vv-	

o40hi-eb3-0d3-5ehc4h-2708hc0d-e5-2edieb830j43-6eb3-584b3i-fb2m0i-d0c43-0-ded4n42

This segmentation reveals lots of repeated units!



Ordering rules?

1o-j74-kic1-5hec-r9xv-j7hek67-r9yx-j74-0dc2-74b3-0-i4h84i-e5-

m4bb-0jj4d343-0ddk0b-2ed54h4d24i-ik1i4gk4djbo-0-i4h84i-e5-d0j8ed0b-

c4jh82-2ed54h4d24i-9e8djbo-ifedieh43-1o-j74-0dc2-j74-ki-c4jh82-0iie280j8ed-

kic0-j74-34f0hjc4dj-e5-2ecc4h24-0d3-j74-d0j8ed0b-8dij8jkj4-e5-ij0d30h3i-0d3-

j427debe6o-d8ij-m4h4-74b3-5hec-r9yx-j7hek67-r99t

Some units seem to occur in similar contexts.



Alien e-commerce

f84hh4-l8da4d-wr-o40hi-r99t	

m8bb-9e8d-j74-1e0h3-0i-0-de	

d4n42kj8l4-38h42jeh-dels9-x	

Photos:	KTS	Design/	Science	Photo	Library/Getty	Images,	Amazon

These units co-
occur with features 
of the world 
described by the 
messages

o40hi-eb3-0d3-5ehc4h-2708hc	

0d-e5-2edieb830j43-6eb3-584	

b3i-fb2m0i-d0c43-0-ded4n42-	

kj8l4-38h42jeh-e5-r99t-1h8j



Predicting grounded meanings

f84hh4-l8da4d-wr-o40hi-eb3-m8bb-r9yx-j74-1e0h3-0i-0-ded4n42kj8l4-38h42jeh-dels9-	

ch-l8da4d-8i-2708hc0d-e5-4bi4l84h-dl-j74-3kj27-fk1b8i78d6-6hekfhk3ebf7-06d4m-vv-	

o40hi-eb3-0d3-5ehc4h-2708hc0d-e5-2edieb830j43-6eb3-584b3i-fb2m0i-d0c43-0-ded4n42

p( ∣ X1:t)
∣ 𝚛𝟿𝚢𝚡)and help us accurately predict the 

context (and meaning?) of new 
messages



Questions: controlled generation

p(𝚚𝚡𝚡 − 𝟿𝟹𝚊𝚛 ∣ take me to your leader)

or even to generate new messages based on meanings we want 
to communicate.



Probabilistic models  
of language

Linguistic structure  
& “speaker intuition”

meaning & use



f84hh4zl8da4dzwrzo40hizeb3zm8bbz9e8dzj74z1e0h3z0iz0zded4n42kj8l4z38h42jehzdels9z	

chzl8da4dz8iz2708hc0dze5z4bi4l84hzdlzj74z3kj27zfk1b8i78d6z6hekfhk3ebf7z06d4mzvvz	

o40hizeb3z0d3z5ehc4hz2708hc0dze5z2edieb830j43z6eb3z584b3izfb2m0izd0c43z0zded4n42	

kj8l4z38h42jehze5zj78iz1h8j8i7z8d3kijh80bz2ed6bec4h0j4z05ehcze5z0i14ijeized24zki	

43zjezc0a4za4djz2860h4jj4z58bj4hiz70iz20ki43z0z7867f4h24dj064ze5z20d24hz340j7iz0	

ced6z0z6hekfze5zmeha4hiz4nfei43zjez8jzceh4zj70dztqo40hiz06ezh4i40h274hizh4fehj43	

zj74z0i14ijeiz5814hz2he283eb8j4z8izkdkik0bboh4i8b84djzed24z8jz4dj4hizj74zbkd6izm	

8j7z4l4dz1h845z4nfeikh4izjez8jz20ki8d6iocfjecizj70jzi7emzkfz342034izb0j4hzh4i40h

This is what all datasets look like to NLP models



((Human (language)) (processing))



Language as input

This film will ruin your childhood.

Text classification

(output)(input)



Language as input

Machine translation

(input)

(output)

Le programme a été mis en application.

The program was implemented.



Language as input

Automatic summarization

(output)(input)

We present a new parser for the 
Penn Treebank. The parser achieves 
90% accuracy using a “maximum-
entropy-inspired” model for 
conditioning and smoothing that 
let us combine many different 
conditioning events.



