
Attention Mechanisms

Jacob Andreas / MIT 6.804-6.864 / Spring 2020

Admin

HW1 is done! Look out for survey.

HW2b will be released tonight.
6.864 students only!

Peer reviews will be assigned on OpenReview tomorrow.
Each student will get 2 papers to review.
Plan to spend ~15min / paper.

Recap: recurrent neural networks

Neural networks

= W⊤
2 W⊤

1 xs f()

1
0
0
0
1

x
1
1
0
1
1

1
0
0
1
0

h1 sf(W⊤
1 x) = W⊤

2 h1 =

input “hidden layer” output

W1 W2

cheap

good

bad

nasty

tasty

Variable-sized inputs

1
0
0
0
1

x

input

cheap

tasty

bad

nasty

good

No ordering information!

Variable-sized inputs

1
0
0
0
1

x

input

cheap

tasty

bad

nasty

good

No ordering information!
cheap and very tasty

1
0
0
0

0
0
0
0

0
1
0
0

0
0
0
1… … … …

No fixed input dimension!

Recurrent neural networks

cheap and very tasty

Recurrent neural networks

cheap and very tasty

Hidden states
depend on an
earlier state
and an input

Recurrent neural networks

cheap and very tasty

Same weights
at every state!

Whh Whh Whh

Wxh

Hidden states
depend on an
earlier state
and an input

Wxh Wxh Wxh

“Vanilla” RNNs

Whh

Wxh
ht = f(Whhht−1 + Wxhxi + b)

Gated Recurrent Units

[Image: Cristopher Olah]

Gated Recurrent Units

[Image: Cristopher Olah]

Long Short-Term Memory Units

[Image: Cristopher Olah]

Deeper RNNs

cheap and very tasty

Bidirectional RNNs

cheap and very tasty

RNNs and word embeddings

cheap and very tasty

RNNs and word embeddings

cheap and very tasty

one-hot vectors

word embedding
matrix

RNNs and word embeddings

cheap and very tasty

one-hot vectors

word embedding
matrix

learned word  
embeddings

RNNs and word embeddings

cheap and very tasty

pre-trained word
embeddings

Text classification

cheap and very tasty

Loss L

class scores s

Positive

Sequence labeling

cheap and very tasty

Adj L1 L2 L3 L4Conj Adv Adj

L = ∑
t

Lt

= − ∑
t

log p(yt |x:t)

e.g.

Sequence labeling

cheap and very tasty

Adj L1 L2 L3 L4Conj Adv Adj

L = ∑
t

Lt

= − ∑
t

log p(yt |x:t)

e.g.

product of indep.
conditionals!

A (unidirectional) can compute .

Langauge Modeling

p(yt ∣ x:t)
Suppose for a sequence we set .yt = xt+1x

cheap and very

and L1 L2 L3very tasty

∑
t

log p(xt+1 |x:t) = p(x)then

Language modeling: sampling

How do we sample from ? p(x)

x1 ∼ p(x1 |𝚜𝚝𝚊𝚛𝚝)

start

sphinx

Language modeling: sampling

How do we sample from ? p(x)

x1 ∼ p(x1 |𝚜𝚝𝚊𝚛𝚝)

start

sphinx

sphinx

Language modeling: sampling

How do we sample from ? p(x)

x1 ∼ p(x1 |𝚜𝚝𝚊𝚛𝚝)

start

sphinx

sphinx

x2 ∼ p(x2 |sphinx)

of

Language modeling: sampling

How do we sample from ? p(x)

x1 ∼ p(x1 |𝚜𝚝𝚊𝚛𝚝)

start

sphinx

sphinx

x2 ∼ p(x2 |sphinx)

of

of

x2 ∼ p(x2 |sphinx of)

black

[Image: egyptianmarketplace.com]

Sphinx of black quartz, judge my vow

http://egyptianmarketplace.com

Language modeling as representation learning

cheap and very tasty

one-hot vectors

word embedding
matrix

learned word  
embeddings

RNNs as Markov chains

cheap and very

Adj Conj

I can train this network to predict:

log p(yt |x:t)

x

y

RNNs as Markov chains

cheap and very

Adj Conj

log p(yt |x:t) = p(qt ∣ O:t)

I can train this network to predict:

same as forward
algorithm!

x

y

RNNs as Markov chains

cheap and very

Adj Conj

log p(yt |x:t) = p(qt ∣ O:t)

I can train this network to predict:

cheap and very

I can train this network to predict:

log p(yt |x) = p(qt ∣ O) forward-  
backward  
algo!

Sequence-to-sequence models

A dataset of math problems

One plus one equals two.

Two times two equals four.

Seven is prime.

One plus two times three equals seven.

A dataset of math problems

One plus one equals two.

Two times two equals four.

Seven is prime.

One plus two times three equals seven.

Two times three times three equals ???

Answering math problems with LMs

x1 ∼ p(x1 | ... times three equals)

equals

Answering math problems with LMs

x1 ∼ p(x1 | ... times three equals)

twenty

equals

Answering math problems with LMs

x1 ∼ p(x1 | ... times three equals)

twenty

x2 ∼ p(x2 | ... equals twenty)

equals

twenty seven

(don't try this at home)

A dataset of translated sentences

Caecilius est in horto. [SEP] Caecilius is in the garden.

Caecilius in horto sedet. [SEP] Caecilius sits in the garden.

Grumio est in atrio. [SEP] Grumio is in the atrium.

Grumio in atrio laborat. [SEP] ???

(try this at home!)

