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                         Using computational and mathematical modeling, this 
study explores the tension between too little and too 
much structure that is shaped by the core tradeoff 
between effi ciency and fl exibility in dynamic environ-
ments. Our aim is to develop a more precise theory of the 
fundamental relationships among structure, performance, 
and environment. We fi nd that the structure-performance 
relationship is unexpectedly asymmetric, in that it is 
better to err on the side of too much structure, and that 
different environmental dynamism dimensions (i.e., 
velocity, complexity, ambiguity, and unpredictability) have 
unique effects on performance. Increasing unpredictability 
decreases optimal structure and narrows its range from a 
wide to a narrow set of effective strategies. We also fi nd 
that a strategy of simple rules, which combines improvisa-
tion with low-to-moderately structured rules to execute a 
variety of opportunities, is viable in many environments 
but essential in some. This sharpens the boundary condi-
tion between the strategic logics of positioning and 
opportunity. And juxtaposing the structural challenges of 
adaptation for entrepreneurial vs. established organiza-
tions, we fi nd that entrepreneurial organizations should 
quickly add structure in all environments, while estab-
lished organizations are better off seeking predictable 
environments unless they can devote suffi cient attention 
to managing a dissipative equilibrium of structure 
(i.e., edge of chaos) in unpredictable environments. •  

 A longstanding question in strategy and organization theory is 
how the amount of organizational structure shapes performance 
in dynamic environments. Given its fundamental importance, 
this question has been explored in a variety of research tradi-
tions, ranging from organizational studies (Burns and Stalker, 
1961; Hargadon and Sutton, 1997) and competitive strategy 
(Rindova and Kotha, 2001; Rothaermel, Hitt, and Jobe, 2006) to 
network sociology (Uzzi, 1997; Owen-Smith and Powell, 2003) 
and, more broadly, the complexity sciences (Kauffman, 1993; 
Anderson, 1999). Although highly diverse, these literatures 
nonetheless highlight two fundamental arguments. 

 The fi rst argument is that a balance between too much and 
too little structure is critical to high performance for organiza-
tions in dynamic environments. Organizations with too little 
structure lack enough guidance to generate appropriate 
behaviors effi ciently (Weick, 1993; Okhuysen and Eisenhardt, 
2002; Baker and Nelson, 2005), while organizations with too 
much structure are too constrained and lack fl exibility (Miller 
and Friesen, 1980; Siggelkow, 2001; Martin and Eisenhardt, 
2010). This tension produces a dilemma for organizations, as 
high performance in dynamic environments demands both 
effi ciency and fl exibility. Research shows that high-performing 
organizations resolve this tension using a moderate amount 
of structure to generate a variety of high-performing solutions 
(Brown and Eisenhardt, 1997, 1998). Overall, this suggests an 
inverted U-shaped relationship between the amount of 
structure and performance, a relationship often observed 
when tensions are at work. 

 The second argument is that achieving high performance with 
moderate structure is infl uenced by the changing nature of 
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environmental opportunities (Adler, Goldoftas, and Levine, 
1999; Rindova and Kotha, 2001). Highly dynamic environ-
ments require fl exibility to cope with a fl ow of opportunities 
that typically is faster, more complex, more ambiguous, and 
less predictable than in less dynamic environments. Research 
shows that high-performing organizations cope with dynamic 
environments with less structure (Eisenhardt and Martin, 
2000; Rowley, Behrens, and Krackhardt, 2000). Conversely, 
less dynamic environments favor effi ciency, and so high-
performing organizations have more structure in these 
environments (Pisano, 1994; Rivkin and Siggelkow, 2003). 
Overall, this suggests that the optimal amount of structure 
decreases with increasing environmental dynamism, a 
consistent fi nding within multiple literatures. 

 Yet although these arguments are widely understood in 
general, unresolved issues remain. First, the empirical evi-
dence that supports an inverted-U shaped relationship is 
modest. It primarily consists of qualitative case comparisons 
(Mintzberg and McHugh, 1985; Brown and Eisenhardt, 1997) 
and quantitative confi rmations such as statistical tests of 
quadratic relationships and interaction effects that are not 
suffi ciently precise to identify a specifi c functional form 
(Bradach, 1997; Gibson and Birkinshaw, 2004; Rothaermel, 
Hitt, and Jobe, 2006), such as an inverted-U. Rather, the 
evidence simply points to a unimodal shape for the relation-
ship between structure and performance that increases on 
one side and decreases on the other. So the evidence does 
not rule out other shapes (e.g., broad plateau or inverted-V) 
and related functional forms. The shape of the structure-
performance relationship has consequential theoretical and 
managerial implications. For instance, if the relationship is a 
broad plateau with a wide range of optimal structures, then 
balancing between too much and too little structure is easy 
and unimportant. In contrast, if the shape is an inverted-V, in 
which the optimal structure is a narrow peak, sometimes 
called an “edge of chaos,” then balancing between too much 
and too little structure is challenging and crucial. 

 Second, the theory that underlies the relationship between 
the amount of structure and performance is incomplete. As 
sketched above, the basic theoretical argument is that 
organizations with too much structure are too infl exible, while 
organizations with too little structure are too ineffi cient. 
Although appealing, this argument neglects key factors such 
as limited attention, time delays, and the fl eeting and varied 
nature of opportunities that might infl uence this tradeoff. So, 
for example, the theory does not consider that, although less 
structure enables fl exible improvisation, improvisation is an 
attention-consuming and mistake-prone process (Hatch, 1998; 
Weick, 1998). As a result, the theory fails to clarify precisely 
how structure infl uences effi ciency and fl exibility, and thus 
the exact nature of the effi ciency-fl exibility tradeoff, including 
whether it is advantageous to err toward too much or too little 
structure. 

 Third, the theory that underlies the argument that environ-
mental dynamism infl uences the optimal structure is imprecise. 
In particular, environmental dynamism is a multidimensional 
construct (Dess and Beard, 1984), and yet the theory does 
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not unpack how the dimensions of dynamism operate. The 
empirical literature also refl ects this imprecision, as studies 
often mingle dimensions such as complexity, velocity, 
unpredictability, and ambiguity (Eisenhardt, 1989; Pisano, 
1994) that may have distinct effects. Understanding the 
infl uence of different dimensions is important because they 
may have unexpected implications for theory and practice. 
For example, it may be that only one or two dimensions shift 
optimal structure or that the structure-performance relation-
ship has distinct shapes in specifi c environments, such as 
highly ambiguous nascent markets and high-velocity “bubble” 
markets. 

 Overall, these unresolved issues suggest a lack of specifi c 
understanding in diverse literatures of the fundamental 
relationships among structure, performance, and environ-
ment. This is the gap that we address by exploring the 
relationship between structure and performance, the underly-
ing tradeoff between effi ciency and fl exibility, and the infl u-
ence of environmental dynamism. There are many defi nitions 
of structure, with varied attributes such as formalization (e.g., 
rules, routines), centralization (e.g., hierarchy, use of authority, 
verticality), control systems (e.g., span of control), coupling and 
structural embeddedness (e.g., tie strength, tie density), and 
specialization (e.g., role clarity) (Weber, 1946; e.g., Burns 
and Stalker, 1961; Pugh et al., 1963; Galbraith, 1973; Mintz-
berg, 1979; Granovetter, 1985; Scott, 2003). But although the 
defi nitions include varied attributes, they all share an empha-
sis on shaping the actions of organizational members. Entities 
are more structured when they shape more activities of their 
constituent elements and thus constrain more action. Con-
versely, entities are less structured when their constituent 
elements have more fl exibility in their behavior. Thus we 
defi ne structure broadly as constraint on action. 

 We conducted this research using simulation methods, which 
are effective for research such as ours in which the basic 
outline of the theory is understood, but its underlying theoreti-
cal logic is limited (Davis, Eisenhardt, and Bingham, 2007). In 
this situation, there is enough theory to develop a simulation 
model, yet the theory is also suffi ciently incomplete that it 
warrants examination of its internal validity (i.e., the correct-
ness of its theoretical logic) and elaboration of its propositions 
through experimentation, which are both strengths of simula-
tion (Sastry, 1997; Zott, 2003). Simulation is also a particularly 
useful method for research such as ours when the focal 
phenomenon is nonlinear (Carroll and Burton, 2000; Rudolph 
and Repenning, 2002; Lenox, Rockart, and Lewin, 2006). 
Though statistical and inductive methods may indicate the 
presence of nonlinearities, they offer less precise identifi ca-
tion, particularly of complex ones such as tipping points and 
skews. Simulation is also a particularly useful method when 
empirical data are challenging to obtain (Davis, Eisenhardt, 
and Bingham, 2007). For example, simulation enables us to 
study mistakes that informants might be reluctant to reveal 
(Carroll and Burton, 2000; Finkelstein, 2003) and to unpack 
environmental dimensions that may be diffi cult to disentangle 
in actual environments (Dess and Beard, 1984). Finally, 
simulation is especially effective for research such as ours 
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that involves longitudinal and process phenomena because 
such phenomena can be studied over extended time periods 
that would be diffi cult to observe with empirical data (March, 
1991; Zott, 2003). Using these methods, we seek to under-
stand the effects of varying amounts of structure on perfor-
mance in different environments.  

 ORGANIZATIONAL STRUCTURE AND ENVIRONMENTAL 
DYNAMISM 

 Several research streams focus on the fundamental relation-
ships among structure, performance, and environment. One 
general argument is that organizations with too little structure 
are too confused and lack effi ciency, while organizations with 
too much structure are too constrained and lack fl exibility. By 
contrast, moderate structure balances between these two 
states and so is likely to be high performing (Weick, 1976; 
Brown and Eisenhardt, 1997). Support for this general argu-
ment emerges in several literatures. Studies in network 
sociology point to the “paradox of embeddedness” wherein 
moderately connected actors outperform those who are 
either less or more connected (Uzzi, 1997; Baum, Calabrese, 
and Silverman, 2000; Owen-Smith and Powell, 2003). Uzzi 
(1997) found that fi rms in the garment industry that combined 
more and less structured partnerships were more effective 
than those fi rms that used only one type. Similarly, studies of 
partially connected technology standards (Garud and Jain, 
1996) and “leaky” networks in the Boston-area biotechnology 
fi eld (Owen-Smith and Powell, 2003) suggest that balancing 
too much and too little structure improves industry-level 
performance. 

 The argument for structural balance is also supported in areas 
of organizational studies in which loose coupling, ambidexter-
ity, and improvisation are key, including creativity (Amabile, 
1996), innovation (Davis, 2009), group problem solving (Bigley 
and Roberts, 2001; Okhuysen and Eisenhardt, 2002), organi-
zational change (Tushman and O’Reilly, 1996; Gilbert, 2005), 
and organizational learning (Tripsas, 1997; Hansen, 1999). For 
example, Brown and Eisenhardt (1997) found that high-tech 
fi rms with a moderate number of simple rules (i.e., semi-
structure) are more fl exible and effi cient—quickly creating 
high-quality, innovative products while responding to market 
shifts—than fi rms with more or fewer rules. 

 In the strategy literature, there is also support for this argu-
ment in studies of vertical integration (Schilling and 
Steensma, 2001; Rothaermel, Hitt, and Jobe, 2006), loose 
internal coupling (Galunic and Eisenhardt, 2001; Williams and 
Mitchell, 2004; Martin and Eisenhardt, 2010), innovation 
(Katila and Ahuja, 2002; Fleming, Sorenson, and Rivkin, 2006), 
and moderately structured capabilities with simple rules 
(Burgelman, 1996; Bingham, Eisenhardt, and Furr, 2007). 
Rindova and Kotha (2001) found that Yahoo’s initially high 
performance in a dynamic environment was partially due to 
its simple-rules structure for the critical process capabilities of 
acquisitions and alliances. 

 More broadly, research in the complexity sciences also 
examines the tension between too much and too little 
structure. A repeated fi nding is that moderately structured 



Optimal Structure

417/ASQ, September 2009

computational systems evolve more effectively than systems 
with too little or too much structure (Kauffman, 1989; Lang-
ton, 1992; Gell-Mann, 1994). A related fi nding is that systems 
tend to fall away from the optimal “edge-of-chaos” amount of 
structure into catastrophes without constant intervention 
(Anderson, 1999; Eisenhardt and Bhatia, 2001). In the lan-
guage of nonlinear dynamics (Strogatz, 2001), the optimal 
structure is often an unstable or dissipative critical point that 
is diffi cult to maintain. Overall, these literatures suggest the 
following well-known proposition:  

  Proposition (P1):  Performance has an inverted-U shaped relation-
ship with the amount of structure.  

 Several streams of research also focus on how environmental 
dynamism infl uences the relationship between the amount of 
structure and performance. The general argument is that as 
the environment becomes more dynamic, it becomes advan-
tageous for the organization to be more fl exible and so less 
structured. Conversely, as the environment becomes less 
dynamic, greater effi ciency and so more structure are pre-
ferred. This general argument fi nds extensive support in a 
number of literatures. Contingency theory (Lawrence and 
Lorsch, 1967; Thompson, 1967; Galbraith, 1973) is particularly 
prominent. In an early study, Burns and Stalker (1961) found 
that a more structured mechanistic organization (e.g., role 
specialization, centralization, and formalization) is high per-
forming in stable environments because it is highly effi cient in 
these routine situations. In contrast, a less structured organic 
organization (e.g., decentralized decision making, broader and 
more fl uid roles, wider span of control) is high performing in 
dynamic markets because it enables fl exible action. Similarly, 
Eisenhardt and Tabrizi (1995) found that more structure (e.g., 
planning, numerous and well-defi ned process steps, special-
ization) is faster and more effective for innovation processes 
in the stable mainframe computing industry, whereas less 
structure and more improvised action (e.g., prototyping) is 
better in the dynamic personal computing industry. Pisano 
(1994) found a similar contrast for new process development in 
the dynamic biotech industry vs. the stable chemical industry. 

 The argument is supported by strategy research that has found 
less structured emergent strategies to be higher performing in 
dynamic environments, whereas more structured deliberate 
strategies work better in stable ones (Mintzberg and McHugh, 
1985). Similarly, network studies have shown that loosely 
coupled networks are more effective in highly dynamic 
industries (Tushman and Katz, 1980; Uzzi, 1997; Ozcan and 
Eisenhardt, 2008). Rowley, Behrens, and Krackhardt (2000) 
observed that the high-performing fi rms in the dynamic 
semiconductor industry have loosely coupled alliance net-
works, whereas high-performing fi rms in the stable steel 
industry have more structured dense networks. Overall, these 
literatures suggest the following well-known proposition:  

  Proposition 2 (P2):  As environmental dynamism increases, the 
optimal amount of structure decreases.  

 Central to the underlying theory of these two propositions is 
the insight that the amount of structure infl uences both 
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effi ciency and fl exibility, but in opposite directions (Gibson 
and Birkinshaw, 2004). By effi ciency, we mean the rapid, less 
costly, mistake-free execution of opportunities like new 
products, new market entry, or new acquisitions (Miller and 
Friesen, 1980; Adler, Goldoftas, and Levine, 1999). Structure 
creates the framework that enables reliable, rapid, smooth 
execution in well-grooved routines that is effi cient. In con-
trast, fl exibility refers to open, fl uid execution of these 
opportunities (Weick, 1993; Sine, Mitsuhashi, and Kirsch, 
2006). Removing structure creates latitude for improvisation 
that is fl exible. In dynamic environments, high performance 
depends on balancing the tradeoff between fl exibility and 
effi ciency. 

