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ABSTRACT

Online advertising channels commonly focus on maximizing total

advertiser welfare to enhance channel health, and previous liter-

ature has studied augmenting ad auctions with machine learning

predictions on advertiser values (also known as machine-learned

advice) to improve total welfare. Yet, such improvements could

come at the cost of individual bidders’ welfare and do not shed

light on how particular advertiser bidding strategies impact welfare.

Motivated by this, we present an analysis on an individual bidder’s

welfare loss in the autobidding world for auctions with and without

machine-learned advice, and also uncover how advertiser strategies

relate to such losses. In particular, we demonstrate how ad plat-

forms can utilize ML advice to improve welfare guarantee on the

aggregate and individual bidder level by setting ML advice as per-

sonalized reserve prices when the platform consists of autobidders

who maximize value while respecting a return on ad spend (ROAS)

constraint. Under parallel VCG auctions with such ML advice-based

reserves, we present a worst-case welfare lower-bound guarantee

for an individual autobidder, and show that the lower-bound guar-

antee is positively correlated with ML advice quality as well as

the scale of bids induced by the autobidder’s bidding strategies.

Further, we show that no truthful, and possibly randomized mecha-

nism with anonymous allocations can achieve universally better

individual welfare guarantees than VCG, in the presence of person-

alized reserves based on ML-advice of equal quality. Moreover, we

extend our individual welfare guarantee results to generalized first

price (GFP) and generalized second price (GSP) auctions. Finally, we

present numerical studies using semi-synthetic data derived from

ad auction logs of a search ad platform to showcase improvements

in individual welfare when setting personalized reserve prices with

ML-advice.
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1 INTRODUCTION

Online advertisers have access to a vast array of digital advertising

channels, such as social media, web display, and keyword search,

from which they can procure ad impressions and drive user traffic.

One possible way for these channels to improve overall attractive-

ness and retention is to design appropriate ad auction mechanisms

that enhance advertisers’ total welfare, which reflects the aggregate

advertiser-perceived value of procured ad impressions on the chan-

nel. For instance, consider advertisers whose ad campaign objective

is to maximize ad clicks that direct users to landing pages of their

services or products, as described in [23]. These advertisers’ per-

ceived value of procured ad impressions is their click conversion

rate, and thereby ad channels’ welfare maximization goal translates

into improving the aggregate realized click conversion among all

participating advertisers.

Academic literature has developed various approaches to im-

prove total welfare, one of which involves using machine learning

tools to predict advertiser values based on user interactions with

ads. In the instance where welfare corresponds to click conver-

sion, channels use ML algorithms to produce predictions (i.e., ML

advice) on click conversion rates for impressions. See [36, 42, 44]

or [48] for a comprehensive survey on click predictions. Having

obtained ML advice on advertiser values, recent works such as

[3, 15, 16] motivate the approach to augment existing ad auctions

by directly setting personalized reserve prices for advertisers using

such ML advice, and show theoretical guarantees on total welfare

improvement.

https://doi.org/10.1145/3589334.3645660
https://doi.org/10.1145/3589334.3645660
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Nevertheless, these results present two important issues. First,

improving total welfare doesn’t necessarily ensure that all indi-

vidual advertisers benefit equally; some may even experience a

detriment to their welfare. For instance, larger advertisers acquir-

ing more impressions while smaller advertisers receive fewer could

potentially harm the businesses of the latter and compromise the

overall health of the channel in the long term. Second, welfare

improvement guarantees are presented in a price of anarchy (POA)

fashion, which measures the worst-case total welfare outcome com-

pared to the maximum achievable (or efficient) welfare. However,

these POA bounds are independent of advertiser bidding strategies

and thus don’t illuminate how specific advertiser bidding strategies

in ad auctions affect individual or total welfare. Given these short-

comings in existing results, in this work, we address the following

questions:

Given an advertiser’s bidding strategy to procure impressions in

ad auctions, how can platforms characterize the potential welfare

loss for this individual advertiser? How should ad channels utilize

machine-learned advice that predicts advertiser values to improve

individual welfare?

We study a prototypical autobidding setting where advertisers

compete simultaneously in numerous multi-slot position auctions

that are run in parallel, and aim to maximize total advertiser value

under return-on-ad-spend (ROAS) constraints that restrict total

spend of a bidder to be less than her total acquired value across

all auctions in an average sense; see similar setups in [1, 3, 16, 37].