Language as output

Generation from structured data

(output)(input)

sopoulos, 2007; Turner et al., 2010). Generation is
divided into modular, yet highly interdependent, de-
cisions: (1) content planning defines which parts of
the input fields or meaning representations should
be selected; (2) sentence planning determines which
selected fields are to be dealt with in each output
sentence; and (3) surface realization generates those
sentences.

Data-driven approaches have been proposed to
automatically learn the individual modules. One ap-
proach first aligns records and sentences and then
learns a content selection model (Duboue and McK-
eown, 2002; Barzilay and Lapata, 2005). Hierar-
chical hidden semi-Markov generative models have
also been used to first determine which facts to dis-
cuss and then to generate words from the predi-
cates and arguments of the chosen facts (Liang et al.,
2009). Sentence planning has been formulated as a
supervised set partitioning problem over facts where
each partition corresponds to a sentence (Barzilay
and Lapata, 2006). End-to-end approaches have
combined sentence planning and surface realiza-
tion by using explicitly aligned sentence/meaning
pairs as training data (Ratnaparkhi, 2002; Wong and
Mooney, 2007; Belz, 2008; Lu and Ng, 2011). More
recently, content selection and surface realization
have been combined (Angeli et al., 2010; Kim and
Mooney, 2010; Konstas and Lapata, 2013).

At the intersection of rule-based and statisti-
cal methods, hybrid systems aim at leveraging hu-
man contributed rules and corpus statistics (Langk-
ilde and Knight, 1998; Soricut and Marcu, 2006;
Mairesse and Walker, 2011).

Our approach is inspired by the recent success of
neural language models for image captioning (Kiros
et al., 2014; Karpathy and Fei-Fei, 2015; Vinyals et
al., 2015; Fang et al., 2015; Xu et al., 2015), ma-
chine translation (Devlin et al., 2014; Bahdanau et
al., 2015; Luong et al., 2015), and modeling conver-
sations and dialogues (Shang et al., 2015; Wen et al.,
2015; Yao et al., 2015).

Our model is most similar to Mei et al. (2016)
who use an encoder-decoder style neural network
model to tackle the WEATHERGOV and ROBOCUP
tasks. Their architecture relies on LSTM units and
an attention mechanism which reduces scalability
compared to our simpler design.

Figure 1: Wikipedia infobox of Frederick Parker-Rhodes. The
introduction of his article reads: “Frederick Parker-Rhodes (21
March 1914 – 21 November 1987) was an English linguist,
plant pathologist, computer scientist, mathematician, mystic,
and mycologist.”.

3 Language Modeling for Constrained

Sentence generation

Conditional language models are a popular choice
to generate sentences. We introduce a table-
conditioned language model for constraining text
generation to include elements from fact tables.

3.1 Language model

Given a sentence s = w1, . . . , wT with T words
from vocabulary W , a language model estimates:

P (s) =
TY

t=1

P (wt|w1, . . . , wt�1) . (1)

Let ct = wt�(n�1), . . . , wt�1 be the sequence of
n � 1 context words preceding wt. An n-gram lan-
guage model makes an order n Markov assumption,

P (s) ⇡
TY

t=1

P (wt|ct) . (2)

3.2 Language model conditioned on tables

A table is a set of field/value pairs, where values are
sequences of words. We therefore propose language
models that are conditioned on these pairs.

Local conditioning refers to the information
from the table that is applied to the description of the
words which have already generated, i.e. the previ-
ous words that constitute the context of the language

2

Frederick Parker-Rhodes (21 March 
1914 – 21 November 1987) was an 
English linguist, plant pathologist, 
computer scientist, mathematician, 
mystic, and mycologist. 

[Lebret et al. 2016]



Language as interface

Task-oriented dialog
What do I have today?

You	have	five	events	scheduled.	The	
first	is	a	one-on-one	with	Anjali.

Can you reschedule that for 
tomorrow at the same time?

Sure,	I've	sent	an	email	to	let	her	
know.

Can you add a cram session with 
Nick and his manager? We’ll need a 
room on the 10th floor.

[Microsoft / Semantic Machines]



Language as interfaceInstruction following

[Tellex et al., 2011]



Language as data

88

Figure 1: Cluster plot and sentiment behavior patterns for each cluster.