 But though these general theoretical arguments are widely 
understood, unresolved issues remain. First, the empirical 
evidence for an inverted-U shaped relationship is modest, 
consisting of qualitative case comparisons (Brown and 
Eisenhardt, 1997; Gilbert, 2005), and quantitative statistical 
tests of quadratic functions or interactions between effi ciency 
and fl exibility that are not precise enough to determine that 
the relationship is, in fact, an inverted-U (Hansen, 1999; 
Gibson and Birkinshaw, 2004; Rothaermel, Hitt, and Jobe, 
2006). The evidence does not rule out other shapes and 
functional forms that may have critical theoretical and practi-
cal consequences. For example, if the shape is a broad 
plateau, such that there are a variety of high-performing 
structures, then it is easy and unimportant to fi nd the optimal 
structure. Conversely, if the shape is an inverted-V, such that 
there are only a few high-performing structures, then the 
optimal structure is challenging to fi nd and crucial to maintain. 
An inverted-U relationship also requires very specifi c func-
tional forms, the simplest being that structure has linear 
relationships (and opposite slopes) with effi ciency and 
fl exibility. But there is no clear theory for why these relation-
ships would be, for example, linear. 

 A second unresolved issue is that the theory underlying the 
relationship between structure and performance is incom-
plete, particularly the theoretical logics tying structure with 
effi ciency and fl exibility. 1  Neglected considerations such as 
attention limits, mistakes, and the fl eeting, varied nature of 
opportunities suggest that these relationships are more 
complex than extant theory indicates. For example, structure 
improves effi ciency by constraining the behaviors of organiza-
tional members within well-established guidelines determined 
by rules, roles, reporting relationships, and other forms of 
structure (Feldman and Pentland, 2003; Rivkin and Siggelkow, 
2003). Siggelkow’s (2001) study of Liz Claiborne provides an 
illustration. Here, executives created organizational structures 
(e.g., hierarchies, rules, roles) to address a series of product 
opportunities in the apparel industry. Rules were a particularly 
key form of structure that guided basic decisions. For exam-
ple, rules about apparel design stipulated that each season’s 
clothing line comprise four to seven concept groups, sizes 
should be the same across styles, and colors should not 
change across years. Together, these and other structures 
constrained organizational actions and enabled Liz Claiborne 
to be highly effi cient. Moreover, because Liz Claiborne 

1
We appreciate the suggestion of an 
anonymous reviewer to focus on the 
relationships of structure with effi ciency 
and fl exibility.
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executives fi t these structures to match specifi c environmen-
tal opportunities focused on a growing number of professional 
women, the fi rm was able to execute a series of lucrative and 
very related opportunities consistently, quickly, cheaply, and 
with few mistakes (Siggelkow, 2001). 

 Although greater structure improves effi ciency, the rate of 
improvement often declines, and the range of opportunities 
that can be captured narrows as well. So organizations may 
be able to execute specifi c opportunities effi ciently but not 
diverse or higher-payoff ones. Brown and Eisenhardt (1997) 
described a highly structured product development process 
that could rapidly and fl awlessly capture similar product 
opportunities but could not fl exibly adjust to capture highly 
profi table, new product opportunities. Similarly, Gilbert (2005) 
described how highly structured, traditional newspaper fi rms 
were too rigid to execute new Internet opportunities, 
whereas more loosely coupled ones were more successful. 
The key point is that increasing structure can trap organiza-
tions in a few or low-payoff opportunities with a declining rate 
of effi ciency improvements. Organizational action becomes 
frozen, approaching a non-adaptive state that complexity theo-
rists call a “complexity catastrophe” (Kauffman, 1993; 
Anderson, 1999). 

 Similarly, the relationship between structure and fl exibility is 
likely to be more complicated than extant theory suggests. 
Decreasing structure increases fl exibility because it gives 
executives more degrees of freedom to operate (Weick, 
1998; Gilbert, 2005). There is greater latitude of action and 
thus a wider range of possible opportunities that can be 
addressed as managers combine some structured actions 
and some actions improvised in real-time (Miner, Bassoff, and 
Moorman, 2001; Davis, 2008). But in reality, improvised 
actions consume more attention than rule-following actions 
because they require managers to fi gure out what actions to 
take (Hatch, 1998; Miner, Bassoff, and Moorman, 2001). 
Likely mistakes pose further demands on attention. Because 
attention is constrained (March and Simon, 1958; Ocasio, 
1997), it limits the number of possible actions in a given time 
period. In other words, the benefi ts of fl exibility depend on 
having enough attention to fi gure out what to do (Weick, 
1998; Okhuysen and Eisenhardt, 2002). As an example, 
Brown and Eisenhardt (1997: 15) described a high-tech fi rm 
with few rules, priorities, and formal roles that “reveled in the 
excitement of panicked product development” but engen-
dered “enormous time wasting” and many mistakes. Though 
some participants enjoyed the “Silicon Valley organic manage-
ment,” this fi rm ultimately generated too many ineffective 
products that were behind schedule. Thus limits of attention 
complicate the structure-fl exibility relationship. 

 Similarly, the fl eeting nature of opportunities complicates the 
structure-fl exibility relationship. Although organizations could 
take enough time to engage in extensive trial-and-error 
actions to capture any opportunity, opportunities actually have 
limited time windows in which they are viable (D’Aveni, 
1994). Moreover, mistakes during improvisation introduce 
time delays that are particularly damaging because opportuni-
ties are fl eeting (Tyre and Orlikowski, 1994; Perlow, Okhuysen, 
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and Repenning, 2002). Figuring out successful improvised 
actions becomes especially diffi cult with low structure 
because so much is changing that it is hard to get everything 
right at once (Moorman and Miner, 1998; Bingham, Eisen-
hardt, and Davis, 2009). As structure decreases, action 
becomes increasingly chaotic, approaching a non-adaptive 
state that complexity theorists call an “error catastrophe,” in 
which organizations make too few correct actions to succeed 
(Reynolds, 1987; Kauffman, 1993). 

 A third unresolved issue is that the theory underlying the 
argument that more environmental dynamism lowers the 
optimal structure is imprecise. Specifi cally, environmental 
dynamism is a multidimensional construct. For example, 
environmental dynamism includes velocity—the speed or rate 
at which new opportunities emerge (Eisenhardt, 1989). The 
Internet bubble is a good example of a high-velocity environ-
ment (Goldfarb, Kirsch, and Miller, 2007). But dynamism also 
includes ambiguity—lack of clarity, such that it is diffi cult to 
interpret or distinguish opportunities (March and Olsen, 1976). 
Nascent markets like nanotechnology are examples of 
environments with high ambiguity (Santos and Eisenhardt, 
2009). It also refers to unpredictability—disorder or turbu-
lence, such that there is no consistent pattern of opportuni-
ties. Growth markets such as Web 2.0 and wireless services 
often have unpredictable opportunities. Environmental 
dynamism can also include complexity—the number of 
opportunity contingencies that must addressed successfully. 
Opportunities within “green” power, for example, involve 
many scientifi c, regulatory, safety, and commercial aspects 
and so are highly complex (Sine, Haveman, and Tolbert, 
2005). 

 Although environmental dynamism is multidimensional, 
existing theory does not unpack how different dimensions 
operate. Empirical research refl ects this imprecision. Some 
research focuses on specifi c environmental features such as 
unpredictability (Lawrence and Lorsch, 1967) and ambiguity 
(March and Olsen, 1976). Other research mixes several 
dimensions together, such as ambiguity and complexity, to 
describe environmental dynamism in an industry (Pisano, 
1994). Still other research uses a single term such as velocity 
but then actually combines multiple dimensions such as 
unpredictability, ambiguity, and velocity (Eisenhardt, 1989). 
Adding to the imprecision, these dimensions are often 
correlated in many actual environments. For example, high-
velocity environments can be unpredictable (Eisenhardt, 
1989), and complex environments can involve multiple 
ambiguities (Gavetti, Levinthal, and Rivkin, 2005). Unpacking 
the dimensions of environments, as we do in our simulation 
study, will provide a better understanding of optimal structure 
in different environments.   

 METHODS 

 We used stochastic process modeling to study the structure-
performance relationship in distinct environments. This 
approach enables a custom design of the simulation because 
it is not constrained by an explicit problem structure (e.g., 
cellular automata) (Davis, Eisenhardt, and Bingham, 2007). 
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Rather, it allows the researcher to piece together processes 
that closely mirror the focal theoretical logic, bring in multiple 
sources of stochasticity (e.g., arrival rates of opportunities), 
and characterize them with a variety of stochastic distribu-
tions (e.g., Poisson, Gamma) (Law and Kelton, 1991). 

 Stochastic modeling is an effective choice for our research 
because the problem structure does not fi t well with any 
structured approach. This enables more accurate representa-
tion of our phenomena rather than force-fi tting them into an 
ill-suited structured approach.2   Further, because our baseline 
theory is well established in the empirical literature, we 
enhance the likelihood of realism by building a model from 
the ground up (Burton and Obel, 1995) and thus mitigate a 
key criticism of simulation. This approach also enabled us to 
include several sources of stochasticity that are theoretically 
important (e.g., improvisational action, opportunity fl ow) and 
to experiment fl exibly with theoretically relevant environmen-
tal dimensions (e.g., velocity, ambiguity). Stochastic process 
modeling also has an infl uential tradition in our focal litera-
tures, such as the garbage can model (Cohen, March, and 
Olsen, 1972), dynamics of culture (Carroll and Harrison, 1998), 
and exploration versus exploitation (March, 1991).3  

 Modeling Organization Structure and Environment 

 Our simulation model includes two primary components: 
organization structure and environment. We modeled  organi-
zation structure  as rules. Though we could have used other 
types of structure (e.g., roles, networks) or other aspects of 
structure (e.g., centralization, verticality), we chose rules in 
order to create a parsimonious model that captures the 
fundamental features of structure. As Burton and Obel (1995) 
explained, effective simulation reveals the minimal elements 
of the problem at hand and so uses the least complex con-
ceptualization that still captures the essence of the phenom-
enon. That is, the model’s purpose is to represent the core 
features of the phenomenon (e.g., organization structure), not 
be a literal replication of the phenomenon (Lave and March, 
1975; Rivkin and Siggelkow, 2003). As described earlier, rules 
are a particularly important type of structure in dynamic 
environments (Burgelman, 1994; Brown and Eisenhardt, 
1997; Rindova and Kotha, 2001; Zott, 2003). They also fi t 
especially well with our research because rules directly relate 
to how structure generates actions to execute (or fail to 
execute) environmental opportunities (Bingham, Eisenhardt, 
and Furr, 2007; Bingham, Eisenhardt, and Davis, 2009). Rules 
are also very commonly used to represent structure in 
simulations (e.g., Baligh, 2006) because of their direct link to 
action (March, Schultz, and Zhou, 2000; Eisenhardt and Sull, 
2001). Thus our study follows a long, infl uential tradition of 
simple yet powerful computational models that rely on rules 
to represent structure (Nelson and Winter, 1982; March, 
1991; Rivkin, 2000). 

 We modeled the  environment  as a fl ow of heterogeneous 
opportunities, consistent with our earlier discussion that 
organizational structure constrains action in the capture and 
execution of varying environmental opportunities (Burgelman, 
1996; Eisenhardt and Martin, 2000; Miner, Bassoff, and 

2
We develop a matching model whose 
fundamental feature is to allow for varying 
degrees of match between opportunities 
and rules, something that is not present 
in other, more constrained modeling 
approaches. We appreciate the comments 
of an anonymous reviewer in suggesting 
that we make this point in explaining our 
use of stochastic process modeling.

3
Stochastic process modeling is more fully 
described in references such as Burton 
and Obel (1995) and Davis, Eisenhardt, 
and Bingham (2007). Interested readers 
can also refer to the exemplars cited in 
the text, such as March (1991) and Carroll 
and Harrison (1998). We appreciate the 
comments of an anonymous reviewer 
that we provide more information about 
this modeling approach.
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Moorman, 2001). Our focus on heterogeneous opportunities 
is also consistent with the Austrian economics (Hayek, 
1945; Kirzner, 1997) and entrepreneurship (Shane, 2000; 
Schoonhoven and Romanelli, 2001) literatures in which 
environmental dynamism is also a core interest. Conceptual-
izing the environment as a fl ow of heterogeneous oppor-
tunities also permits a rich modeling of environmental 
dimensions. It enables us to unpack and explore environmen-
tal dynamism more fully, a key theoretical aim of our 
research. 

 To capture heterogeneity, we modeled each opportunity 
as having 10 features that can be either 1 or 0 (e.g., 
0101101101) and included four environmental dynamism 
dimensions, described below. In contrast, many simulation 
models assume a fi xed environment, a single environmental 
jolt, or a single environmental dimension and so preclude the 
kind of rich exploration of environmental dynamism that we 
seek. Although a parsimonious simulation is important (Burton 
and Obel, 1995), the richness of the simulation should focus 
on the part of the model in which the primary exploration will 
occur (Burton and Obel, 1995; Davis, Eisenhardt, and Bing-
ham, 2007). 

 As in all research, we made several assumptions, some 
fundamental to our modeling. For instance, we assumed that 
organizations take actions to capture opportunities, actions 
require attention, and attention is limited (Ocasio, 1997). We 
also assumed that organizations use a combination of rule-
based and improvised actions and that improvised actions 
require more attention than rule-based ones because they 
involve real-time sensemaking (Weick, 1993).These assump-
tions are well grounded in fi eld studies of improvisation 
(Brown and Eisenhardt, 1997; Miner, Bassoff, and Moorman, 
2001; Baker and Nelson, 2005). 

 Other assumptions that are less essential to the theory 
simplify the model. For example, to focus on the effects of 
structure on performance, not learning, we assumed that the 
rules have already been learned and that adaptation to new 
opportunities occurs through improvised actions in real time. 
This is consistent with empirical research showing that 
heuristics are learned quickly and stabilize rapidly (Bingham, 
Eisenhardt, and Davis, 2009) and that real-time, improvisa-
tional learning is often not retained in new heuristics (Weick, 
1996; Moorman and Miner, 1998). Similarly, to focus on 
effects of structure, we assumed that all rules are appropriate 
for at least some opportunities. We also assumed that the 
effects of competitors are realized through the fl ow of opportu-
nities, an assumption that mirrors the Austrian economics 
argument that market dynamism is endogeneously created 
through competitive interaction and technological innovation 
(Kirzner, 1997). 

 In our model, the organization has a set of rules to capture 
opportunities in its environment. In each time step, the 
organization takes a combination of rule-based and improvised 
actions to attempt to execute a given opportunity. When 
enough of these actions match the opportunity, the opportu-
nity is captured, and fi rm performance increases by the value 
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of the opportunity. Because attention is limited and actions 
(rule-based and improvised) consume attention, however, the 
organization can take only a limited number of actions in each 
time step.   

 Environmental Dynamism 

 We modeled four environmental dynamism dimensions based 
on our review of the structure-environment research in the 
organizational and strategy literatures: velocity, complexity, 
ambiguity, and unpredictability (Burns and Stalker, 1961; 
Lawrence and Lorsch, 1967; March and Olsen, 1976; D’Aveni, 
1994; Eisenhardt and Tabrizi, 1995). These four dimensions 
are important, frequently used, and distinct from each other, 
though some research uses alternative terms for them. This 
is particularly true of unpredictability. For example, instead 
of unpredictability, terms like uncertainty, turbulence, and 
volatility are also used to capture the same notion of disorder 
or dissimilarity in the environment. Terms like turbulence and 
volatility focus particularly on disorder, while terms like 
unpredictability and uncertainty focus more on the lack of 
pattern that disorder implies. Finally, though there may be 
other dimensions of environmental dynamism, these four are 
among the most important. A strength of our model is its rich 
representation of the environment. 

