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Stochastic linear systems

Given a set A = {A1, . . . ,An} of square matrices and a probability distribution p over
{1, . . . , n}, consider

xk+1 = Aσkxk

where σk ∈ {1, . . . , n} are i.i.d. from p.

Appears in several different contexts: control theory, dynamical systems, ergodic
theory, computer image generation of fractals, etc.

Two key problems:

I Analysis problem: Given (A, p), compute convergence rate.

I Design problem: Given A, optimize convergence rate (by designing p).
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Connection to the Lyapunov exponent

What is the “convergence rate” of the stochastic linear system xk+1 = Aσkxk?

Rp(A)︸ ︷︷ ︸
Lyapunov spectal radius

:= lim
k→∞

‖xk‖1/k = lim
k→∞

‖Aσk · · ·Aσ2Aσ1‖1/k

I (Furstenberg-Kesten 1960)1 Rp(A) = eλp(A) a.s., where

λp(A)︸ ︷︷ ︸
Lyapunov exponent

:= lim
k→∞

1
kE [log ‖Aσk · · ·Aσ2Aσ1‖]

I Stability characterization: converges iff eλp(A) < 1, i.e.

xk+1 = Aσkxk is stable ⇐⇒ λp(A) < 0

1Under mild conditions.
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Stochastic linear systems are hard...

Analysis problem: Given (A, p), compute convergence rate eλp(A).

I Deciding stability (i.e. if λp(A) < 0) is undecidable [Tsitsiklis-Blondel 1997].

I Still: how to compute/approximate? Special cases?

Design problem: Given A, optimize convergence rate minp∈∆n λp(A).

I Deciding stabilizability (i.e. if minp∈∆n λp(A) < 0) is NP-hard [A.-Parrilo 2019].

I Hard even for “simple” case of rank one matrices, in contrast to analogous
optimization for the Joint Spectral Radius!
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Rank one setting

Consider simple setting: symmetric, rank one matrices A = {Ai = uiu
T
i }ni=1.

Geometrically, the stochastic linear system xk+1 = Aσkxk = uσk (uTσkxk) corresponds to
projecting state xk on random lines uσk .2

u1

u2

u3

2Assuming w.l.o.g. that each ‖ui‖ = 1, since it is easy to compute the effect of re-normalizing the
matrices on the Lyapunov exponent.
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Rank one: analysis problem

Theorem (Lyapunov exponent of rank one matrices). Let A = {Ai = uiu
T
i }ni=1. Then

λp(A) =
∑n

ij=1 pipj log |uTi uj |

I Ergodic formula: quadratic form in p.
I In contrast, general case has no simple formula.

I Computable, and in polynomial time.
I In contrast, general case is undecidably hard to approximate.

I Depends only on products AiAj of length two.
I In contrast, JSR of rank one matrices depends on products of length n.

I Proof idea: average time spent on edges of weighted graph.
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Rank one: design problem

Theorem (Hardness of optimizing the Lyapunov exponent). Given a set A of n
symmetric rank-one matrices, it is NP-hard to decide if

min
p∈∆n

λp(A)
?
< 0

I Thus, NP-hard to decide stabilizability of xk+1 = Aσkxk .

I Also, NP-hard even to approximate minp∈∆n λp(A).

I Proof idea: minimizing quadratic form over simplex. Reduce from Motzkin-Straus
formulation of Independent Set.

I λp(A) neither convex/concave in p. (Connections to non-metrizability of the
Martin distance on (1, d) Grassmanian...)
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Summary

I Background. Lyapunov exponent λp(A) dictates convergence rate of stochastic
linear system xk+1 = Aσkxk .
I Analysis problem of computing convergence rate — known to be hard.
I Design problem of optimizing convergence — open problem.

I This paper. Focusing on rank-one matrices reveals fundamental properties.
I Analysis problem: simple ergodic formula.
I Design problem: NP-hard.
I Along the way, uncover other properties: convexity/concavity, special cases when

computable, surprising differences with deterministic analogue, etc.

I Extensions. Techniques extend to more exotic settings. Optimizing convergence
still NP-hard for exchangeable processes, but poly-time for Markov processes.
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