On the other hand, ad platforms possess ML advice that predicts

advertisers’ real values with a certain degree of accuracy/quality.

Under this setup, our main contributions are described as followed:

Strategy-dependent individual welfare guarantee metric

for individual advertisers. In Section 2, we present a novel in-

dividual welfare metric that measures the difference between two

specific welfare outcomes for an individual advertiser: (1) given

a fixed bidding strategy, the worst-case welfare across all auction

outcomes where all bidders’ ROAS constraints are satisfied; and (2)

the welfare that this individual bidder would have obtained in the

global welfare-maximizing outcome. Our metric achieves two key

goals: (1) it characterizes individual welfare loss, and (2) it allows

platforms to uncover the relationship between advertiser strategies

and individual welfare guarantees.

Individual welfare guarantees in VCG auctions with ML-

advice-based personalized reserves. In Section 3, we illustrate

through examples that setting ML advice as personalized reserves,

as presented in [3, 15, 16], improves individual welfare guarantees

under our individual welfare metric. In Section 4, we demonstrate

that augmenting VCG auctions with ML-advice-based reserves en-

ables us to present an individual welfare lower bound guarantee that

increases with the advertiser’s bid scale, quality of ML advice, and

the relative market share of this advertiser compared to competitors

(Theorem 4.1). Together with the results in [16], we conclude that

incorporating ML advice as personalized reserves achieves a "best

of both worlds" outcome by simultaneously benefiting total and

individual welfare.

VCG has the best individual welfare guarantees among a

broad class of auctions. In Section 5, we demonstrate that no

allocation-anonymous, truthful, and possibly randomized auction

format with ML advice of a given quality can surpass the individual

welfare guarantee provided by the VCG auction combined with

ML advice of the same quality; see Theorem 5.1. Specifically, for

any allocation-anonymous, truthful, and potentially randomized

auction, we construct a problem instance with personalized reserves

based on ML advice of the specified quality and show that there

must be at least one bidder whose welfare does not exceed the

welfare lower bound guarantee under VCG (refer to Theorem 4.1).

Extending individual welfare guarantees to GSP and GFP.

We extend the individual welfare guarantee results to GSP and

GFP auctions and demonstrate that a similar individual welfare

lower bound guarantee for VCG continues to hold (see Theorem

6.2). We compare these lower bound guarantees in GSP and GFP

with those of VCG and identify conditions under which VCG either

outperforms or underperforms GSP/GFP in terms of our individual

welfare metric, given the same ML advice quality.

Numerical results.We present numerical studies using semi-

synthetic data derived from the auction logs of a search ad platform

to showcase individual welfare improvement by setting ML-advice-

based personalized reserves. We demonstrate that as the quality of

ML advice improves, the welfare of more advertisers approaches

what they would have obtained in the efficient outcome.

1.1 Related works

Autobidding and total welfare maximization. The works most

relevant to this paper are [3, 16, 37], where they consider the same

autobidding setting (i.e., value-maximizers with ROAS constraints)

as ours. [3, 15, 16, 37] all present techniques to improve the price-

of-anarchy bounds for the total welfare of any feasible outcome

in which all bidders’ ROAS constraints are satisfied. [16] relies on

additive boosts to bid values, [3, 15] utilizes approximate reserve

prices derived from ML advice, and [37] develops randomized allo-

cation and payment rules. Our work distinguishes itself from these

works as we focus on welfare guarantees at the individual bidder

level, and also shed light on how autobidders’ uniform bidding

strategies influence individual welfare loss. We note that our proof

techniques also differ from those in [3, 15, 16, 37] as our individual

welfare guarantees require novel analyses on the value-expenditure

trade-offs that individual bidders would face when tempted to out-

bid others to acquire more value. See the discussion in Section 4 for

more details.