Computational social science

sentiment trajectories in Youtube videos

89

Cluster Description N. of videos % of videos Avg. vc Avg. up v.
Rags to riches Negative curve turns into positive curve 2675 16.73 827.00 15.53
Riches to rags Positive curve turns into negative curve 2587 16.18 1002.47 17.11
Downhill from here Short positive turns into consistent negative 2177 13.61 919.94 16.82
End on a high note Short negative turns into consistent positive 2194 13.72 928.78 17.03
Uphill from here Consistent negative turns into short positive 2085 13.04 823.17 14.37
End on a low note Consistent positive turns into short negative 1547 9.67 846.80 16.81
Mood swing Small positive start into negative-positive-

negative curves with small positive ending
2728 17.06 910.83 16.57

Total All 15993 100 897.71 16.32

Table 2: Sentiment styles taxonomy (adopted from Kleinberg et al. (2018)) and descriptive statistics; Average
(Avg.) scores are adjusted by the number of days the videos were uploaded; N = Number; vc = view count; v =
votes.

Political leaning
Cluster Left Right
Rags to riches -0.96 0.96
Riches to rags 1.09 -1.09
Downhill from here -3.25* 3.25*
End on a high note 1.28 -1.28
Uphill from here 2.74* -2.74*
End on a low note -2.44 2.44
Mood swing 1.13 -1.13

Table 3: Chi-Square residuals; * = statistically signifi-
cant (↵ = 0.01).

were used more often by politically left leaning
news channels.

4.4 Sentiment clusters and popularity

To assess the relationship between the sentiment
clusters and political orientations on popularity
rating, we conducted three least square regres-
sion models in R with the "caret" package (Kuhn,
2008). The different sentiment clusters were the
predictors for the adjusted popularity rating. We
used the cluster "mood swing" as the reference
category as it was closest to the overall average
of the adjusted upvotes, all other clusters were
treated as a separate dichotomous variable. Our
first regression model included sentiment clusters,
which consisted of all news channels. The second
regression model included the channel as a fixed
effect along with sentiment clusters. The analysis
indicated that there was no significant difference
in the adjusted popularity rating between the clus-
ters in the second model; "Rags to riches" (� =
�1.28, se = 1.60, p = .42), "Riches to rags" (� =
.47, se = 1.61, p = .77), "Down hill from here"
(� = �1.25, se = 1.69, p = .46), "End on a high
note" (� = .4, se = 1.69, p = .81), "Up hill from
her" (� = �1.71, se = 1.71, p = .32), "End on

a low note" (� = .02, se = 1.87, p = .99). Nei-
ther model explains a sufficient proportion of the
variance to be considered informative, R2 = 0.00
and R2 = 0.03, for the first and second model,
respectively.

We also split the transcripts in three equal sized
components (beginning, middle, and end) and cal-
culated the average sentiment rating for each part
and used a OLS regression model to test for an ef-
fect of the components on the adjusted popularity
(F (10, 15982) = 52.46, p < .001, r2 = 0.03).
No significant effects were found, after control-
ling for channel: "Beginning" (� = �1.28, se =
1.02, p = .68), "Middle" (� = �1.65, se =
�1.65, p = .11), "End" (� = �1.79, se =
1.09, p = .1).

In addition we used an OLS regression model
to test if the average sentiment score of each tran-
script and political leaning had an effect on the
adjusted popularity (F (3, 15989) = 1759, p <
.001, r2 = 0.248). It seems that the model can
account for 24% of the variance in adjusted pop-
ularity. The model exhibits a significant con-
stant (� = 0.013, se < 0.001, p < 0.001), a
significant main effect of political leaning (right)
(� = 0.021, se < 0.001, p < 0.001), an in-
significant main effect for average sentiment (� =
�0.0004, se = 0.001, p = 0.66), and a significant
interaction between average sentiment and politi-
cal leaning (right) (� = �0.003, se < 0.001, p =
0.034). The model predicted adjusted popular-
ity for left wing channel when average sentiment
equals to zero is 0.013 and 0.013 + 0.02 = 0.033
for right wing channels. The slope of the regres-
sion line for the left wing channel is -0.0004 and
-0.0004 - 0.003 = -0.0034 for right wing channels,
suggesting that the effect of average sentiment is
greater in magnitude for right wing than for left
wing channels.

predictiveness of 
political stance

[Soldner et al., 2019]



Our toolbox



Probabilistic modeling

I saw the man on the hill with the telescope.



Probabilistic modeling

I saw the man on the hill with the telescope.