  Velocity  is the speed or rate at which new opportunities 
emerge. The Internet bubble is an example of an environment 
with a high velocity of opportunities. We operationalized 
velocity as the rate that new opportunities fl ow into the 
environment (Eisenhardt, 1989; Eisenhardt and Tabrizi, 1995). 
We used a Poisson distribution to model the stochastic arrival 
time of opportunities into the environment where velocity is 
lambda, λ. A Poisson distribution, p(k), describes the probabil-
ity of k opportunities arriving in t time steps and is determined 
by the single rate parameter λ: 

  p(k) = (λt)e -λt  / k! (1) 

 Poisson is a well-known probability distribution used to model 
arrival fl ow (Cinlar, 1975; Glynn and Whitt, 1992). It is attrac-
tive here and in many simulations because it makes few 
assumptions about the timing of opportunities (Law and 
Kelton, 1991). Although lambda can range from 0 to infi nity, 
we fi xed an upper bound on the rate of execution because 
bounded rationality and limited attention constrain the number 
of opportunities that can be addressed (March and Simon, 
1958; Shane, 2000). 

  Complexity  was operationalized as the number of features of 
an opportunity that must be correctly executed to capture that 
opportunity. Complexity increases the diffi culty of capturing 
opportunities because organizations have less latitude for 
errors when there are numerous, relevant contingencies 
(Gavetti, Levinthal, and Rivkin, 2005). Like computational 
complexity, complexity can be conceptualized as the mini-
mum number of correct steps that are needed to execute a 
plan (Simon, 1962; Sipser, 1997). Biotechnology is an exam-
ple of a high-complexity environment because many features 
of the opportunity must be correct to achieve success (Hill and 
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Rothaermel, 2003). Complexity is an integer indicating the 
number of actions that must be correct in order to execute an 
opportunity successfully. Because each opportunity has 10 
features, complexity ranges from 0 to 10. 

  Ambiguity  was defi ned as lack of clarity such that it is diffi cult 
to interpret or distinguish opportunities. Because ambiguity 
makes the misperception of opportunities more likely (March 
and Olsen, 1976), we operationalized environmental ambigu-
ity as the proportion of perceived opportunity features that 
differ from actual ones. Nascent markets like nanotechnology 
are typically highly ambiguous (Santos and Eisenhardt, 2009). 
The  actual features  of an opportunity are represented by 
a 10-element bit string (i.e., vector) of 1s and 0s—e.g., 
0100100110. The  misperceived features  of the same opportu-
nity are also a 10-element bit string of 1s and 0s but differ 
from the actual features by those features for which percep-
tion does not match reality—e.g., 01 1 0100110. Ambiguity 
was operationalized as the proportion of misperceived 
opportunity features. For example, the actual and perceived 
features of the two bit strings above differ by one element of 
10, so the ambiguity = .1. This is an especially useful way to 
model ambiguity because it allows us to capture the diffi culty 
of interpretation that leads to misperception of opportunities. 
Ambiguity ranges from 0 to 1. 

  Unpredictability  was defi ned as the amount of disorder or 
turbulence in the fl ow of opportunities such that there is less 
consistent similarity or pattern. An implication of increasing 
unpredictability is that managers are less able to adjust or 
“tune” their structures to the environment because there is 
less pattern to match (Galbraith, 1973).4   We manipulated 
unpredictability by changing the probability that any opportu-
nity feature will be a 1 or a 0—i.e., p(1) and p(0). Opportuni-
ties with features that have a higher probability of 1 or 0 are 
less unpredictable than opportunities with features having 
an equal probability of 1 or 0. This approach has the advan-
tage of stochastically generating similar opportunities 
without the researcher’s bias as to what those patterns 
should be. 

 To have a monotonically increasing measure of unpredictabil-
ity, we converted these probabilities using a well-known 
disorder computation from mathematical information theory 
(Cover and Thomas, 1991). Unpredictability, U, of a fl ow of 
opportunities depends on the probability, p, of a feature being 
either a 1 or a 0 and is given by: 

  U = – ∑ p * log 2 (p) (2) 

 To illustrate, when p(1) = .7 and p(0) = .3, then unpredictabil-
ity is relatively low. There is a 70/30 split of 1s and 0s in the 
features vector of each opportunity (making 1s more likely 
than 0s) such that U = –.7*log 2 (.7) + .3*log 2 (.3) = .88. By 
contrast, when unpredictability is high [p(1) = p(0) = .5 and 
U = 1], the distribution of 1s and 0s in the opportunity fea-
tures is random. Both opportunities and rules have a 50/50 
split of 1s and 0s (making 1s and 0s equally likely), and there 
is no consistent similarity or pattern in the fl ow of opportuni-
ties. Unpredictability ranges from 0 to 1.   

4
We appreciate the insightful recommen-
dation of an anonymous reviewer that we 
clarify the meaning of unpredictability and 
its implications for whether there are 
patterns in the environment that 
managers can use to adjust or “tune” 
their organizational structures to better 
match the environment.
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 Organizational Structure as Rules 

 We modeled structure as a set of rules for capturing opportu-
nities, with each rule specifying particular actions for execut-
ing opportunities. Rules as structure are common in our focal 
literatures. For example, Galunic and Eisenhardt (2001) 
described rules for carrying out “patching” opportunities in a 
high-performing, multi-business corporation, including that 
new product-market charters should always be assigned to 
business units that (1) have relevant product-market experi-
ence and (2) are currently assigned charters with shrinking 
markets or fading profi t margins. Similarly, Rindova and Kotha 
(2001) described rules for executing alliance opportunities at 
Yahoo!, such as (1) making the basic service free and (2) 
having no exclusive deals. Overall, rules specify actions for 
addressing opportunities and are central to organizational 
processes and capabilities such as interfi rm collaboration, 
product development, and country entry (Burgelman, 1996; 
Eisenhardt and Sull, 2001; Rindova and Kotha, 2001; Bing-
ham, Eisenhardt, and Furr, 2007; Davis, 2008). 

 Rules were operationalized with a 10-element vector of 1s, 
0s, and ?s (e.g., 0?1?10???0). When an organization attempts 
to execute an opportunity with a rule, it generates 10 specifi c 
actions. That is, each 1 or 0 generates a rule-based action in 
that position. The proportion of 1s and 0s in a rule was set 
equal to the probability of 1s and 0s in the fl ow of opportuni-
ties. This captures the insight noted earlier that organizations 
can adjust their structures to approximately match patterns in 
the fl ow of opportunities if they exist (March and Simon, 
1958). Additionally, for each “?” the organization improvises 
either a 1 or 0 “improvised action” with a 50/50 likelihood. 
For example, a combination of rule-based and improvised 
(underlined) actions using the rule above could produce the 
vector 0 1 1 1 10 011 0. The computer program then compares 
this set of 10 actions to the opportunity’s 10 features. If the 
number of actions (both rule-based and improvised) that 
match the actual features of the opportunity equals or 
exceeds the value of the environmental  complexity  param-
eter, then the opportunity is executed and the fi rm gains the 
payoff value of that opportunity. For example, if  complexity  = 6 
and the actions above—0 1 1 1 10 011 0—are compared to the 
opportunity 0110101010, then the opportunity is successfully 
executed because 7 of the actions were correct. This opera-
tionalization captures the idea that structure constrains some 
actions, while others are left open to improvisation (Brown 
and Eisenhardt, 1997; Miner, Bassoff, and Moorman, 2001). 

  Amount of structure.  We operationalized the  amount of 
structure  as simply the number of rule-based actions speci-
fi ed by each rule (i.e., number of 1s and 0s). For example, the 
amount of structure in the rule 01?0??011? is 6. Thus increas-
ing the  amount of structure  for an organization’s set of rules 
increases their constraint on action. For ease of exposition, 
we term rules with little to moderate structure (i.e., 3 to 5) 
simple rules. This operationalization is consistent with theo-
retical notions of structure such as Simon’s (1962) and Daft’s 
(1992), in which the amount of structure is associated with 
the number of components. It is in contrast to some prior 
research (Rivkin and Siggelkow, 2003) emphasizing the 
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interactions among structural features and putting less 
emphasis on the number of structural features. By emphasiz-
ing the number of structural features, we focus on the 
amount of structure in rules. Structure, however, constrains 
action in both. Thus, for the same research questions, the 
results should be qualitatively consistent. 

  Performance.  Each opportunity is associated with a randomly 
determined payoff value. Performance was operationalized as 
the sum of all payoffs from every opportunity executed, 
across all time steps. This is particularly appropriate for our 
research because it is consistent with the empirical studies of 
dynamic environments indicating that performance is derived 
from a series of temporary advantages and related payoffs 
(D’Aveni, 1994; Roberts, 1999; Rindova and Kotha, 2001; 
Chen et al., 2009).   

 Simulating the Model 

 We implemented this model in Matlab software. The com-
puter program fl ow is outlined below, and the Technical 
Appendix provides more details. In the beginning, the organi-
zation’s structure (i.e., its rules) and environment (i.e., fl ow of 
heterogeneous opportunities determined by the velocity, 
complexity, ambiguity, and unpredictability parameters) are 
randomly initialized using draws from probability distributions 
(Law and Kelton, 1991). In each time step, opportunities fl ow 
into the environment at velocity lambda. When the organiza-
tion tries to capture an opportunity with a rule, the organiza-
tion generates both rule-based and improvised actions. When 
the number of these actions that match the opportunity is 
greater than the environmental complexity, the opportunity is 
executed and performance increases by the payoff value. 

 As discussed above, the fi rm’s actions (both rule-based and 
improvised) require attention, which is limited (Cyert and 
March, 1963; Ocasio, 1997), so the organization has a limited 
number of actions that it can take in any time step. When 
attention runs out, the organization can take no further 
actions. At the end of t = 200 time steps, the simulation run 
ends and performance is computed. We chose this number 
of time steps because it is large enough to allow suffi cient 
opportunities to fl ow into the environment such that any 
initialization effects on the fi ndings are mitigated (Law and 
Kelton, 1991), but we also experimented with multiple values 
for the amount of attention required for improvised action 
relative to rule-based action, as described further in the Techni-
cal Appendix. We found no qualitative differences in the fi ndings 
and so present the results for this representative value.   

 Monte Carlo Simulation Experiments 

 We used Monte Carlo simulation techniques. In the Monte 
Carlo approach, an experiment is a simulation with fi xed 
parameter settings that is run multiple times (Law and Kelton, 
1991). The results are then averaged and confi dence intervals 
calculated (Kalos and Whitlock, 1986). Thus for any given 
experiment, the result is the mean performance (and confi -
dence interval) over multiple simulation runs, which better 
refl ects the underlying processes under investigation than 
those produced by a single simulation run. 
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 Each experiment consists of 30 or 50 simulation runs. We 
selected n = 30 as the number of simulation runs for all 
experiments, except those on the basic relationship between 
structure and performance, because exploratory analyses 
revealed that values of n greater than 30 yielded insignifi -
cantly small incremental gains on reliability. We used n = 50 
for the basic relationship between the amount of structure 
and performance because the larger range of structure values 
adds precision to our illustration of this relationship. These 
results are representative of the fi ndings produced by other 
construct values during our exploration of the parameter 
space (see the Technical Appendix for more details). 

 We ran experiments for a wide range of values for each 
environmental dimension (e.g., velocity). Given space limita-
tions, we report only relationships using representative low 
and high values from those experiments. Specifi cally, we 
plotted the relationship between the amount of structure and 
performance for these representative values of the environ-
mental dimensions.5   Confi dence intervals in the form of error 
bars (i.e., the square root of the variance over the number of 
runs) are included to enable more accurate statistical interpre-
tation of the results, as is standard in Monte Carlo experi-
ments (Kalos and Whitlock, 1986).    

 RESULTS  

 Amount of Structure and Performance   

 We begin by examining the two propositions that form the 
baseline theory. P1 proposed that the amount of structure 
has an inverted U-shaped relationship with performance. 
Figure 1 plots the relationship between performance and the 
amount of structure, with each point representing the aver-
age over 50 simulations. The results show that organizations 
with low or high structure rules perform worse than those 
with moderate structure (optimal structure at a value of 3). 
Optimal structure exists, but unexpectedly, the curve is 
asymmetric. That is, the performance decline from the left 
endpoint to the optimum is steeper than the performance 
decline from the right endpoint to the optimum.6   Within the 
bounds of these simulation experiments, too much structure 
produces a more gradual decline, while too little structure 
produces a steeper drop in performance for all deviations 
from the optimum. Thus there is an asymmetric relationship, 
which suggests a more complicated theoretical logic than a 
simple tension between too much and too little structure. 

 Our model offers some insight into this logic. In particular, 
rule-based actions are relatively automatic, and so they conserve 
attention. This enables more actions in a given time frame to 
capture additional opportunities. So although more structure 
narrows the range of potential opportunities that can be 
addressed, there is an “attention advantage” of added structure 
that partially compensates. This advantage occurs at relatively 
high values of structure across a broad range of environmental 
conditions and so favors erring on the side of structure in these 
environments. This suggests the following modifi ed proposition:  

  Proposition 1a (P1a):  Performance has a unimodal, asymmetric 
right relationship with the amount of structure.    

5
Additional results for other values of the 
environmental dimensions are available 
from the authors.

6
To assess asymmetry, we compared the 
slope of the line from optimal structure to 
the endpoint on the left side to the slope 
of the line from optimal structure to the 
endpoint on the right side. Median values 
are used if optimal structure is a range of 
values. Curves are asymmetric right when 
the absolute value of the right slope is 
lower than the left slope.
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 Unpacking the Dimensions of Environmental Dynamism 

 P2 proposed an environmental contingency that the optimal 
amount of structure decreases with increasing environmental 
dynamism. We used four experiments to understand which 
dimensions explain this shifting optimum: we examined P2 by 
comparing curves with high and low values of each dimension 
of environmental dynamism (i.e., velocity, complexity, ambi-
guity, and unpredictability) while holding the other three 
constant at moderate values.  

 Environmental velocity.   Figure 2 depicts the effect of 
increasing environmental velocity (i.e., rate of opportunity 
fl ow) on performance by superimposing the resulting curves 
of two representative values. That is, we plotted the results 
that correspond to low and high values of velocity (λ = .6 and 
1.4) to examine the effects of velocity. P1a is roughly sup-
ported in both environments.   

 In contrast, the results do not support P2. Within the preci-
sion of this simulation experiment, the optimal amount of 
structure—i.e., the amount of structure producing the highest 
performance—is the same for both high- and low-velocity 
environments. Further, although the optimal amount of 
structure is the same in the two velocity conditions, their 
performance is not. For a given amount of structure, fi rms in 
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Figure 1. Relationship between the amount of structure and performance (over 50 runs).
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high-velocity environments have higher performance than 
those in low-velocity ones. In fact, increasing velocity appears 
to amplify performance and shift the entire curve upward. 
Overall, this suggests that the large number of opportunities 
that emerge in high-velocity environments (e.g., Internet 
bubble, Web 2.0) yields better performance for all levels of 
structure, other things being equal.     

 Environmental complexity.   Figure 3 depicts the effects of 
increasing environmental complexity (i.e., the diffi culty of 
capturing opportunities, given numerous relevant contingen-
cies) on performance by superimposing the results of repre-
sentative low and high values of complexity (4 and 8). P1a is 
roughly supported in both high- and low-complexity environ-
ments by unimodal, asymmetric curves. P2 is again not 
supported. Within the precision of this simulation experiment, 
the optimal amount of structure is the same for both high and 
low environmental complexity. Performance at the optimal 
structure differs in the two environments, however, with 
increasing complexity shifting the curve downward. Firms 
perform worse in high-complexity environments in which 
opportunities involve many contingencies (e.g., “green” 
power, biotechnology), in contrast to the velocity fi ndings.     