Exploiting ML advice. ML advice has been utilized in vari-

ous applications to enhance decision-making. For example, [47]

exploits ML advice to develop algorithms for the multi-shop ski-

rental problem, [35] adopts ML advice for the caching problem, [30]

studies online page migration using ML advice, and [27] studies

online resource allocation with convex ML advice. However, even

though numerous works in online advertising have examined pre-

dictive models for advertiser values, click-through rates, etc. (see,

e.g., [34, 42, 44]), the literature on applying such predictions (or

more generally, ML advice) to mechanism design problems remains

limited. Also, refer to [11, 26] for works that exploit sample infor-

mation (unstructured ML advice) in online decision-making. One

pertinent study in this realm is [38], which devises a theoretical

framework to optimize reserve prices in a posted price mechanism

by leveraging prediction inputs on bid values. Unlike this research,

we do not focus on optimizing reserves but advocate for the straight-

forward approach of setting reserves using ML advice to enhance
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individual advertiser welfare. Furthermore, we emphasize that our

work contributes to the field by harnessing ML advice to design

mechanisms that bolster welfare guarantees for individual bidders.

We refer readers to Appendix A for a further literature review.

2 PRELIMINARIES

Auction Model with Advertisers and Position Auctions. Con-

sider 𝑁 bidders (i.e., advertisers) participating in 𝑀 parallel posi-

tion auctions (A 𝑗 ) 𝑗∈[𝑀 ] , where each auction A 𝑗 is instantiated

by a user keyword search query. An auction A 𝑗 offers 𝐿𝑗 ≥ 1 ad

slots to bidders. These slots are ordered by visual prominence, or

equivalently, the likelihood of the user viewing the slot on the web-

page. This likelihood is represented by click-through-rates (CTR):

1 ≥ 𝜇 𝑗 (1) ≥ 𝜇 𝑗 (2) ≥ . . . ≥ 𝜇 𝑗 (𝐿𝑗 ) ≥ 0. Here, 𝜇 𝑗 (ℓ) denotes the
likelihood of the user in auction 𝑗 viewing slot ℓ ∈ [𝐿𝑗 ] (for an
introduction to position auctions, see, e.g., [19, 33, 46]). A bidder

𝑖 ∈ [𝑁 ] has a private value-per-click, denoted by 𝑣𝑖, 𝑗 > 0, for auc-

tion A 𝑗 . This value represents her perceived value conditioned on

the user viewing her ad. Consequently, if she wins slot ℓ ∈ [𝐿], her
accrued welfare or value is 𝜇 𝑗 (ℓ) · 𝑣𝑖, 𝑗 .
2.1 Preliminaries for a single position auction

In this subsection, we discuss a single position auction, and thus

temporarily remove subscripts in auction indices 𝑗 . A (possibly

randomized) position auction A with 𝐿 ≥ 1 slots is characterized

by a tuple (X,P, 𝝁), where X is an allocation rule, P is a payment

rule, and CTRs 𝝁 = (𝜇 (ℓ))ℓ∈[𝐿] ∈ [0, 1]𝐿 that satisfies 1 ≥ 𝜇 (1) ≥
𝜇 (2) > . . . ≥ 𝜇 (𝐿) ≥ 0. Let 𝑁 bidders with private value per-clicks

𝒗 = (𝑣𝑖 )𝑖∈[𝑁 ] participate in auction A by submitting a bid profile

𝒃 = (𝑏𝑖 )𝑖∈[𝑁 ] ∈ R𝑁+ , and we describe the payment and allocation

rules as follows.

The allocation rule X : R𝑁+ → {0, 1}𝑁×𝐿
maps bid profile

𝒃 ∈ R𝑁+ to an outcome 𝒙 = X(𝒃) ∈ {0, 1}𝑁×𝐿
which may pos-

sibly be random. The entry 𝑥𝑖,ℓ = 1 if bidder 𝑖 is allocated slot

ℓ ∈ [𝐿], and 0 otherwise. Here, each slot ℓ is at most allocated to

one bidder so

∑
𝑖∈[𝑁 ] 𝑥𝑖,ℓ ≤ 1 for any ℓ . Further, under outcome

𝒙 ∈ {0, 1}𝑁×𝐿
, bidder 𝑖 who has value 𝑣𝑖 attains a total welfare

of𝑊𝑖 (𝒙) = 𝑣𝑖
∑
ℓ∈[𝐿] 𝜇 (ℓ)𝑥𝑖,ℓ . That is, if bidder 𝑖 is allocated slot

ℓ ∈ [𝐿] (i.e., 𝑥𝑖,ℓ = 1), her welfare is𝑊𝑖 (𝒙) = 𝜇 (ℓ)𝑣𝑖 . The payment

rule P : R𝑁+ → R𝑁+ maps bids 𝒃 to payments P(𝒃) ∈ R𝑁+ where

P𝑖 (𝒃) is the payment of bidder 𝑖 . In this work, we focus on the class

of auctions that are ex-post individual rational (IR), i.e. the payment

for any bidder is less than her submitted bid, or mathematically

P𝑖 (𝑏𝑖 , 𝒃−𝑖 ) ≤ 𝑏𝑖 for any 𝒃−𝑖 ∈ R𝑁−1

+ .
1
We note that the classic

VCG, GSP and GFP auctions are ex-post IR.