Probabilistic modeling

I went to the restaurant on February 4th.



Probabilistic modeling

I went to the restaurant on February 4th.

Feb

4



Probabilistic modeling

I went to the restaurant on February 4th.

Feb

4
Feb 4 Ave



Probabilistic modeling

I went to the restaurant on February 4th.

Feb

4
Feb 4 Ave



Probabilistic modeling

I went to the restaurant on February 4th.

Feb

4
Feb 4 Ave



Probabilistic modeling

I went to the restaurant on February 4th.

Feb

4
Feb 4 Ave



Probabilistic modeling

p(a quick brown fox ∣ jumps over the lazy dog)

p(jumps over the lazy dog ∣ a quick brown fox)

p(a quick brown fox) p(jumps over the lazy dog)

We need to predict which interpretations  
are allowed, and which are most likely.



Machine learning

pθ(a quick brown fox) ∝ exp{θ⊤( f(a) + f(quick) + ⋯)}

We need to estimate these probability 
distributions from corpus data. 

θ* = argminθ ∑
sentence

− log(pθ(sentence))



Representation learning

cat

ocelot

apophenia

We need to share information across 
words and tasks to handle with data  
sparsity.



Linguistics

We need to constrain the space of interesting  
prediction problems (and relevant features ?)  
and form hypotheses about model behavior.

I went to the restaurant on February 4th.
on-1
on-5

?

?



Admin



Prereq: probability

p(a quick brown fox ∣ jumps over the lazy dog)

p(jumps over the lazy dog ∣ a quick brown fox)

p(a quick brown fox) p(jumps over the lazy dog)



Prereq: intro ML

pθ(a quick brown fox) ∝ exp{θ⊤( f(a) + f(quick) + ⋯)}

θ* = argminθ ∑
sentence

− log(pθ(sentence))



Prereq: algorithms & discrete math

a

f(wi) = ∑
wi−1

f(wi−1) ⋅ g(wi−1, wi)

quick brown fox

a bright purple fox

the florescent indigo badger

wi

wi−1



Course staff

Instructors:

Jacob Andreas Jim Glass

TAs:

Tianxing He Hongyin Luo Faraaz Nadeem Yu-An Chung Zihao Xu



Course outline

Feb 4 - Mar 5: sequence models 

Mar 10 - Mar 31: syntax & semantics 

Apr 2 - Apr 28: guest lectures 

Apr 30 - May 7: project presentations



Structure of the course

- Three homework assignments 

- Midterm exam 

- (6.806 only) Extra homework  
(6.864 only) Final group project



Homework assignments

- 1/2 paper, 1/2 coding  

- coding: we’ll provide pytorch  
notebooks in Google colab, but  
you’re free to submit whatever  
you want to eval server



Homework assignments

Collaboration policy: 

We encourage you to work together, 
but final writeup and code must be  
your own!



Midterm exam

March 19 in class
(Makeup session date TBD)



Late work policy

- Due dates will be posted on Stellar 

- Due at midnight 

- 10% off for every day late 

- Late final projects will not be accepted!

(talk to S3 / us if you need specific accommodations)



Final projects (6.864)

- Implement a {previously published, new} 
model for a {standard benchmark, new task} 

- Groups of ~3 people 

- 3 submissions: proposal, update, final report 

- Dates & details TBD (after spring break)



Recitations

2x on Fridays 

Date & location TBD



Course website

https://stellar.mit.edu/S/course/6/
sp20/6.864

Detailed syllabus, assignments, slides, recordings.

https://stellar.mit.edu/S/course/6/sp20/6.864
https://stellar.mit.edu/S/course/6/sp20/6.864


Piazza

piazza.com/mit/spring2020/68066864

Discussions for homework, class content.

http://piazza.com/mit/spring2020/68066864


Preview



Unsupervised translatioin

Two households, both alike in dignity, In fair Verona, 
where we lay our scene, From ancient grudge break to 
new  mutiny,  Where  civil  blood  makes  civil  hands 
unclean. From forth the fatal loins of these two foes A 
pair of star-cross'd lovers take their life; whose misadv

Desocupado lector: sin juramento me podrás creer que 
quisiera que este libro, como hijo del entendimiento, 
fuera el más hermoso, el más gallardo y más discreto 
que  pudiera  imaginarse.  Pero  no  he  podido  yo 
contravenir al orden de naturaleza, que en ella cada cos