 Environmental ambiguity.   Figure 4 shows the effect of 
increasing environmental ambiguity (i.e., lack of clarity of 
opportunities) on performance by superimposing the results 
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Figure 2. Effects of increasing environmental velocity on performance (over 30 runs).
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of the two representative cases that correspond to low and 
high values of ambiguity (0 and 0.2). P1a is again roughly 
supported in both environments: the curves have unimodal, 
asymmetric shapes. 

 P2 is again not supported. The optimal amount of structure is 
the same in both low- and high-ambiguity environments 
within the precision of this simulation experiment. Yet both 
the range of optimal structures and the peak performance at 
the optimal structure differ in the low- versus the high-
ambiguity environments. When ambiguity is low, there is a 
narrow range of optimal structures and a higher level of peak 
performance. This suggests an environment in which it is 
diffi cult for managers to fi nd and maintain an optimal struc-
ture, but they will achieve particularly high performance when 
they do. To the extent that skilled executives more easily 
locate and maintain the optimal structure, this is consistent 
with a skill-dominated environment. In contrast, when ambi-
guity is high, as in nascent markets, there is a wide range of 
optimal structures and lower peak performance. This sug-
gests an environment in which it is easy for managers to 
fi nd and maintain an optimal structure, but they will not 
achieve particularly high performance. This suggests a 
chance-dominated environment.     

 Environmental unpredictability.   Figure 5 illustrates the 
effects of environmental unpredictability (i.e., disorder in the 
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fl ow of opportunities) on performance by superimposing the 
results of two representative cases of low and high unpredict-
ability (U = .72 and 1). Again, a unimodal, asymmetric relation-
ship, supporting P1a, is found in both environments. But 
unlike the results for velocity, complexity, and ambiguity, we 
fi nd a shifting optimum, as predicted by P2, as the optimal 
amount of structure decreases with higher unpredictability. 
Thus unpredictability is the environmental dimension that 
shifts the optimal amount of structure. Moreover, our model 
offers insight into the logic: the optimal structure decreases 
with increasing unpredictability because managers are less 
able to adjust structure to fi t the environment when the pres-
ence of consistent patterns in the opportunity fl ow declines. 
In these environments, managers must rely more on real-time 
improvised actions and less on structure because there is less 
pattern in the environment that can be mirrored in organiza-
tional structure. This suggests a modifi ed proposition:  

  Proposition 2a (P2a):  As environmental unpredictability increases, 
the optimal amount of structure decreases.  

 There are also unexpected fi ndings related to the range of 
optimal structures. As fi gure 5 shows, when environments 
have low unpredictability, the relationship between structure 
and performance forms a broad plateau. This suggests a 
forgiving environment in which there is a wide range of 
optimal structures with roughly the same performance 
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outcomes. In contrast, when environments have high unpre-
dictability, there is an inverted-V relationship between struc-
ture and performance. This suggests a punishing environment 
in which there is a narrow range of optimal structures, such that 
it is challenging to fi nd the optimal amount of structure, hard to 
maintain the optimal structure even when perturbations of 
structure are small, and very low performance when the optimal 
structure is not achieved. Even small changes in structure have 
large effects on performance, consistent with an edge of chaos 
in which only a narrow range of structures leads to superior 
performance. Thus, in contrast to forgiving low-unpredictability 
environments, high-unpredictability environments are punish-
ing, with a narrow range of optimal structures.   

 Analyzing mistakes.   Because mistakes are likely to be 
relevant in a more complete theoretical logic linking structure, 
performance, and environment, we next examined mistakes. 
We defi ne a  mistake  as an application of any action (rule-
based or improvised) to an opportunity feature that does not 
match, and  mistake size  as the number of mistakes (i.e., 
count of mismatches of actions with opportunity features) 
committed in an attempt to capture an opportunity. 

 We computed the  frequency distributions of mistake size , 
focusing on unpredictability because of its role in shifting the 
optimal structure. We ran the simulation at multiple unpredict-
ability and structure settings and then tabulated the number 
of attempts to capture an opportunity for each mistake size. 
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As shown in fi gure 6, we have nine values of structure, from 
low = 1 to high = 9, down the rows (omitting the value of 10 
because it produced undefi ned endpoint values), and three 
values of unpredictability—high, low, and very low (U = 1, .72, 
and .47)—across the columns. The sum of each distribution is 
normalized to 1 for easy comparison across distributions. Each 
of the resulting 27 distributions is a mini-graph that plots the 
proportion of attempts to capture opportunities at each mistake 
size for specifi c values of unpredictability and structure.   

 The mistakes analysis sheds light on the theoretical logic for 
why the range of optimal structures decreases (i.e., from a 
broad plateau to an inverted-V) as unpredictability increases. 
First, in low-unpredictability environments (column 2 in fi gure 6), 
the analysis indicates that increasing structure reduces the 
mean mistake size and eliminates large mistakes. These 
trends are accentuated in environments with very low unpre-
dictability (column 3 in fi gure 6). The underlying reasoning is 
as follows. When unpredictability is low, opportunities are 
more homogeneous and there are recognizable patterns 
occurring in the opportunities. This predictability allows 
managers to adjust their structures to more closely fi t the 
opportunities. So a structured action is more likely to be 
successful for capturing an opportunity. This means that 
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although increasing structure narrows the range of opportuni-
ties that can be addressed, the elimination of large mistakes 
and the drop in mean mistake size partially offset this dis-
advantage, such that there is a “mistakes advantage” for 
structure in less unpredictable environments. This suggests a 
relatively broad range of successful structures (i.e., plateau) in 
low-unpredictable environments, as observed in fi gure 5. 

 In contrast, in high-unpredictability environments, the mis-
takes analysis indicates that organizations at all levels of struc-
ture are likely to commit multiple mistakes of varying size, 
including some very large mistakes (column 1 in fi gure 6). 
When unpredictability is high, opportunities are very hetero-
geneous and there is very little pattern in the fl ow of opportu-
nities. Thus managers cannot adjust their structures to fi t 
environmental opportunities because they do not know what 
those opportunities will be. The result is mistakes of varying 
sizes (even large ones) at all levels of structure, including the 
optimal structure. So there is no “mistakes advantage” for 
structure that compensates for the loss of fl exibility when 
structure is added. Rather, there is a narrow range of optimal 
structures, making the tradeoff between effi ciency and 
fl exibility more severe in highly unpredictable environments.   

 Modeling structure and performance.   To gain added 
theoretical insights, we next created a simple mathematical 
formalization. This model formulates the theoretical logics of 
effi ciency, fl exibility, and unpredictability more precisely in 
terms of specifi c functional forms (Davis, Eisenhardt, and 
Bingham, 2007).7 

 Let e(x) and f(x) represent effi ciency and fl exibility as functions 
of structure, respectively. Prior researchers have argued that 
effi ciency and fl exibility have interdependent, non-substitutable 
effects on how structure infl uences performance (Adler, 
Goldoftas, and Levine, 1999; Gibson and Birkinshaw, 2004) in 
which the aggregate effect on performance, A(x), is a roughly 
inverted U-shaped curve of the following form: 

  A(x) = e(x)*f(x). (3) 

 Yet not all e(x) and f(x) functions produce a unimodal A(x) 
curve and shift the optimal structure, x’, as unpredictability 
increases. As shown in the Mathematical Appendix, the 
requirements for such a curve and shifting optimum put 
strong constraints on the forms of e(x) and f(x).8 

 Consistent with our mistakes analysis and prior research, we 
assume that increasing structure increases effi ciency—i.e., 
e’(x) > 0 (Brown and Eisenhardt, 1997; Siggelkow, 2001)—such 
that more structure enables faster, more reliable execution of 
those opportunities for which the structure is appropriate. But 
as structure increases, the number of opportunities that fi t 
the structure decreases, and the gains to effi ciency of econo-
mizing on attention grow more slowly (Donaldson, 2001). So 
there are likely to be decreasing effi ciency returns for added 
increments of structure that we capture with a logarithmic 
function of effi ciency: 

  e(x) = ln(x) (4) 

7
This mathematical formalization is not 
intended to be a formal derivation of our 
simulation results. Rather, its aim is to 
build an interpretive model that increases 
understanding of the theory and enhances 
confi dence in the simulation results. We 
appreciate the encouragement and 
guidance of an anonymous reviewer to 
add this formalization.

8
We thank an anonymous reviewer for this 
formulation and other helpful insights.
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 The logarithmic form of e(x) satisfi es the important condition 
that e’(x) > 0 because e’(x) = 1/x > 0 for x > 0 and captures 
the intuition that effi ciency increases, albeit at a declining 
rate, as structure increases. 

 Conversely, the literature suggests that fl exibility declines as 
structure increases—i.e., f’(x) < 0 (Brown and Eisenhardt, 
1997; Miner, Bassoff, and Moorman, 2001). On the one hand, 
less structure enables organizations to use improvised actions 
to address more different opportunities. On the other hand, 
more structure constrains improvised actions, forces more 
rule-based actions, and limits the heterogeneity of opportuni-
ties that can be addressed (Weick, 1993; Baker and Nelson, 
2005). Empirical studies of structural inertia have found that 
this decline in fl exibility occurs most dramatically at low levels 
of structure, at which even small additions of structure can 
greatly constrain organizational actions (Greve, 1999). This is 
consistent with the argument that the effect of incremental 
additions of structure is to eliminate successive fractions of 
opportunities that could have been fl exibly addressed by less 
structure. This implies that fl exibility is rapidly declining and 
inversely proportional to structure, a relationship that we 
capture as follows: 

  f(x) = 1/x (5) 

 This function satisfi es the important condition that f’(x) < 0 
because f’(x) = –1/(x^2) < 0 for x > 0. As described in the 
Mathematical Appendix, this function is a particularly appropri-
ate choice because it captures the effect of eliminating 
successive fractions of opportunities with each increment of 
structure. Finally, because effi ciency and fl exibility are interde-
pendent and non-substitutable (Gibson and Birkinshaw, 2004), 
aggregate performance is: 

  A(x) = ln(x)/x (6) 

 Though other functional forms for effi ciency and fl exibility 
may be possible, this A(x) produces a unimodal, asymmetric 
right relationship between structure and performance that is 
consistent with our simulation results and theory, as noted in 
the Mathematical Appendix.9 

 Next, we move to unpredictability. Though researchers have 
simply argued that fl exibility becomes more infl uential than 
effi ciency as environmental dynamism increases, we show in 
the Mathematical Appendix that simply increasing fl exibility 
does not shift the optimal structure. Instead, unpredictability, 
u, has two separate effects on performance that shift the 
optimum. 

 First, as unpredictability increases, the heterogeneity of 
opportunities increases. Organizations with less structure can 
potentially capture at least some of these more varied oppor-
tunities through improvisation. But executing these additional 
opportunities critically depends on having the greater latitude 
of action (i.e., fl exibility) that less structure provides and 
so is inversely proportional to structure, 1/x. Also, though 
additional opportunities can be addressed, the number of 
opportunities that can be captured grows increasingly slowly 

9
We tried other functional forms for 
effi ciency and fl exibility, including linear 
forms, which do not reproduce these 
results. We chose these two functional 
forms because they also fi t with empirical 
literature and logical argument. More 
details are in the Mathematical Appendix.
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as unpredictability increases. The reason is that less structure 
slows down improvisation and takes more attention because 
the number of opportunity features that must be successfully 
improvised at once grows. So although there are more 
opportunities available, the number of additional opportunities 
that can be successfully captured increases at a decreasing 
rate. We represent this increasing diffi culty with a logarithmic 
function of unpredictability, ln(u). Thus we model the added 
performance improvement that occurs with increasing unpre-
dictability by ln(u)/x. Combining this effect with A(x) changes 
performance to A(x) + ln(u)/x = ln(x)/x + ln(u)/x = ln(ux)/x. 

 Second, as unpredictability increases, it becomes more 
challenging to capture opportunities regardless of whether 
improvised or rule-based actions are used. Adding structure is 
ineffective in this environment because there is little predict-
able pattern in the fl ow of opportunities that managers can 
use to adjust their organizational structures to the environ-
ment. Subtracting structure is helpful, as noted above, in 
terms of adding opportunities that can potentially be 
addressed. But it is also harmful because improvisation is 
more diffi cult. Improvisation demands more attention, has 
more degrees of freedom, and generates many mistakes 
(including large ones) and so becomes more challenging as 
unpredictability increases. We represent this overall declining 
performance with a dampening parameter, 1/u. Adding this 
second effect of unpredictability generates a performance 
function, P(x,u): 

  P(x,u) = 1/u [ln(ux)/x] = ln(ux)/ux (7) 

 As noted in the Mathematical Appendix, this function satisfi es 
the conditions for P1a, generating a unimodal, asymmetric 
right relationship between structure and performance. It also 
satisfi es the conditions for P2a that as unpredictability, u, 
increases, the optimal structure, x’ = e/u, decreases. Overall, 
the mathematical model is consistent with our simulation 
results and theory. 

 This mathematical model offers several useful extensions. 
First, it clarifi es the approximate functional forms and rates of 
change of effi ciency and fl exibility that contribute to the asym-
metry between structure and performance. Performance is 
asymmetric because effi ciency and especially fl exibility are 
changing more rapidly at low structure than at high. When 
structure is low, even small increments in structure create 
large increases in effi ciency, ln(x), and large decreases in 
fl exibility, 1/x. Thus there is a severe tradeoff between 
effi ciency and fl exibility. In contrast, when structure is high, 
performance is much less sensitive to structure. Effi ciency 
improves very gradually with added structure. Flexibility is 
already so low that increases in structure have little effect. 
Thus there is only a modest tradeoff between effi ciency and 
fl exibility. Overall, having too little structure is particularly risky 
because effi ciency and fl exibility are highly sensitive to even 
small changes in structure when structure is low. 

 Second, this model clarifi es the inverted-V curve and related 
edge of chaos in highly unpredictable environments. According 
to prior research, less structure is better in highly dynamic 
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environments because fl exibility is more advantageous than 
effi ciency. In contrast, a core insight of our model is that 
neither effi ciency nor fl exibility works very well in highly 
unpredictable environments. As expected, extensive structure 
and so effi ciency are ineffective because they are overly rigid. 
But unexpectedly, improvised actions and so fl exibility are not 
very effective either. With so little structure, improvisation 
consumes a lot of attention, is fraught with mistakes, and is 
very slow. As a result, the organization can only capture a few 
opportunities, and risks falling into an “error catastrophe,” in 
which it lacks enough traction to improvise fast enough to 
capture opportunities before they disappear. So the optimal 
structure is a narrow range (i.e., at the edge of chaos) of just 
enough structure to capture at least a few opportunities.     

 DISCUSSION AND CONCLUSION   

 Using computational and mathematical modeling, we added 
to theory on the fundamental relationships among structure, 
performance, and environment. As summarized in table 1, our 
core contribution is a more precise theory of how the locus, 
asymmetry, and range of optimal structures are grounded in 
the tradeoff between effi ciency and fl exibility in differing 
environments. First, we clarify this tradeoff between fl exibility 
and effi ciency. Prior theory focuses on balancing effi ciency and 
fl exibility (Tushman and O’Reilly, 1996; Brown and Eisenhardt, 
1997; Uzzi, 1997; Rowley, Behrens, and Krackhardt, 2000). In 
contrast, we fi nd that this tradeoff is more accurately the 
fl exible capture of widely varying opportunities vs. effi cient 
execution of specifi c opportunities.10   Less structure opens up 
the organization to the possibility of addressing a wider range 
of opportunities that serendipitously occur, but it also hinders 
the rapid, mistake-free execution of those opportunities. 
Conversely, more structure enables the effi cient execution of 
particular opportunities that can be anticipated. But too much 
structure is more than just too rigid. It also narrows the range 
of possible opportunities, suggesting that structure is most 
valuable when many similar opportunities are available. 