Sequence-to-sequence models

in horto [SEP] Caecilius

Caecilius

is in

is in
Idea 1:
only these losses:

Sequence-to-sequence models

in horto [SEP] Caecilius

Caecilius

is in

is in
Idea 2:
separate encoder/  
decoder params

Sequence-to-sequence models

in horto [SEP] Caecilius is in

ENCODER DECODER

Sequence-to-sequence models

in horto [SEP] Caecilius

Caecilius

is in

is in
Idea 3:
bidirectional  
encoder

…

Revenge of the vanishing gradients

militibus silvanus [SEP]

First

… (many words) …

Primo

Revenge of the vanishing gradients

militibus silvanus [SEP]

First

… (many words) …

Primo

14

Backpropagation Through Time

• SGD for RNNs must consider the impact of past inputs and states
– This process is known as Backpropagation Through Time (BPTT)

• The gradients for longer time spans are exponential, e.g.,

– Potential for exploding gradients or vanishing gradients
• Since BPTT is computationally intensive for long sequences,

sometimes truncated BPTT is used to save computation

!"#
!$%%

='
()*

#
$%%

+ #,("(
!"#
!$-%

='
()*

#
$%%

+ #,(.(

Impact of Vanishing Gradients

• Long distance gradients
are weaker and have less
impact than local gradients

• Model parameters primarily
learn local dependencies

• This motivated the search
for RNNs that could better
model long distance
dependencies by some
internal memory state

!" !# !$%" !$

&" &# &$%"&'

($

)$

⋯ &$

(#

)#

Attention mechanisms

Gated Recurrent Units

[Image: Cristopher Olah]

Shortcuts

Shortcuts

Direct "copying" between hidden states makes it easy
to propagate information.

Can we go farther?

Primo

First

Can we go farther?

Primo

First

Can we go farther?

Primo

First

Not super useful: no selectivity for the relevant word
(since we don’t know which word is relevant when we
add connections)

Can we hard-code connections?

Porta aquam ad casa

Carry
water to

Can we hard-code connections?

Aquam porta ad casa

Carry
water to

Words aren't one-to-one (and order can change!)

Can we learn connections?

Primo

First

Sentence representations

Aquam Aquam
porta

Aquam
porta

ad

Aquam
porta

ad
casa

This vector represents the whole sentence!

You can’t cram the
meaning of a whole  

%&!$# sentence into a
single $&!#* vector!

[Ray Mooney, ca. 2014]

You can’t cram the
meaning of a whole  

%&!$# sentence into a
single $&!#* vector!

[Ray Mooney, ca. 2014]

Actually you can!  
(But you usually shouldn’t.)

Attention mechanisms

Aquam porta ad casa

1. When predicting output , assign a weight to each encoder state i αij hj

i

αi1 αi2 αi3 αi4
0.1 0.7 0.1 0.1

(weights sum to 1)

Attention mechanisms

Aquam porta ad casa

1. When predicting output , assign a weight to each encoder state i αij hj

i
0.1 0.7 0.1 0.1

2. Compute a pooled input ci = ∑
j

αijhj

Attention mechanisms

Aquam porta ad casa

1. When predicting output , assign a weight to each encoder state i αij hj

i

2. Compute a pooled input ci = ∑
j

αijhj

3. Use to update the decoderci

ci

Design decision: how to compute ?αij

1. When predicting output , assign a weight to each encoder state i αij hj

eij = tanh(W[hi, hj]) eij = h⊤
i Whj

αi: = softmax(ei:)

[Bahdanau 2014] [Luong 2015]

Design decision: how to use ?ci

3. Use to update the decoderci

hi−1 hi hi−1 hi

outputs outputs

Why does this work?

Aquam porta ad casa

Why does this work?

Aquam porta ad casa

MAIN VERB 
INDEX 2
IMPERATIVE

Why does this work?

Aquam porta ad casa

MAIN VERB 
INDEX 2
IMPERATIVE

SUBJECT?
IMP. VERB?

A8enPon

‣ Decoder	hidden	states	are	now	
mostly	responsible	for	selecPng	
what	to	a8end	to

‣ Doesn’t	take	a	complex	hidden	
state	to	walk	monotonically	
through	a	sentence	and	spit	
out	word-by-word	translaPons

‣ Encoder	hidden	states	capture	
contextual	source	word	idenPty

[Example from Greg Durrett]

Multi-headed attention

Look two places at once!

ea
ij = h⊤

i Wahj

eb
ij = h⊤

i Wbhj hi−1 hi

ca
i cb

i

etc.

Self-attention

h(1)
i−1 h(1)

i h(1)
i+1

Attention to lower RNN layers (instead of decoder → encoder)

h(2)
i−1 h(2)

i h(2)
i+1

Non-textual attention

a desk behind

Copying

hi

Caecilius in

a

in

s1

s23

Copying

hi

Caecilius in

Caecilius probably isn’t
in the training set. a

in

s1

s23

Copying

hi

Caecilius in

Caecilius probably isn’t
in the training set.

We want the ability to  
generate in via copying 
and direct prediction.

a

in

s1

s23

Copying

hi

a

Caecilius in

in

Caecilius
in
horto

ei1
ei2
ei3

s1

s23

Copying

hi

Caecilius in

in

ei1
ei2
ei3

s1

s23

In is double-counted:
just add scores together

s23 + ei2

Hard attention

1. When predicting output , assign a weight to each encoder state i αij hj

eij = tanh(W[hi, hj]) eij = h⊤
i Whj

αi = argmax(ei:)

[Bahdanau 2014] [Luong 2015]

ci = hαi

attention

context repr

nondifferentiable!

but sometimes better generalization

(now you know how to
build anything)

Self-attention revisited

h(1)
i−1 h(1)

i h(1)
i+1

h(2)
i−1 h(2)

i h(2)
i+1

Next class: transformers