=
= ≠



Learning word representations

ancient new

the

Two households, both alike in dignity, In fair Verona, 
where we lay our scene, From ancient grudge break to 
new  mutiny,  Where  civil  blood  makes  civil  hands 
unclean. From forth the fatal loins of these two foes A 
pair of star-cross'd lovers take their life; whose misadv

antigua
nueva

la

Desocupado lector: sin juramento me podrás creer que 
quisiera que este libro, como hijo del entendimiento, 
fuera el más hermoso, el más gallardo y más discreto 
que  pudiera  imaginarse.  Pero  no  he  podido  yo 
contravenir al orden de naturaleza, que en ella cada cos



Learning word representations

ancient new

the

Two households, both alike in dignity, In fair Verona, 
where we lay our scene, From ancient grudge break to 
new  mutiny,  Where  civil  blood  makes  civil  hands 
unclean. From forth the fatal loins of these two foes A 
pair of star-cross'd lovers take their life; whose misadv

antigua
nueva

la

Desocupado lector: sin juramento me podrás creer que 
quisiera que este libro, como hijo del entendimiento, 
fuera el más hermoso, el más gallardo y más discreto 
que  pudiera  imaginarse.  Pero  no  he  podido  yo 
contravenir al orden de naturaleza, que en ella cada cos

1o-j74-kic1-5hec-r9xv-j7hek67-r9yx-j74-0dc2-74b3-0-i4h84i-e5-
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Learning word representations
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Two households, both alike in dignity, In fair Verona, 
where we lay our scene, From ancient grudge break to 
new  mutiny,  Where  civil  blood  makes  civil  hands 
unclean. From forth the fatal loins of these two foes A 
pair of star-cross'd lovers take their life; whose misadv
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quisiera que este libro, como hijo del entendimiento, 
fuera el más hermoso, el más gallardo y más discreto 
que  pudiera  imaginarse.  Pero  no  he  podido  yo 
contravenir al orden de naturaleza, que en ella cada cos
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Translating words

Desocupado lector: sin juramento me podrás creer que
idle reader without oath me able believe that



Denoising

Two households, both alike in dignity, In fair Verona, 
where we lay our scene, From ancient grudge break to 
new mutiny, Where civil blood makes civil hands uncl

households  Two,  both  alike  dignity,  fair  In  Verona, 
where lay our scene, From ancient grudge vacation to 
new mutiny, Where blood civil five makes civil hands



Denoising

Two households, both alike in dignity, In fair Verona, 
where we lay our scene, From ancient grudge break to 
new mutiny, Where civil blood makes civil hands uncl

p(original sentence | corrupted sentence)

households  Two,  both  alike  dignity,  fair  In  Verona, 
where lay our scene, From ancient grudge vacation to 
new mutiny, Where blood civil five makes civil hands

Two households, both alike in dignity, In fair Verona, 
where we lay our scene, From ancient grudge break to 
new mutiny, Where civil blood makes civil hands uncl



Translating sentences

Desocupado lector: sin juramento me podrás creer que

idle reader: without oath me able believe that

idle reader, doubtless you can believe me that

[Lample et al. 2018]



Language to code

ATIS GEO JOBS

System Accuracy System Accuracy System Accuracy
ZH15 84.2 ZH15 88.9 ZH15 85.0
ZC07 84.6 KCAZ13 89.0 PEK03 88.0
WKZ14 91.3 WKZ14 90.4 LJK13 90.7
DL16 84.6 DL16 87.1 DL16 90.0
ASN 85.3 ASN 85.7 ASN 91.4

+ SUPATT 85.9 + SUPATT 87.1 + SUPATT 92.9

Table 1: Accuracies for the semantic parsing tasks. ASN denotes our abstract syntax network framework.
SUPATT refers to the supervised attention mentioned in Section 3.4.

System Accuracy BLEU F1
NEAREST 3.0 65.0 65.7
LPN 6.1 67.1 –
ASN 18.2 77.6 72.4

+ SUPATT 22.7 79.2 75.6

Table 2: Results for the HEARTHSTONE task. SU-
PATT refers to the system with supervised atten-
tion mentioned in Section 3.4. LPN refers to the
system of Ling et al. (2016). Our nearest neigh-
bor baseline NEAREST follows that of Ling et al.
(2016), though it performs somewhat better; its
nonzero exact match number stems from spurious
repetition in the data.

a new state-of-the-art accuracy of 91.4% on the
JOBS dataset, and this number improves to 92.9%
when supervised attention is added. On the ATIS
and GEO datasets, we respectively exceed and
match the results of Dong and Lapata (2016).
However, these fall short of the previous best re-
sults of 91.3% and 90.4%, respectively, obtained
by Wang et al. (2014). This difference may be par-
tially attributable to the use of typing information
or rich lexicons in most previous semantic pars-
ing approaches (Zettlemoyer and Collins, 2007;
Kwiatkowski et al., 2013; Wang et al., 2014; Zhao
and Huang, 2015).