 Second, the relationship between structure and performance 
is unexpectedly asymmetric: performance gradually fades 
with too much structure but drops catastrophically with too 
little. Thus structure and performance do not have an inverted-U 
relationship, as argued previously (Brown and Eisenhardt, 1997; 
Gibson and Birkinshaw, 2004; Rothaermel, Hitt, and Jobe, 
2006). Rather, effi ciency and fl exibility are distinct functions 
that change slowly when structure is high. In contrast, effi -
ciency and especially fl exibility change rapidly when structure 
is low, creating a more acute tradeoff between effi ciency and 
fl exibility. The consequential implication is that it is safer to 
err on the side of too much structure (effi ciency) than on the 
side of too little (fl exibility). 

 Third, our results show that simple rules and other semi-
structures are surprisingly robust across multiple environ-
ments, in contrast with research arguing that they are best only 
in highly dynamic environments (Burns and Stalker, 1961; 
Rowley, Behrens, and Krackhardt, 2000; Eisenhardt and Sull, 
2001).11   In predictable environments, there is a broad plateau 
of optimal structures, and so numerous high-performing 

10
We appreciate the advice of an 
anonymous reviewer to include this more 
nuanced understanding of the core 
tradeoff between effi ciency and fl exibility.

11
We appreciate the suggestion of an 
anonymous reviewer to consider the 
robustness of a simple-rules strategy.
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Table 1

Comparison of Theoretical Frameworks for Structure-environment-performance Relationships

Framework feature Prior Revised

Core tradeoff Flexibility vs. effi ciency. Flexible capture of varying opportunities vs. effi cient 
execution of specifi c opportunities. 

Relevance of limited attention, mistakes, time delays, and 
fl eeting and varied opportunities.

Structure-performance 
relationship

Inverted-U. 
Flexibility and effi ciency are 

opposing, approximately 
linear processes.

Unimodal, asymmetric right. 
Attention advantage of increasing structure. 
Effi ciency increases at a decreasing rate; fl exibility 

decreases at decreasing rate.

Major environmental 
constructs

Environmental dynamism 
shifts locus of optimal 
structure.

Unpredictability shifts the locus and range of optimal structure. 
High velocity raises performance. 
High complexity lowers performance. High ambiguity lowers 

performance and broadens the range of optimal structure.

Robustness of 
simple rules

Necessary in highly 
dynamic environments.

Simple rules are robust across a wide range of environments. 
Viable in predictable environments. 
Necessary in unpredictable environments.

Range of optimal 
structures

Constant. In predictable environments, plateau of many optimal 
structures. 

In unpredictable environments, inverted-V of a few optimal 
structures, and selection and exit rules likely crucial.

Edge of chaos Highly dynamic environments. 
Inverse power law 

distribution of mistakes. 
High managerial energy 

focused on staying poised 
at the optimal structure or 
edge of chaos

Highly unpredictable environments. 
Many mistakes of varying sizes, including large ones, 

roughly normal distribution. 
Mistakes advantage of increasing structure in less 

unpredictable environments. 
High managerial energy focused on improvisation, mistake 

recovery, and staying poised at the optimal structure or 
edge of chaos.

structures exist. The tension between too much and too little 
structure is easy to manage in this forgiving environment in 
which many structures are roughly equivalent. So executives 
can rely on simple rules, loose coupling, and other semi-
structures that favor fl exibility (albeit with more attention and 
mistakes) or elaborate structures with tight coupling that favor 
effi ciency (albeit with a narrower range of opportunities) 
without sacrifi cing much performance. For example, execu-
tives who need to minimize mistakes (e.g., nuclear power 
plants, aircraft carriers) can design highly reliable organizations 
that utilize very extensive structure (Perrow, 1984; Weick and 
Roberts, 1993) with little performance penalty. 

 In contrast, in unpredictable environments, there is an inverted-V 
relationship between structure and performance with only a 
narrow band of optimal structures. Even minor perturbations 
in structure can be catastrophic in these punishing environ-
ments in which performance is precarious and mistakes can be 
many, large, and fatal. The tension between too much and too 
little structure is challenging and crucial to manage. The 
mistakes advantage of structure vanishes, and improvisation 
is diffi cult. Here, only simple rules are high performing. The 
overall implication is that simple rules and other semi-structures 
are robust across diverse environments—i.e., they are viable in 
predictable environments and essential in unpredictable ones. 

 Underlying the robustness of simple rules across environ-
ments are the dynamics of unpredictability that shape the 
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locus and range of optimal structure. Prior research has 
included velocity (Eisenhardt, 1989), complexity (Gavetti, 
Levinthal, and Rivkin, 2005), and ambiguity (March and Olsen, 
1976; Rindova and Kotha, 2001) as major dimensions of 
environmental dynamism. But though these dimensions have 
intriguing implications for strategy and performance (see 
below), only unpredictability infl uences optimal structure. 
Underlying this fi nding is the insight that structure is valuable 
when there are consistent patterns in the fl ow of environ-
mental opportunities and when managers have adjusted their 
structures to match these patterns. But as our simulation 
suggests, these tuning adjustments need not be exactly 
accurate. Rather, sometimes matches may occur by chance, 
and sometimes structure helps just by diminishing the 
degrees of freedom in mistake-prone improvisation. The key 
implication is that adding structure when unpredictability 
decreases can be valuable (or at least not harmful), even 
when it is not completely clear what exactly that structure 
should be. Thus our results support a structural explanation 
for Weick’s (1990) well-known observation of the success of 
a European army in navigating the Alps based on a map of the 
Pyrenees (see also Gavetti, Levinthal, and Rivkin, 2005). 

 A particularly intriguing optimum in the structure-performance-
environment relationship is simple rules in highly unpredict-
able environments. Prior researchers have argued that 
favoring fl exibility leads to high performance (Burns and 
Stalker, 1961; Brown and Eisenhardt, 1998). But though we 
fi nd that fl exibility is helpful, this argument is too simplistic 
because neither structure nor improvisation is very effective 
in these environments. As a result, the optimal structure not 
only diminishes, but its range unexpectedly shrinks from a 
broad plateau to an inverted-V (i.e., edge of chaos). And more 
unexpectedly, the number of opportunities that can be 
successfully executed also drops as improvisation becomes 
more diffi cult. A consequential implication is that the content 
of a high-performing simple-rules strategy will likely focus on 
capturing a few, high-payoff opportunities—i.e., a small 
number of rules to quickly select a few “home-run” opportu-
nities and to quickly exit those opportunities when they do 
not pan out. This implication also helps explain why heuristics 
that focus on prioritizing and exiting opportunities are particu-
larly high performing in highly dynamic environments (Bing-
ham, Eisenhardt, and Furr, 2007). 

 Finally, we contribute insights into the edge-of-chaos concept 
from the complexity sciences (Kauffman, 1993; Carroll and 
Burton, 2000). Research has defi ned the edge of chaos as a 
phase transition between order and disorder (Kauffman, 1993), 
and it is often described more colorfully with phrases like 
“snooze, you lose” and “only the paranoid survive” (Brown 
and Eisenhardt, 1998; Burgelman, 2002). Our contribution is 
theoretical insights into this intriguing construct and its role 
within our elaborated theory of structure, performance, and 
the environment. First, we identify where the edge of chaos 
is likely to occur: in highly unpredictable environments. In 
these environments, the relationship between structure and 
performance is an inverted-V with tipping points on both sides 
of the optimal structure, consistent with an edge of chaos. 
Second, we explain why the edge of chaos occurs—when 
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structure is low, rapidly changing effi ciency and fl exibility with 
diffi cult improvisation create a thin range of optimal struc-
tures. Third, we characterize the distribution of mistakes at 
the edge of chaos—many errors of widely varying size and 
including some large errors. Managers are likely to experience 
both small oversights and debilitating miscalculations. Note 
that we did not fi nd an inverse power law distribution of many 
small mistakes and few large ones (Bak, 1996). Rather, the 
distribution is roughly normal. Finally, we provide insight into 
the energy required to maintain a position at the edge of 
chaos. Researchers have argued that the edge of chaos is a 
dissipative equilibrium, an unstable critical point that requires 
constant energy to maintain (Prigogine and Stengers, 1984). 
We extend this notion to our focal literatures by clarifying that 
managerial energy at the edge of chaos centers on real-time 
improvisation of opportunities, recovery from the inevitable 
mistakes that will occur, and continuous monitoring of the 
amount of structure to avoid drift from the optimum.  

 Toward a Pluralistic View of Strategies 

 More broadly, our work also contributes to strategy and its 
mandate to develop theoretical logics explaining variance in 
fi rm performance. First, we contribute to the strategic logic of 
opportunity and the related strategy as simple rules (Eisen-
hardt and Martin, 2000; Eisenhardt and Sull, 2001). According 
to the logic of opportunity, fi rms achieve high performance in 
dynamic markets by using a few simple rules to guide the 
capture of opportunities (e.g., Gersick, 1994; Burgelman, 
1996; Galunic and Eisenhardt, 2001; Miner, Bassoff, and 
Moorman, 2001; Rindova and Kotha, 2001; Bingham, Eisenhardt, 
and Furr, 2007). Our research extends this view with support 
and insights into the core theoretical logic by clarifying the 
implications of limited attention, mistakes, and the fl eeting 
and varied nature of opportunities. These dynamics place a 
premium on using increasingly simple rules to capture 
increasingly unpredictable opportunities. Thus, like other 
simulations that provide internal validation of theory (e.g., 
Sastry, 1997), our simulation helps to sharpen the theory that 
underlies the strategic logic of opportunity. 

 Second, we contribute insights into the boundary conditions 
of several strategic logics. In positioning logic, executives 
achieve high performance by building tightly linked activity 
systems in valuable strategic positions, such as low cost or 
high differentiation (Porter, 1985; Rivkin, 2000). Our fi ndings 
add to this view by clarifying that such high-structure strate-
gies are effective in predictable markets. Further, our fi ndings 
contribute to a deeper understanding of why tightly linked 
activity systems are high performing in such predictable 
markets—i.e., while fewer opportunities may fi t these highly 
structured strategies, their tightly linked activity systems 
produce both few and small mistakes. Therefore they effi -
ciently execute a fl ow of similar opportunities. In addition, 
given that there are many possible high-performing structures 
in predictable markets (i.e., a plateau relationship between 
structure and performance), our fi ndings indicate why execu-
tives can achieve good performance with many alternative 
strategies. These numerous optimal strategic alternatives 
help to explain why multiple differentiated positions are often 
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viable in predictable markets (Porter, 1985). Finally, our 
fi ndings clarify why, once achieved, competitive advantage 
gained through positioning is relatively robust to environmen-
tal and structural perturbations, creating a foundation for 
sustainable competitive advantage and superior performance. 

 By contrast, in opportunity logic, executives achieve high 
performance by using a few simple rules or heuristics to 
capture varied opportunities (Eisenhardt and Sull, 2001; 
Bingham and Eisenhardt, 2008). Our fi ndings contribute to 
this view by indicating that low-structure opportunity logic is 
particularly essential in unpredictable markets, while position-
ing logic is most effective in predictable markets, thereby 
sketching a boundary condition between these strategic 
logics. Our fi ndings further contribute a subtle insight into the 
precarious nature of competitive advantage (D’Aveni, 1994; 
Lenox, Rockart, and Lewin, 2006). Though prior researchers 
have argued that fi rms should seek a series of short-term, 
competitive advantages in dynamic environments (Roberts 
and Amit, 2003; Chen et al., 2009), our results indicate that 
competitive advantage in these environments is unstable and 
its duration unforeseeable (but not necessarily short-term). 
Overall, this suggests that fi rms with a strategic logic of 
opportunity are threatened by internal collapse—i.e., they can 
fail as a result of having too much or too little structure and 
not just as a result of external competition. This potential for 
internal collapse offers an alternative explanation of intra-
industry performance heterogeneity that differs from path 
dependent and competitive explanations (McGahan and 
Porter, 1997; Bowman and Helfat, 2001). Thus a key insight is 
that the managerial challenges of fi nding and maintaining 
optimal structure at the edge of chaos may contribute to 
heterogeneous fi rm performance within dynamic industries.   

 A Richer View of Environments 

 Our work also contributes to a better understanding of 
distinct environments. Prior research tends to focus on single 
environmental dimensions or mix several dimensions 
together. The result is an imprecise understanding of different 
environments. In contrast, we highlighted four distinct, widely 
used environmental dynamism dimensions (i.e., velocity, 
complexity, ambiguity, and unpredictability) and developed 
their unique implications for strategy and performance. We 
covered unpredictability above and now turn to the remaining 
three dimensions. 

 High-velocity environments are particularly attractive. Because 
they are opportunity-rich, managers can be selective and so 
choose many, high-payoff opportunities. In addition, this 
fi nding offers further insight into why rapid executive actions 
and processes such as fast strategic decision making (Eisen-
hardt, 1989) and fast product innovation (Eisenhardt and Tabrizi, 
1995) are so effective in high-velocity environments. In these 
opportunity-rich environments, there are likely to be many 
high-payoff opportunities. By acting quickly, executives can 
secure a larger number of these superior payoffs for a longer 
time and so achieve high performance. In contrast, by acting 
slowly, executives are likely to secure fewer opportunities 
and to exploit them for less time, leading to low performance. 
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The attractiveness of high-velocity environments may also 
explain why the Internet era (with its high velocity of opportu-
nities) had a surprisingly low failure rate. Although many fi rms 
died, the death rate was unusually low when compared with 
the total number of foundings (Goldfarb, Kirsch, and Miller, 
2007). Overall, we found that high-velocity environments are 
attractive for achieving high performance. 

 In contrast, complex environments are particularly unattract-
ive. In highly complex environments, opportunities have many 
features that executives must execute correctly. Thus these 
opportunities are challenging to capture, and performance is 
correspondingly low. This fi nding extends prior research by 
helping to explain why fi rms in complex environments such 
as biotechnology (Owen-Smith and Powell, 2003) and 
“green” power (Sine, Mitsuhashi, and Kirsch, 2006) often 
perform poorly even when their executives have high 
domain expertise. In these technically and institutionally 
complex environments, executives must achieve success in 
many areas (e.g., technical, manufacturing, safety, regula-
tory, marketing) to capture an opportunity. When organiza-
tions fail to capture some opportunities, attention is wasted 
that could have been used to address other opportunities. 
Thus organizations in complex environments can address 
relatively few opportunities and are likely to have a low 
probability of success when they do. Overall, we fi nd that 
high-complexity environments are unattractive for gaining 
high performance. 

 Our fi ndings for environmental ambiguity are especially 
intriguing. When ambiguity is high, executives are unable to 
perceive opportunities accurately and have a wide range of 
reasonably optimal structures that produce roughly equiva-
lent, albeit mediocre, performance. By contrast, when ambi-
guity is low, the range of optimal structures narrows and so 
favors executives who are able to locate and maintain optimal 
structure. Thus performance at the optimal structure 
improves because executives can more accurately perceive 
opportunities and so more precisely match structure to them. 

 These insights contribute to understanding effective institu-
tional entrepreneurship in nascent markets. Research indi-
cates that entrepreneurs in these highly ambiguous markets 
often excel when they shape industry structure to their advan-
tage (Rao, 1994; Rindova and Fombrun, 1999; Santos and 
Eisenhardt, 2009). For example, entrepreneurs succeed when 
they form portfolios of relationships that shape the industry 
structure to gain a central network position (Ozcan and 
Eisenhardt, 2008) or when they use analogies to provide 
some unique insight into the opportunity structure of these 
novel markets that improves opportunity capture (Gavetti, 
Levinthal, and Rivkin, 2005).12   We add to institutional entre-
preneurship by revealing that these actions are successful 
attempts to reduce ambiguity and so increase the possibility 
of very high performance. Thus successful entrepreneurs 
seek to change nascent markets from games of luck with 
likely mediocre performance in which the optimal structure is 
easy to fi nd (high ambiguity) to games of skill with potentially 
high performance in which the optimal structure is challeng-
ing to fi nd (low ambiguity).   

12
We appreciate the observation of an 
anonymous reviewer that unique insight 
into the opportunity structure can 
potentially provide large returns in highly 
ambiguous environments. This observa-
tion suggests that these managers could 
use such insights (e.g., as derived from 
analogies) to lower ambiguity. We use 
this interpretation as part of our 
explanation of the behavior of successful 
executives in highly ambiguous markets, 
including nascent markets. In addition, 
this reviewer also noted that such unique 
insights might also be effective in highly 
unpredictable environments. Here, also, 
analogies may be a concrete example of 
the kind of unique insights to which this 
reviewer referred.
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 Adaptation in Entrepreneurial vs. Established 
Organizations 

 Finally, our work contributes to organization theory. At the 
heart of our research is the core tradeoff between fl exibility 
and effi ciency in dynamic environments. Less structure 
enables the fl exible capture of serendipitous opportunities. 
But with too much improvisation, the organization runs the 
risk of incoherence, confusion, and drift. More structure 
enables tight focus on the effi cient execution of expected 
opportunities. With too much structure, however, the organi-
zation runs the risk of stagnation and misalignment with fresh 
opportunities. The essence of fl exibility is thus the messy 
capture of the unexpected, while the essence of effi ciency is 
the smooth execution of the anticipated. 

 Our contribution is the insight that this core effi ciency-fl exibility 
tradeoff affects types of organizations differently. For 
entrepreneurial organizations that typically have little struc-
ture, the challenge in any environment is the same: to gain 
enough structure before failure ensues. Legitimation and 
competition, of course, affect performance. But the key 
insight here is that suffi cient structure is also essential. 
Without suffi cient structure, it is impossible to improvise 
effectively and so to capture opportunities. Thus the well-
known liability of newness may mask a liability of too little 
structure. 

 In contrast, for established organizations that often have 
extensive structure, such as roles, rules, and linkages among 
units, the imperative varies in different environments. If the 
environment is predictable, this structure can be high performing 
because it can take advantage of consistent patterns in the 
environment that can be mirrored in structure. The number 
and size of mistakes decreases with more structure in 
predictable environments, and only modest executive atten-
tion is needed to retain an optimal amount of structure. 
Organizations can gain a stable equilibrium that is robust to 
structural and environmental changes. 

 But as the environment becomes unpredictable or executives 
diversify into unpredictable environments, our fi ndings 
indicate major challenges for established organizations. One 
is obviously to decrease the amount of structure. But a 
second, subtler challenge is the need for a dramatically 
altered mindset. This mindset entails vigilantly managing the 
amount of structure (not just its content), improvising to 
capture fresh opportunities, and quickly rebounding from 
mistakes—all at the edge of chaos, where fi rms can at best 
capture only a few opportunities and gain an unstable or 
dissipative equilibrium. Simply put, managing in unpredictable 
environments is different, harder, and more precarious than in 
predictable environments. Overall, the irony of adaptation is 
that, as it becomes more crucial for organizations to adapt, it 
also becomes more challenging to do so. Thus the well-
known liability of senescence may be as much a cognitive 
phenomenon as an age phenomenon. 

 We began by noting that diverse literatures emphasized that 
balancing between too much and too little structure is essen-
tial for high performance in dynamic environments. This 
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consonance led us to explore the theoretical logic of effi -
ciency versus fl exibility underlying fundamental relationships 
at the heart of the science of organization. By incorporating 
limits on attention, time delays, the inevitability of mistakes, 
and the fl eeting and heterogeneous nature of opportunities, 
we construct a more precise theory that links structure, 
performance, and environment. This theoretical framework 
reveals the surprisingly wide applicability of a simple-rules 
strategy and semi-structures, an asymmetry that favors more 
structure, and demanding managerial challenges at the edge 
of chaos. Overall, we spotlight a research agenda that places 
complexity sciences reasoning at the nexus of organizational 
studies, network sociology, and competitive strategy.        

REFERENCES

  Adler, P. S., B. Goldoftas, and 
D. I. Levine  
  1999 “Flexibility versus effi ciency? 

A case study of model change-
overs in the Toyota production 
system.” Organization 
Science, 10: 43–68.  

  Amabile, T.  
  1996 Creativity in Context. Boulder, 

CO: Westview Press.  

  Anderson, P.  
  1999 “Complexity theory and organi-

zation science.” Organization 
Science, 10: 216–232.  

  Bak, P.  
  1996 How Nature Works: The Sci-

ence of Self-organized Critical-
ity. New York: Springer-Verlag.  

  Baker, T., and R. E. Nelson  
  2005 “Creating something from 

nothing: Resource construc-
tion through entrepreneurial 
bricolage.” Administrative Sci-
ence Quarterly, 50: 329–366.  

  Baligh, H. H.  
  2006 Organization Structures: Theory 

and Design, Analysis and Pre-
scription. New York: Springer.  

  Baum, J. A. C., T. Calabrese, and 
B. R. Silverman  
  2000 “Don’t go it alone: Alliance 

network composition and 
startups’ performance in 
Canadian biotechnology.” 
Strategic Management 
Journal, 21: 267–294.  

  Bigley, G., and K. Roberts  
  2001 “Structuring temporary 

systems for high reliability.” 
Academy of Management 
Journal, 44: 1281–1300.  

  Bingham, C. B., and 
K. M. Eisenhardt  
  2008 “Position, leverage, and oppor-

tunity: A typology of strategic 
logics linking resources with 
competitive advantage.” 
Managerial and Decision 
Economics, 29: 241–256.  

  Bingham, C. B., K. M. Eisenhardt, 
and J. P. Davis  
  2009 “Opening the black box: What 

fi rms explicitly learn from their 
process experiences.” Work-
ing paper, University of North 
Carolina at Chapel Hill, Kenan-
Flagler Business School.  

  Bingham, C. B., K. M. Eisenhardt, 
and N. R. Furr  
  2007 “What makes a process a ca-

pability? Heuristics, strategy, 
and effective capture of oppor-
tunities.” Strategic Entrepre-
neurship Journal, 1: 27–47.  

  Bowman, E., and C. E. Helfat  
  2001 “Does corporate strategy 

matter?” Strategic Manage-
ment Journal, 22: 1–23.  

  Bradach, J. L.  
  1997 “Using the plural form in the 

management of restaurant 
chains.” Administrative Sci-
ence Quarterly, 42: 276–304.  

  Brown, S. L., and K. M. Eisenhardt  
  1997 “The art of continuous change: 

Linking complexity theory 
and time-paced evolution in 
relentlessly shifting organiza-
tions.” Administrative Science 
Quarterly, 42: 1–34.  

  1998 Competing on the Edge: 
Strategy as Structured Chaos. 
Boston: Harvard Business 
School Press.  

  Burgelman, R. A.  
  1994 “Fading memories: A process 

theory of strategic business 
exit in dynamic environ-
ments.” Administrative Sci-
ence Quarterly, 39: 24–56.  

  1996 “A process model of strategic 
business exit: Implications for 
an evolutionary theory of strat-
egy.” Strategic Management 
Journal, 17: 193–214.  

  2002 “Strategy as vector and the 
inertia of coevolutionary lock-
in.” Administrative Science 
Quarterly, 47: 325–357.  

  Burns, T., and G. M. Stalker  
  1961 The Management of Innova-

tion. London: Tavistock.  

  Burton, R. M., and B. Obel  
  1995 “The validity of computational 

models in organization sci-
ence: From model realism to 
purpose of the model.” Com-
putational and Mathematical 
Organization Theory, 1: 57–72.  

  Carroll, G. R., and J. R. Harrison  
  1998 “Organizational demography 

and culture: Insights from a 
formal model and simulation.” 
Administrative Science Quar-
terly, 43: 637–667.  

  Carroll, T., and R. Burton  
  2000 “Organizations and complex-

ity: Searching for the edge of 
chaos.” Computational and 
Mathematical Organization 
Theory, 6: 319–337.  

  Chen, E. L., R. Katila, 
R. M. McDonald, and 
K. M. Eisenhardt  
  2009 “All the right moves: Com-

petitive interaction, temporary 
advantage, and fi rm perfor-
mance.” Stanford Technology 
Ventures Program Working 
Paper.  

  Cinlar, E.  
  1975 Introduction to Stochastic 

Processes. Englewood Cliffs, 
NJ: Prentice-Hall.  

  Cohen, M. D., J. G. March, and 
J. P. Olsen  
  1972 “A garbage can model of orga-

nizational choice.” Administra-
tive Science Quarterly, 17: 
1–25.  

  Cover, T., and J. Thomas  
  1991 Elements of Information 

Theory. New York: Wiley.  

  Cyert, R. M., and J. G. March  
  1963 A Behavioral Theory of the 

Firm. Englewood Cliffs, NJ: 
Prentice-Hall.  



Optimal Structure

445/ASQ, September 2009

  D’Aveni, R. A.  
  1994 Hypercompetition: Managing 

the Dynamics of Strategic 
Maneuvering. New York: 
Free Press.  

  Daft, R. L.  
  1992 Organization Theory and 

Design, 4th ed. St. Paul, MN: 
West Publishing.  

  Davis, J. P.  
  2008 “Rotating leadership and sym-

biotic organization: Relation-
ship processes in the context 
of collaborative innovation.” 
Working paper, MIT Sloan 
School of Management.  

  2009 “Organizing bridge dynamics: 
Pruning and pairing processes 
in innovative interorganiza-
tional relationships.” Working 
paper, MIT Sloan School of 
Management.  

  Davis, J. P., K. M. Eisenhardt, 
and C. B. Bingham  
  2007 “Developing theory through 

simulation methods.” Acad-
emy of Management Review, 
32: 480–499.  

  Dess, G., and D. Beard  
  1984 “Dimensions of organizational 

task environments.” Adminis-
trative Science Quarterly, 29: 
52–73.  

  Donaldson, L.  
  2001 The Contingency Theory of 

Organization. Thousand Oaks, 
CA: Sage.  

  Eisenhardt, K. M.  
  1989 “Making fast strategic deci-

sions in high-velocity environ-
ments.” Academy of Manage-
ment Journal, 32: 543–576.  

  Eisenhardt, K. M., and 
M. M. Bhatia  
  2001 “Organizational complexity 

and computation.” In J. A. C. 
Baum (ed.), Companion to Or-
ganizations. Oxford: Blackwell.  

  Eisenhardt, K. M., and J. A. Martin  
  2000 “Dynamic capabilities: What 

are they?” Strategic Manage-
ment Journal, 21: 1105–1121.  

  Eisenhardt, K. M., and D. Sull  
  2001 “Strategy as simple rules.” 

Harvard Business Review, 79 
(January–February): 107–116.  

  Eisenhardt, K. M., and B. Tabrizi  
  1995 “Accelerating adaptive pro-

cesses: Product innovation in 
the global computer industry.” 
Administrative Science Quar-
terly, 40: 84–110.  

  Feldman, M. S., and B. T. Pentland  
  2003 “Reconceptualizing organiza-

tional routines as a source of 
fl exibility and change.” Admin-
istrative Science Quarterly, 48: 
94–118.  

  Finkelstein, S.  
  2003 Why Smart Executives Fail. 

New York: Portfolio.  

  Fleming, L., O. Sorenson, and 
J. Rivkin  
  2006 “Complexity, networks, and 

knowledge fl ow.” Research 
Policy, 35: 994–1017.  

  Galbraith, J.  
  1973 Designing Complex Organiza-

tions. Reading, MA: Addison-
Wesley.  

  Galunic, D. C., and 
K. M. Eisenhardt  
  2001 “Architectural innovation and 

modular corporate forms.” 
Academy of Management 
Journal, 44: 1229–1250.  

  Garud, R., and S. Jain  
  1996 “The embeddedness of 

technology systems.” In 
J. A. C. Baum and J. E. Dutton 
(eds.), Advances in Strategic 
Management, 13: 389–408. 
Greenwich, CT: JAI Press.  

  Gavetti, G., D. Levinthal, and 
J. W. Rivkin  
  2005 “Strategy making in novel and 

complex worlds: The power of 
analogy.” Strategic Manage-
ment Journal, 26: 691–712.  

  Gell-Mann, M.  
  1994 The Quark and the Jaguar: 

Adventures in the Simple and 
the Complex. New York: W.H. 
Freeman.  

  Gersick, C. J. G.  
  1994 “Pacing strategic change: The 

case of a new venture.” Acad-
emy of Management Journal, 
37: 9–45.  

  Gibson, C., and J. Birkinshaw  
  2004 “The antecedents, conse-

quences and mediating role of 
organizational ambidexterity.” 
Academy of Management 
Journal, 47: 209–226.  

  Gilbert, C.  
  2005 “Unbundling the structure of 

inertia: Resource vs routine 
rigidity.” Academy of Manage-
ment Journal, 48: 741–763.  

  Glynn, P., and W. Whitt  
  1992 “The asymptotic effi ciency of 

simulation estimators.” Opera-
tions Research, 40: 505–520.  

  Goldfarb, B., D. A. Kirsch, and 
D. Miller  
  2007 “Was there too little entry dur-

ing the dot com era?” Journal 
of Financial Economics, 86: 
100–144.  

  Granovetter, M.  
  1985 “Economic action and social 

structure: The problem of 
embeddedness.” American 
Journal of Sociology, 91: 
481–510.  

  Greve, H. R.  
  1999 “The effect of core change 

on performance: Inertia and 
regression toward the mean.” 
Administrative Science Quar-
terly, 44: 590–614.  

  Hansen, M. T.  
  1999 “The search-transfer prob-

lem: The role of weak ties in 
sharing knowledge across 
organization subunits.” Admin-
istrative Science Quarterly, 44: 
82–111.  

  Hargadon, A., and R. I. Sutton  
  1997 “Technology brokering and 

innovation in a product 
development fi rm.” Adminis-
trative Science Quarterly, 42: 
716–749.  

  Hatch, M. J.  
  1998 “Jazz as a metaphor for orga-

nizing in the 21st century.” 
Organization Science, 9: 
556–557.  

  Hayek, F. A.  
  1945 “The use of knowledge in 

society.” American Economic 
Review, 35: 519–530.  

  Hill, C. W. L., and F. T. Rothaermel  
  2003 “The performance of incum-

bent fi rms in the face of radi-
cal technological innovation.” 
Academy of Management 
Review, 28: 257–274.  

  Kalos, M., and P. Whitlock  
  1986 Monte Carlo Methods, vol. 1: 

Basics. New York: Wiley-
Interscience.  

  Katila, R., and G. Ahuja  
  2002 “Something old, something 

new: A longitudinal study of 
search behavior and new prod-
uct introduction.” Academy 
of Management Journal, 45: 
1183–1194.  

  Kauffman, S.  
  1989 “Adaptation on rugged fi tness 

landscapes.” In E. Stein (ed.), 
Lectures in the Science of 
Complexity: 517–618. Read-
ing, MA: Addison-Wesley.  