On the HEARTHSTONE dataset, we improve
significantly over the initial results of Ling et al.
(2016) across all evaluation metrics, as shown in
Table 2. On the more stringent exact match metric,
we improve from 6.1% to 18.2%, and on token-
level BLEU, we improve from 67.1 to 77.6. When
supervised attention is added, we obtain an ad-
ditional increase of several points on each scale,
achieving peak results of 22.7% accuracy and 79.2
BLEU.

class IronbarkProtector(MinionCard):
def __init__(self):
super().__init__(

’Ironbark Protector’, 8,
CHARACTER_CLASS.DRUID,
CARD_RARITY.COMMON)

def create_minion(self, player):
return Minion(

8, 8, taunt=True)

Figure 6: Cards with minimal descriptions exhibit
a uniform structure that our system almost always
predicts correctly, as in this instance.

class ManaWyrm(MinionCard):
def __init__(self):
super().__init__(

’Mana Wyrm’, 1,
CHARACTER_CLASS.MAGE,
CARD_RARITY.COMMON)

def create_minion(self, player):
return Minion(

1, 3, effects=[
Effect(

SpellCast(),
ActionTag(

Give(ChangeAttack(1)),
SelfSelector()))

])

Figure 7: For many cards with moderately com-
plex descriptions, the implementation follows a
functional style that seems to suit our modeling
strategy, usually leading to correct predictions.

4.5 Error Analysis and Discussion
As the examples in Figures 6-8 show, classes in
the HEARTHSTONE dataset share a great deal of
common structure. As a result, in the simplest
cases, such as in Figure 6, generating the code is
simply a matter of matching the overall structure
and plugging in the correct values in the initializer
and a few other places. In such cases, our sys-
tem generally predicts the correct code, with the
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Whenever you cast a spell, gain +1 attack



Predicting structured outputs

Whenever you cast a spell, gain +1 attack
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+ SUPATT 22.7 79.2 75.6

Table 2: Results for the HEARTHSTONE task. SU-
PATT refers to the system with supervised atten-
tion mentioned in Section 3.4. LPN refers to the
system of Ling et al. (2016). Our nearest neigh-
bor baseline NEAREST follows that of Ling et al.
(2016), though it performs somewhat better; its
nonzero exact match number stems from spurious
repetition in the data.

a new state-of-the-art accuracy of 91.4% on the
JOBS dataset, and this number improves to 92.9%
when supervised attention is added. On the ATIS
and GEO datasets, we respectively exceed and
match the results of Dong and Lapata (2016).
However, these fall short of the previous best re-
sults of 91.3% and 90.4%, respectively, obtained
by Wang et al. (2014). This difference may be par-
tially attributable to the use of typing information
or rich lexicons in most previous semantic pars-
ing approaches (Zettlemoyer and Collins, 2007;
Kwiatkowski et al., 2013; Wang et al., 2014; Zhao
and Huang, 2015).

On the HEARTHSTONE dataset, we improve
significantly over the initial results of Ling et al.
(2016) across all evaluation metrics, as shown in
Table 2. On the more stringent exact match metric,
we improve from 6.1% to 18.2%, and on token-
level BLEU, we improve from 67.1 to 77.6. When
supervised attention is added, we obtain an ad-
ditional increase of several points on each scale,
achieving peak results of 22.7% accuracy and 79.2
BLEU.

class IronbarkProtector(MinionCard):
def __init__(self):
super().__init__(

’Ironbark Protector’, 8,
CHARACTER_CLASS.DRUID,
CARD_RARITY.COMMON)

def create_minion(self, player):
return Minion(

8, 8, taunt=True)

Figure 6: Cards with minimal descriptions exhibit
a uniform structure that our system almost always
predicts correctly, as in this instance.

class ManaWyrm(MinionCard):
def __init__(self):
super().__init__(

’Mana Wyrm’, 1,
CHARACTER_CLASS.MAGE,
CARD_RARITY.COMMON)

def create_minion(self, player):
return Minion(

1, 3, effects=[
Effect(

SpellCast(),
ActionTag(

Give(ChangeAttack(1)),
SelfSelector()))

])

Figure 7: For many cards with moderately com-
plex descriptions, the implementation follows a
functional style that seems to suit our modeling
strategy, usually leading to correct predictions.