  1993 The Origins of Order. New 
York: Oxford University Press.  



446/ASQ, September 2009

  Kirzner, I.  
  1997 “Entrepreneurial discovery and 

the competitive market pro-
cess: An Austrian approach.” 
Journal of Economic Litera-
ture, 35: 60–85.  

  Langton, C.  
  1992 “Life at the edge of chaos.” 

In C. Langton, J. Farmer, 
S. Rasmussen, and C. Taylor 
(eds.), Artifi cial Life II: Santa 
Fe Institute Studies in the 
Sciences of Complexity, 10: 
41–91. Santa Fe: Addison-
Wesley.  

  Lave, C., and J. G. March  
  1975 An Introduction to Models 

in the Social Sciences. New 
York: Harper and Row.  

  Law, A. M., and D. W. Kelton  
  1991 Simulation Modeling and 

Analysis, 2d ed. New York: 
McGraw-Hill.  

  Lawrence, P. R., and J. W. Lorsch  
  1967 Organization and Environment: 

Managing Differentiation and 
Integration. Boston: Harvard 
University Press.  

  Lenox, M. J., S. Rockart, and 
A. Lewin  
  2006 “Interdependency, competi-

tion, and the distribution of 
fi rm and industry profi ts.” 
Management Science, 52: 
757–772.  

  March, J. G.  
  1991 “Exploration and exploitation in 

organizational learning.” Orga-
nization Science, 2: 71–87.  

  March, J. G., and J. P. Olsen  
  1976 Ambiguity and Choice in 

Organizations. Bergen: 
Universitetsforlaget.  

  March, J. G., M. Schultz, and 
X. Zhou  
  2000 Dynamics of Rules. Stanford, 

CA: Stanford University Press.  

  March, J. G., and H. Simon  
  1958 Organizations. New York: 

Wiley.  

  Martin, J. A., and K. Eisenhardt  
  2010 “Rewiring: Cross-business-

unit collaborations and 
performance in multi-business 
organizations.” Academy 
of Management Journal 
(forthcoming).  

  McGahan, A. M., and M. E. Porter  
  1997 “How much does industry mat-

ter, really?” Strategic Manage-
ment Journal, 18: 15–30.  

  Miller, D., and P. H. Friesen  
  1980 “Momentum and revolution 

in organizational adaptation.” 
Academy of Management 
Journal, 23: 591–614.  

  Miner, A. S., P. Bassoff, and 
C. Moorman  
  2001 “Organizational improvisation 

and learning: A fi eld study.” 
Administrative Science Quar-
terly, 46: 304–337.  

  Mintzberg, H.  
  1979 The Structuring of Organiza-

tions. Englewood Cliffs, NJ: 
Prentice-Hall.  

  Mintzberg, H., and A. McHugh  
  1985 “Strategy formation in an ad-

hocracy.” Administrative Sci-
ence Quarterly, 30: 160–197.  

  Moorman, C., and A. S. Miner  
  1998 “Organizational improvisation 

and organizational memory.” 
Academy of Management 
Review, 23: 698–723.  

  Nelson, R. R., and S. G. Winter  
  1982 An Evolutionary Theory of 

Economic Change. Cambridge, 
MA: Belknap Press of Harvard 
University Press.  

  Ocasio, W.  
  1997 “Towards an attention-based 

view of the fi rm.” Strategic 
Management Journal, 18: 
187–206.  

  Okhuysen, G. A., and 
K. M. Eisenhardt  
  2002 “Integrating knowledge in 

groups: How formal interven-
tions enable fl exibility.” Orga-
nization Science, 13: 370–386.  

  Owen-Smith, J., and W. W. Powell  
  2003 “Knowledge networks as chan-

nels and conduits: The effects 
of spillovers in the Boston 
biotechnology community.” 
Organization Science, 15: 
5–21.  

  Ozcan, C. P., and K. M. Eisenhardt  
  2009 “Origin of alliance portfolios: 

Entrepreneurs, network strate-
gies, and fi rm performance.” 
Academy of Management 
Journal, 52: 246–279.  

  Perlow, L. A., G. A. Okhuysen, and 
N. Repenning  
  2002 “The speed trap: Exploring the 

relationship between decision 
making and temporal context.” 
Academy of Management 
Journal, 45: 931–955.  

  Perrow, C.  
  1984 Normal Accidents: Living with 

High-risk Technologies. New 
York: Basic Books.  

  Pisano, G. P.  
  1994 “Knowledge, integration, 

and the locus of learning: An 
empirical analysis of process 
development.” Strategic Man-
agement Journal, 15: 85–100.  

  Porter, M. E.  
  1985 Competitive Advantage: Creat-

ing and Sustaining Superior 
Performance. New York: Free 
Press.  

  Prigogine, I., and I. Stengers  
  1984 Order Out of Chaos: Man’s 

New Dialog with Nature. New 
York: Shambhala.  

  Pugh, D., D. Hickson, C. Hinings, 
K. Macdonald, C. Turner, and 
T. Lupton  
  1963 “A conceptual scheme for 

organizational analysis.” Ad-
ministrative Science Quarterly, 
8: 289–315.  

  Rao, H.  
  1994 “The social construction 

of reputation: Certifi cation 
contests, legitimation, and the 
survival of organizations in the 
American automobile industry: 
1895–1912.” Strategic Man-
agement Journal, 15: 29–44.  

  Reynolds, C. W.  
  1987 “Flocks, herds, and schools: A 

distributed behavioral model, 
in computer graphics.” SIG-
GRAPH ‘87, 21(4): 25–34.  

  Rindova, V., and C. Fombrun  
  1999 “Constructing competitive 

advantage: The role of fi rm-
constituent interactions.” 
Strategic Management Jour-
nal, 20: 691–710.  

  Rindova, V., and S. Kotha  
  2001 “Continuous morphing: 

Competing through dynamic 
capabilities, form, and func-
tion.” Academy of Manage-
ment Journal, 44: 1263–1280.  

  Rivkin, J., W.  
  2000 “Imitation of complex strate-

gies.” Management Science, 
46: 824–844.  

  Rivkin, J. W., and N. Siggelkow  
  2003 “Balancing search and stability: 

Interdependencies among 
elements of organizational de-
sign.” Management Science, 
49: 290–311.  

  Roberts, P. W.  
  1999 “Product innovation, product-

market competition and 
persistent profi tability in the 
U.S. pharmaceutical industry.” 
Strategic Management Jour-
nal, 20: 655–670.  

  Roberts, P. W., and R. Amit  
  2003 “The dynamics of capability 

development: The case of 
Australian retail banking.” 
Organization Science, 14: 
107–122.  



Optimal Structure

447/ASQ, September 2009

  Rothaermel, F. T., M. Hitt, and 
L. Jobe  
  2006 “Balancing vertical integration 

and strategic outsourcing: 
Effects on product portfolios, 
new product success, and 
fi rm performance.” Strategic 
Management Journal, 27: 
1033–1056.  

  Rowley, T. J., D. Behrens, and 
D. Krackhardt  
  2000 “Redundant governance struc-

tures: An analysis of structural 
and relational embeddedness 
in the steel and semiconduc-
tor industries.” Strategic 
Management Journal, 21: 
369–386.  

  Rudolph, J., and N. Repenning  
  2002 “Disaster dynamics: Under-

standing the role of quantity in 
organizational collapse.” Ad-
ministrative Science Quarterly, 
47: 1–30.  

  Santos, F. M., and K. M. Eisenhardt  
  2009 “Constructing markets 

and shaping boundaries: 
Entrepreneurial power in 
nascent fi elds.” Academy 
of Management Journal, 
52: 643–671.  

  Sastry, M. A.  
  1997 “Problems and paradoxes in a 

model of punctuated organi-
zational change.” Administra-
tive Science Quarterly, 42: 
237–275.  

  Schilling, M. A., and 
H. K. Steensma  
  2001 “The use of modular organi-

zational forms: An industry-
level analysis.” Academy of 
Management Journal, 44: 
1149–1168.  

  Schoonhoven, C. B., and 
E. Romanelli, eds.  
  2001 The Entrepreneurship Dynam-

ic: Origins of Entrepreneurship 
and the Evolution of Indus-
tries. Stanford, CA: Stanford 
University Press.  

  Scott, W. R.  
  2003 Organizations: Rational, Natural 

and Open Systems, 5th ed. 
Upper Saddle River, NJ: 
Prentice Hall.  

  Shane, S.  
  2000 “Prior knowledge and the 

discovery of entrepreneurial 
opportunities.” Organization 
Science, 11: 448–469.  

  Siggelkow, N.  
  2001 “Change in the presence of 

fi t: The rise, the fall, and the 
renascence of Liz Claiborne.” 
Academy of Management 
Journal, 44: 838–857.  

  Simon, H. A.  
  1962 “The architecture of complex-

ity.” Proceedings of the Ameri-
can Philosophical Society, 106: 
467–482.  

  Sine, W. D., H. A. Haveman, and 
P. S. Tolbert  
  2005 “Risky business? Entrepreneur-

ship in the new independent-
power sector.” Administra-
tive Science Quarterly, 50: 
200–232.  

  Sine, W. D., H. Mitsuhashi, and 
D. A. Kirsch  
  2006 “Revisiting Burns and Stalker: 

Formal structure and new ven-
ture performance in emerging 
economic sectors.” Academy 
of Management Journal, 49: 
121–132.  

  Sipser, M.  
  1997 Introduction to the Theory of 

Computation. Boston: PWS 
Publishing.  

  Strogatz, S.  
  2001 Nonlinear Dynamics and 

Chaos: With Applications to 
Physics, Biology, Chemistry, 
and Engineering. Cambridge, 
MA: Perseus Books Group.  

  Thompson, J. D.  
  1967 Organizations in Action. New 

York: McGraw-Hill.  

  Tripsas, M.  
  1997 “Surviving radical technologi-

cal change through dynamic 
capability: Evidence form the 
typesetter industry.” Indus-
trial and Corporate Change, 6: 
341–377.  

  Tushman, M., and R. Katz  
  1980 “External communication 

and project performance: An 
investigation into the role of 
gatekeepers.” Management 
Science, 26: 1071–1085.  

  Tushman, M., and C. A. O’Reilly, III  
  1996 “Ambidextrous organizations: 

Managing evolutionary and 
revolutionary change.” Califor-
nia Management Review, 38 
(summer): 8–30.  

  Tyre, M. J., and W. J. Orlikowski  
  1994 “Windows of opportunity: 

Temporal patterns of techno-
logical adaptation in organiza-
tions.” Organization Science, 
5: 98–118.  

  Uzzi, B.  
  1997 “Social structure and competi-

tion in interfi rm networks: The 
paradox of embeddedness.” 
Administrative Science Quar-
terly, 42: 36–67.  

  Weber, M.  
  1946 From Max Weber: Essays in 

Sociology. H. H. Gerth and 
C. W. Mills, eds. and trans. 
New York: Oxford University 
Press.  

  Weick, K. E.  
  1976 “Educational organizations as 

loosely coupled systems.” Ad-
ministrative Science Quarterly, 
21: 1–19.  

  1990 “Catastrophic myths in orga-
nizations.” In A. S. Huff (ed.), 
Mapping Strategic Thought: 
1–10. New York: Wiley.  

  1993 “The collapse of sensemaking 
in organizations: The Mann 
Gulch disaster.” Administra-
tive Science Quarterly, 38: 
628–652.  

  1996 “Drop your tools: An allegory 
for organizational studies.” Ad-
ministrative Science Quarterly, 
41: 301–313.  

  1998 “Improvisation as a mindset.” 
Organization Science, 9: 
543–555.  

  Weick, K. E., and K. H. Roberts  
  1993 “Collective minds in organiza-

tions: Heedful interrelating 
on fl ight decks.” Administra-
tive Science Quarterly, 38: 
357–381.  

  Williams, C., and W. Mitchell  
  2004 “Focusing fi rm evolution: 

The impact of information 
infrastructure on market entry 
by U.S. telecommunications 
companies, 1984–1998.” 
Management Science, 50: 
1561–1575.  

  Zott, C.  
  2003 “Dynamic capabilities and the 

emergence of intra-industry 
differential fi rm performance: 
Insights from a simulation 
study.” Strategic Management 
Journal, 24: 97–125.   



448/ASQ, September 2009

 TECHNICAL APPENDIX: Operationalization and Initialization 
of Opportunities  
Each opportunity is composed of a 10-element vector of perceived features 
composed of either 1s or 0s (i.e., a bit string), a 10-element actual features 
vector, and a randomly selected payoff value. The feature vectors are 
produced by an algorithm that randomly assigns each element either a 1 or 0. 
The probability of selecting a 1 or 0 is determined by the unpredictability 
parameter. The perceived features vector differs from the actual features 
vector by a proportion of elements as set by the environmental ambiguity 
parameter. The exact elements that differ are randomly chosen. The payoff is 
drawn from a normal distribution with μ = 30 and σ2 = 5, although sensitivity 
analyses showed that the results do not depend on these values. Moreover, 
we assume that unexecuted opportunities stay in the environment for a 
random amount of time drawn from a normal distribution with μ = 20 and 
σ2 = 5; sensitivity analyses showed that the results do not depend on these 
values either. 

  Operationalization, Initialization, and Use of Rules  

 We initialized the rule structure in the computer program in a similar way as 
for the opportunities. The rules are initialized as 10-element vectors but with 
?s (elements that can be improvised) scattered throughout a string of 1s and 
0s. Thus the amount of structure is operationalized by the number of 1s and 
0s. Similar to the structure of opportunities, the probability of selecting a 1 
or 0 is determined by the unpredictability parameter. Thus our computational 
model refl ects that managers can adjust their structures to fi t consistent 
patterns in the fl ow of opportunities if such patterns exist, consistent with 
empirical evidence. Also, as in actual organizations, there is typically an 
approximate fi t but often not an exact one. Thus the probability of getting a 1 
or 0 is the same in both the rules and opportunities and is determined by the 
unpredictability parameter. This assumption could be relaxed in future work 
to explore the impact of misfi t between environmental unpredictability and 
organizational structure, for example, in attempting to understand better the 
role of learning to fi t structure to environmental patterns. 

 The exact placement of 1s, 0s, and ?s is randomly assigned. For example, 
if a rule’s amount of structure is set to 6, then 0?0?1?01?0 or any other 
permutation could result as long as four ?s were assigned. After initialization 
of both rules and opportunities, all available opportunities (both those that 
recently fl owed into the environment and those not yet captured but still in 
the pool of opportunities) can be captured in each time step. 

 Rules are used to capture opportunities by combining rule-based and 
improvised (described below) actions that produce a 10-element bit string 
(e.g., 0 1 1 1 10 011 0). These bits are compared with each opportunity bit string 
(e.g., 0110101010). An opportunity is captured and its payoff is gained when 
the number of actions that correctly match the opportunity’s features is 
greater than the value of environmental complexity. 

  Improvisation and Attention  

 A key feature of our model is the  improvisation  of action. Some actions are 
rule-based and some are improvised. When a rule (e.g., 0?1?10???0) is 
applied to a given opportunity, the organization follows the rule for each 
element as specifi ed by a 0 or a 1. These are the rule-based actions. In 
addition, the organization randomly improvises a 0 or 1 action for each ? 
placeholder with a  p  = .5 likelihood of each outcome. Overall, this process 
produces a set of actions (e.g., 0 1 1 1 10 011 0 in which the 2nd, 4th, 7th, 8th, 
and 9th actions are improvised) that can be compared with a given opportu-
nity (e.g., 0110101010). When enough of the actions match the opportunity 
features as specifi ed by the environmental complexity parameter, the 
opportunity is captured and the organization gains the opportunity’s payoff. 
When an insuffi cient number of actions match the opportunity features, the 
opportunity remains in the environment to be potentially captured using other 
actions. Depending on the attention available (see below), the organization 
continues to try to capture an opportunity using improvisation again and in 
future time steps until it disappears from the environment at a randomly 
determined time, as described above. 