4.5 Error Analysis and Discussion
As the examples in Figures 6-8 show, classes in
the HEARTHSTONE dataset share a great deal of
common structure. As a result, in the simplest
cases, such as in Figure 6, generating the code is
simply a matter of matching the overall structure
and plugging in the correct values in the initializer
and a few other places. In such cases, our sys-
tem generally predicts the correct code, with the

…
[Rabinovich et al. 2017]



Disparate model accuracy

It’s hard to wreck a  
nice beach.

Speech recognition:
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Figure 3: Interaction of gender and dialect. The
difference in Word Error Rates between genders
was largest for speakers from New Zealand and
New England. In no dialect was accuracy reliably
better for women than men.

from New Zealand and New England.
Given the nature of this project, there is limited

access to other demographic information about
speakers which might be important, such as age,
level of education, socioeconomic status, race or
ethnicity2. The last is of particular concern given
recent findings that automatic natural language
processing tools, including language identifiers
and parsers struggle with African American En-
glish (Blodgett et al., 2016).

4 Effects of pitch on YouTube automatic
captions

One potential explanation for the different er-
ror rates found for male and female speakers is
differences in pitch. Pitch differences are one
of the most reliable and well-studied perceptual
markers of gender in speech (Wu and Childers,
1991; Gelfer and Mikos, 2005) and speech with a
high fundamental frequency (typical of women’s
speech) has also been found to be more difficult
for automatic speech recognizers (Hirschberg et
al., 2004; Goldwater et al., 2010). A small exper-
iment was carried out to determine whether pitch

2Speakers in this sample did not self-report their race or
ethnicity and, given the complex nature of race and ethnicity
in both New Zealand and the US, the researcher opted not to
guess at speaker’ race and ethnicity.

differences were indeed underlying the differing
word error rates for male and female speakers.

First, a female speaker of standardized Ameri-
can English was recorded clearly reading the word
list shown in Table 1. In order to better approxi-
mate the environment of the recordings in the ac-
cent tag videos, the recording was made using a
consumer-grade headset microphone in a quiet en-
vironment, rather than using a professional-grade
microphone in a sound-attenuated booth. The
original recording had a mean pitch of 192 Hz and
a median of 183 Hz, which is slightly lower than
average for a female speaker of American English
(Pépiot, 2014). The pitch of the original record-
ing was artificially scaled both up and down 60
Hz in 20 Hz intervals using Praat (Boersma and
others, 2002). This resulted in a total of seven
recordings: the original, three progressively lower
pitched and three progressively higher pitched.
These resulting sound-files were then uploaded
to YouTube and automatic captions were gener-
ated. The video, and captions, can be viewed on
YouTube3.

Overall, the automatic captions for the word list
were very accurate; there were a total of 9 errors
across all 434 tokens, for a WER of .002. Though
it may be due to ceiling effects, there was no sig-
nificant effect of pitch on accuracy. The much
higher accuracy of this set of captions may be due
to improvement in the algorithms underlying the
automatic captions or the nature of the speech in
the recording, which was clear, careful and slow.
More investigation with a larger sample of voices
is necessary to determine if pitch differences, or
perhaps another factor such as intensity, are what
is underlying the differences in WER for male and
female speakers. That said, even if gender-based
differences in accuracy between genders can be
attributed to acoustic differences associated with
gender, that would not account for the strong ef-
fect of dialect region.

5 Discussion

The results presented above show that there are
differences in WER between dialect areas and
genders, and that manipulating one speaker’s pitch
was not sufficient to affect WER for that speaker.
While the latter needs additional data to form a
robust generalization, the size of the effect for
the former is deeply disturbing. Why do these

3https://www.YouTube.com/watch?v=eUgrizlV-R4
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Building fair datasets & models

Modeling 
 
Inductive bias favoring 
particular groups 

Genuine difficulty of  
underlying prediction 
problem

Data collection 
 
Bias from researchers 

Bias from annotators 



This semester:

Machine learning approaches to interpreting, generating 
and analyzing human languages.



Next class: text classification