 In general, our operationalization of improvisation is consistent with existing 
research showing that improvisation involves real-time action and that 
improvised action is not always correct (Weick, 1993, 1998; Miner, Bassoff, 
and Moorman, 2001). As in actual organizations, only some improvised 
actions are correct. We also found that different amounts of attention and 
ratios of rule-based to improvised attention did not qualitatively change the 
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results. As a manipulation check, we also checked that the total number of 
mistakes decreased with increasing structure as expected. We confi rmed 
that, because decreasing structure increases the organization’s capacity to 
improvise fl exibly with a larger number of opportunities that potentially fi t, 
there are more mistakes. This result is similar for different improvisation 
probabilities. We also conducted an analysis of mistakes in fi gure 6 that 
normalizes the total number of mistakes to compare these distributions 
across the mini-graphs, as described in the text. Overall, our approach is a 
conservative one that nonetheless captures the fundamental features of 
improvisation—i.e., improvising requires more attention than following rules 
and is not always accurate. Our modeling of improvisation thus offers a 
reasonable abstraction of the actual process that is appropriate for our research 
question and the objectives of simulation models (Burton and Obel, 1995). 

 Another key feature of the model is attention. As in actual organizations, we 
assumed that the organization has a fi nite amount of attention. In particular, 
the organization has a fi xed attention budget. In each time step, the attention 
budget is decremented for each application of rules to opportunities, each 
rule-based action, and each improvised action. Consistent with research on 
improvisation (Weick, 1993; Miner, Bassoff, and Moorman, 2001) and the use 
of rules (Cyert and March, 1963), we assumed that an improvised action 
takes more attention than simply checking whether a rule matches an 
opportunity or a rule-based action, because improvisation has enhanced 
demands for real-time sensemaking and the convergence of fi guring out 
actions and executing them (Weick, 1993; Miner, Bassoff, and Moorman, 
2001). Thus we set the attention required to check the match of a rule with 
an opportunity or take a rule-based action at 1 unit of attention and each 
improvised action at 10 units of attention. Though we chose 10 as a 
representative value, our sensitivity analyses indicated that the fi ndings are 
robust to a broad range of variations in the amount of attention that an 
improvised action requires. In general, the robustness of our fi ndings to a 
broad range of variations in attention suggests that a more discriminate 
improvisation process (i.e., one requiring more attention or more improvisa-
tional skill) is likely to yield qualitatively similar results. Similarly, sensitivity 
analysis indicated that our fi ndings are qualitatively robust to different 
orderings for addressing opportunities. So although we address opportunities 
by their performance payoffs, other orders (such as random) qualitatively 
produce the same results. In any given time step, the attention budget is 
decremented until the attention budget is depleted or the time step ends. 
Action stops if the attention budget is completely depleted. It is then 
replenished at the beginning of each new time step. We set the attention 
budget to 2800 attention units. Sensitivity analyses that varied the attention 
budget showed that increasing this budget increases the number of 
opportunities that can be executed in a given time step, as expected, but 
that these variations (above a minimal threshold) do not produce qualitatively 
different fi ndings. Therefore we chose this representative value for our 
simulation runs. Finally, in any given time step, rules are checked against 
opportunities for a match, and rule-based and improvised actions are taken as 
long as attention is still available. 

  Performance and Error Constructs in Monte Carlo Experiments  

 We used standard Monte Carlo techniques (Law and Kelton, 1991). Each 
experiment consists of 30 or 50 simulation runs. We selected n = 30 as the 
number of simulation runs for all experiments, except those on the basic 
relationship between structure and performance, because exploratory 
analyses revealed that values of n greater than 30 yielded insignifi cantly 
small incremental gains on reliability. We used n = 50 for the basic 
relationship between the amount of structure and performance because the 
larger range of structure values adds precision to our illustration of this 
relationship. The results of these simulation experiments are graphed 
consistently across fi gures 1–5: each point represents the results for one 
simulation experiment, including the mean performance (Y-axis) computed 
across all simulation runs for a given amount of structure (X-axis). A curve is 
then interpolated between the mean performance values by connecting the 
points with a straight line. 

 As in all stochastic processes and related phenomena (regardless of whether 
empirical or simulated), the results of experiments may typically vary across 
simulation runs even when the construct parameter values are fi xed (Law 
and Kelton, 1991). Therefore we computed not only the mean performance 
for a given experiment but also its variability in terms of error variances. We 
then plotted both a performance mean for each value of the amount of 
structure and associated “error bar” confi dence intervals, which indicate the 
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variability of each result, a standard graphical method used in Monte Carlo 
outputs (Kalos and Whitlock, 1986). We computed the length of the error 
bar as the square root of the error variance of each experiment over the 
number of trials (i.e., simulation runs) of these experiments. These error 
bars provide an intuitive and visual display of the confi dence intervals 
surrounding a result. As a rule of thumb, if the mean of one result is 
contained within the error bars of another result, then the two are not 
signifi cantly different. For example, this implies that the peak performance 
can be generated by a range of optimal structural values. These structural 
values can be characterized by their own range intervals (e.g., 3–6) and 
medians (e.g., 4.5). 

 Comparing medians is necessary when optimal structure is a range of values. 
For instance, to assess the shifting optimum in P2, we compared median 
structures when the optimum was a range of values. P2 is confi rmed when 
these median optimal structures differ. In addition, to assess asymmetry, we 
compared the slope of the line from the median optimal structure to the 
endpoint on the left side to the slope of the line from optimal structure to the 
endpoint on the right side. Curves are asymmetric right when the absolute 
value of the right slope is lower than the left slope. 

  Sensitivity Analyses  

 We performed extensive sensitivity analyses for all of the structure/
performance relationships reported in the Results section, thoroughly 
exploring the parameter space to discover if a given fi nding remained when 
construct values (i.e., parameters) were varied. To ensure the robustness of 
the results, we not only varied the amount of structure measure, but also 
secondary constructs such as the environmental dynamism dimensions. We 
chose the specifi c values for presentation because they represent extreme 
values of a parameter or the midpoint values between already tested values, 
as appropriate. Thus we explored the parameter space in a very fi ne-grained 
way. We paid special attention to exploring the full range of the environmen-
tal dimension values—velocity, complexity, ambiguity, and unpredictability. 
Because velocity (λ) is unbounded in a Poisson distribution, but actual 
organizations are both cognitively and resource bounded, we placed an upper 
bound on λ at the value for which the number of opportunities is an order of 
magnitude greater than the organization could capture in any time step. We 
then thoroughly explored velocity at a variety of parameter values, including 
0, .4, .6, .8, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3, 4, and 5. All results are 
consistent with fi gure 2. We also explored complexity, which ranges from 0 
to 1, with a variety of parameter values, including 0, .2, .3, .4, .5, .6, .7, .8, 
.85, and .9. All results are consistent with those in fi gure 3. We tested 
ambiguity, which ranges from 0 to 1, with a variety of parameter values, 
including 0, .1, .2, .25, .3, .4, .6, .8, and 1.0. All results are consistent with 
those in fi gure 4. Unpredictability ranges from 0 to1 in our tests. We tested 
the sensitivity of the unpredictability results with a variety of parameter 
values for the proportion of 1s, including 0, .1, .2, .3, .4, .5, .6, .7, .8, .9, and 
1.0. All results are consistent with those in fi gure 5.   

 MATHEMATICAL APPENDIX 
 The mathematical formalization that we constructed sheds light on the logic 
underlying P1a, P2a, and the varying range of optimal structures from our 
simulation experiments. In this appendix, we perform some of the mathemat-
ical operations that underlie this logic. We are especially grateful to an 
anonymous reviewer who encouraged our building this interpretive model 
and developing this line of thinking. 

 Though the literature is mostly silent about the specifi c functional forms 
underlying the relationship between structure and performance, there is 
consensus that fl exibility and effi ciency are inversely interdependent and have 
non-substitutable effects on how structure infl uences performance (e.g., 
Gibson and Birkinshaw, 2004). Let x be the amount of organizational 
structure. We begin by representing the aggregate effect of structure on 
performance by A(x) = f(x)*e(x), where f(x) and e(x) are the non-negative func-
tions of fl exibility and effi ciency. Broadly, the literature suggests that 
effi ciency increases and fl exibility decreases as the amount of structure 
increases, respectively: f’(x) < 0, e’(x) > 0. 

 This representation allows us to demonstrate that not all fl exibility and 
effi ciency functions generate a unimodal curve, as predicted in P1a. 
Specifi cally, for a unimodal curve to exist, we require that [A’(x) > 0 for x < x’] 
and [A’(x) < 0 for x > x’], where x’ is the optimal amount of structure (i.e., at 
the performance “peak”). 
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 Applying the chain rule [A’(x) = (e(x)*f’(x)) + (e’(x)*f(x))] and the absolute value 
equation [–f’(x) = |f’(x)| when f’(x) < 0] yields these two important conditions 
for unimodal functions of the type A(x) = f(x)*e(x): 

  |f’(x)| < f(x)*e’(x)/e(x) for x < x’  (1) and 
  e’(x) < |f’(x)|*e(x)/f(x) for x > x’  (2). 

 These constraints on the two underlying functions, f(x) and e(x), are neces-
sary to predict a unimodal relationship. 

 In addition, we can show that the argument that the shifting optimum 
predicted in P2a is generated because of the increasing importance of 
fl exibility is not correct. Let a > 0 represent the importance of fl exibility in 
A(x) = a*f(x)*e(x). Then, applying the chain rule again yields A’(x) = a[f(x)*e’(x) + 
f’(x)*e(x)]. Inspecting this A’(x) reveals that simply increasing the importance 
of fl exibility by increasing the coeffi cient a does not affect the position of the 
optimum given that the critical point of A’(x) is independent of a. 

 Instead, logical argument and empirical literature suggest functional forms 
that do satisfy the conditions underlying P1a and P2a. For instance, the 
literature suggests an increasing function of structure for effi ciency such that 
e’(x) > 0. Examining the impact of adding a marginal amount of structure 
sheds further light on the shape of e(x). One possibility is that each incremen-
tal application of structure generates a constant improvement, e’(x) = c, 
where c is a constant. But a constant improvement is unlikely over the full 
range of x. Instead, it is more likely that increasing structure has a diminishing 
marginal effect on effi ciency. A marginal improvement in effi ciency, d e , is 
derived from a smaller set of opportunities and a smaller effi ciency gain from 
economizing on attention. Thus the marginal improvement in effi ciency, d e , 
derived from applying a marginal amount of structure d x  is inversely depen-
dent on the base level of structure, x, suggesting an inversely proportional 
relationship: d e  ∞ d x /x where x > 0. Integrating yields a logarithmic effi ciency 
function: 

 e(x) = ln(x) 

 which satisfi es e’(x) > 0 as e’(x) = 1/x > 0 when x > 0. Moreover, this logarithmic 
effi ciency function has the important property of being unbounded—increasing 
structure always increases effi ciency, although at a diminishing rate. 

 By contrast, empirical literature and logical argument suggest decreasing 
fl exibility as a function of structure such that f’(x) < 0. Flexibility involves 
using improvisation to capture a variety of opportunities that could not be 
captured by structure-based actions alone. Logic suggests that adding 
structure eliminates successive fractions of opportunities, and so the amount 
of structure is inversely proportional to the fraction of opportunities that could 
have been captured with improvisation. Thus it is most rapidly decreasing at 
low structure, an argument that is also consistent with empirical evidence 
(Greve, 1999). This suggests the following function: 

 f(x) = 1/x 

 which satisfi es f’(x) < 0 as f’(x) = –1/(x^2) < 0 when x > 0. In our rule-based 
model, a simple interpretation of the effect of increasing structure on fl exible 
opportunity execution is to decrease the pool of opportunities available to 
improvisational execution by successive fractions for each addition of 
structure. That is, fl exibility is the product of these fractional losses of 
opportunities at each level of structure, n: f(x) = ∏ [1 – (1/n)] = ∏[(n – 1)/n] = 
(x – 1)!/x! = 1/x. A natural interpretation, then, is that increasing structure 
quickly eliminates opportunities from the pool of opportunities available for 
improvised actions. This modeling of fl exibility also has the important 
property of approaching a limit of 0 as structure increases. 

 Returning to an objective for this mathematical formalization, it can be shown 
that these functional forms are consistent with P1a: 

 Let A(x) = f(x)*e(x) = ln(x)/x. 

 Recall that for A(x) to be unimodal, it is required that 

  |f’(x)| < f(x)*e’(x)/e(x) for x < x’  (1) and 
  e’(x) < |f’(x)|*e(x)/f(x) for x > x’  (2). 

 Substituting f(x), e(x), f’(x), and e’(x) into A’(x) = [e(x)*f’(x)] + [e’(x)*f(x)] generates 
A’(x) = (1 – ln(x))/(x^2), while letting A’(x) = 0 yields x’ = e as the optimum. 
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 Substituting f(x) = 1/x and e(x) = ln(x) into the inequalities above also reveals 
that these functions satisfy the conditions for P1a. For example, after 
reducing the equations, we fi nd the following true inequalities: 

  1 < ln(x) for x < x’  (1) and 
  1 > ln(x) for x > x’  (2). 

 These functions produce a unimodal, asymmetric right curve as predicted 
by P1a. 

 It can also be shown that these basic functional shapes are consistent with 
P2a as well. Consider unpredictability, the key dimension of environmental 
dynamism underlying the logic in P2a. An important insight is that unpredict-
ability, u, shapes both fl exibility and effi ciency by affecting how fi rms use 
structure to execute opportunities in two ways. One effect of increasing 
unpredictability is that some additional opportunities can occasionally be 
captured in a more unpredictable stream of heterogeneous opportunities. But 
this increment varies inversely with the amount of structure—1/x—and 
grows increasingly slowly with increasing unpredictability—ln(u)—because 
opportunity capture becomes increasingly diffi cult at lower levels of 
structure, both of which we represent with ln(u)/x. Combining this with A(x) 
changes the performance function: A(x) + ln(u)/x = ln(x)/x + ln(u)/x = ln(ux)/x. 
Another important effect of unpredictability is to reduce the effectiveness of 
both structure and improvisation, which is represented as a simple dampen-
ing parameter reducing the magnitude of performance, 1/u, which can be 
applied to the performance equation above: (1/u)*ln(ux)/x. Although there are 
potentially many ways to represent these effects, the resulting model is a 
simple one that nonetheless captures the dual effects of unpredictability, u: 

 P(x,u) = ln(ux)/ux, where u > 0. 

 This modifi cation of A(x) to include unpredictability, u, retains its key 
properties. For instance, P(x,u) also satisfi es the conditions for P1a.   Differen-
tiating yields P’(x,u) = [1-ln(ux)]/ux^2 and setting P’(x,u) = 0 yields x’ = e/u. 

 Deriving the conditions again yields 

  1 > ln(ux) for x < e/u  (1) and 
  1 < ln(ux) for x > e/u  (2) 

 which are true for u > 0. 

 Turning back to P2a, this model is consistent with a shifting optimum 
because x’ = e/u depends on u. Consistent with P2a, as u increases, x’ 
decreases. Moreover, this P(x,u) also shares other important features of our 
simulation fi ndings, such as the unimodal, asymmetric right shape and the 
shift from a broad plateau to a sharp inverted-V (i.e., edge of chaos) as 
unpredictability increases.              
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