In the following we define truthful, allocation anonymous auc-

tions and personalized reserve augmented auctions.

Definition 2.1 (Truthful auction). Consider the position auction

A = (X,P, 𝝁) where, recall thatX andP are possibly random alloca-

tion and payment rules, respectively, and 𝝁 ∈ [0, 1]𝐿 represents CTRs.

We say the auction is truthful if, for any bidder 𝑖 ∈ [𝑁 ], all of their val-
ues 𝑣𝑖 are such that 𝑣𝑖 ∈ arg max𝑏≥0

E [𝑊𝑖 (X(𝑏, 𝒃−𝑖 )) − P𝑖 (𝑏, 𝒃−𝑖 )]
for any competing bid profile 𝒃−𝑖 . Here, the expectation is taken with

1
ex-post IR does not require payment being at most value. In other words, the payment

in a single auction can exceed value, and when this occurs for an advertiser, the

advertiser would need to cover such a loss by winning other auctions with value larger

than payment.

respect to the possible randomness in (X,P), and recall that the wel-
fare𝑊𝑖 (𝒙) = 𝑣𝑖

∑
ℓ∈[𝐿] 𝜇 (ℓ)𝑥𝑖,ℓ with 𝒙 = X(𝑏, 𝒃−𝑖 ).

Note that the well-known VCG auction is truthful. In truthful

auctions, it is a weakly dominant strategy for a bidder to bid her

true value when her objective is to maximize quasi-linear utility. In

the next Subsection 2.2, we study bidders whose objectives are not

necessarily quasi-linear, meaning that truthful bidding is no longer

weakly optimal in truthful auctions.

We next define allocation-anonymous auctions. In such auctions,

if two bidders swap their bids, the probability of each bidder win-

ning any slot will also be swapped. In other words, the outcome of

the position auction depends solely on the solicited bid values and

is independent of the bidders’ identities. The classic VCG, GSP, and

GFP are all allocation-anonymous. We refer readers to Example

B.1 in the appendix for an illustrative example of GSP allocation-

anonymity.

Definition 2.2 (Allocation anonymous auctions). Given a fixed

position auctionA = (X,P, 𝝁), consider any permutation𝜎 : [𝑁 ] →
[𝑁 ] of {1, . . . , 𝑁 } and the permuted bid profile 𝒃′ = (𝑏𝜎 (𝑖 ) )𝑖∈[𝑁 ] . Let
𝒙 = X(𝒃) and 𝒙′ = X(𝒃′) represent the (possibly random) outcomes

under 𝒃 and 𝒃′, respectively. Then,X is termed allocation-anonymous

if, for any bidder 𝑖 ∈ [𝑁 ] and slot 𝑗 ∈ [𝐿], we have P(𝑥𝜎 (𝑖 ), 𝑗 =

1|𝒃) = P(𝑥 ′
𝑖, 𝑗

= 1|𝒃′).

Finally, we describe augmenting allocation anonymous auctions

with personalized reserves.

Definition 2.3 (Personalized-reserve augmented allocation anony-

mous auctions). Fix position auctionA = (X,P, 𝝁), and some vector

of personalized reserve prices 𝒓 ∈ R𝑁+ where 𝑟𝑖 is the reserve price

for bidder 𝑖 ∈ [𝑁 ]. Then, the augmented auction is A′ = (X′,P′, 𝝁)
where allocation X′

and payment P′
are characterized via the fol-

lowing procedure for any bid profile 𝒃 ∈ R𝑁+ :

• X′: Define bid profile 𝒃′ = (𝑏𝑖 · I{𝑏𝑖 ≥ 𝑟𝑖 })𝑖∈[𝑁 ] . Then X′ (𝒃) =
X(𝒃′).2

• P′: If 𝑖 ∈ [𝑁 ] is not allocated a slot under outcomeX′ (𝒃), P′
𝑖
(𝒃) =

0. Otherwise, let ℓ𝑖 ∈ [𝐿] be the slot allocated to bidder 𝑖 under

X′ (𝒃). Then, P′
𝑖
(𝒃) = max{P𝑖 (𝒃′), 𝜇 (ℓ𝑖 ) · 𝑟𝑖 }.

Recall that a bid of 0 always results in neither allocation nor

payment. Therefore, X′
can effectively be viewed as excluding

bidders who don’t meet their reserves and then implementing the

allocation rule X for the remaining bidders. In subsequent sections,

we’ll demonstrate that the personalized reserve prices pertinent

to this work, which are based on ML-advice, ensure all bidders

clear their reserves, implying that no bidders will be excluded from

ranking. For an illustration of how anonymous VCG, GSP, and

GFP auctions are augmented with personalized reserves, we refer

readers to Example B.2 in the appendix.

2
This allocation is known as an eager implementation of personalized reserve prices,

where any high-ranked slots are always allocated before a lower-rank slot gets allocated.

There also exists a lazy implementation, where we first rank all bids, and then allocate

slots to each bidder following this ranking if the bidder clears her reserve. Note that

the lazy implementation may leave “holes” in allocation, e.g., the first and third slots

are allocated while leaving the second slot un-allocated. It will become clear later that

all results in this work hold for both the eager and lazy implementation of personalized

reserve prices.
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2.2 Autobidders’ objectives and uniform

bidding strategies

Recall the setup with 𝑁 bidders participating in𝑀 parallel position

auctions (A 𝑗 ) 𝑗∈[𝑀 ] , where 𝒗 𝑗 ∈ R𝑁+ are the bidders’ values in

auction A 𝑗 = (X𝑗 ,P𝑗 , 𝝁 𝑗 ) (refer to definitions in Subsection 2.1).

Notations: The bids submitted by bidder 𝑖 are denoted by 𝒃𝑖 ∈
R𝑀+ . The bid profile submitted to A 𝑗 is represented by 𝒃⊤

𝑗
∈ R𝑁+ .

The outcome of 𝒃⊤
𝑗
in A 𝑗 is given by X𝑗 (𝒃⊤𝑗 ) ∈ {0, 1}𝑁×𝐿𝑗

. The

payment vector in A 𝑗 is P𝑗 (𝒃⊤𝑗 ) ∈ R
𝑁
+ . Whether bidder 𝑖 wins slot

ℓ in A 𝑗 is indicated by X𝑖,ℓ, 𝑗 (𝒃⊤𝑗 ) ∈ {0, 1}. The payment of bidder 𝑖

in A 𝑗 is P𝑖, 𝑗 (𝒃⊤𝑗 ) ∈ R+. Lastly, X(𝒃) is defined as (X𝑗 (𝒃⊤𝑗 )) 𝑗∈[𝑀 ] ,
representing the collection of all auction outcomes.

Bidder welfare and ROAS constraints. The welfare of bidder 𝑖

in auctionA 𝑗 is denoted by𝑊𝑖, 𝑗 (X𝑗 (𝒃⊤𝑗 )). Her total welfare across
all auctions is given by𝑊𝑖 (X(𝒃)). These are formally defined as

𝑊𝑖 (X(𝒃)) :=
∑︁
𝑗∈[𝑀 ]

𝑊𝑖, 𝑗 (X𝑗 (𝒃⊤𝑗 ))

and 𝑊𝑖, 𝑗 (X𝑗 (𝒃⊤𝑗 )) =
𝐿𝑗∑︁
ℓ=1

𝜇 𝑗 (ℓ) · 𝑣𝑖, 𝑗 · X𝑖,ℓ, 𝑗 (𝒃⊤𝑗 ) . (1)

Each bidder is subject to a return-on-ad-spend (ROAS) constraint.

This mandates that her total expenditure across all auctions be

less than her total acquired value.
3
Mathematically, for a fixed

competing bid profile 𝒃−𝑖 ∈ R(𝑁−1)×𝑀
+ , the ROAS constraint for

bidder 𝑖 is

E [𝑊𝑖 (X(𝒃𝑖 , 𝒃−𝑖 ))] ≥ E [P𝑖 (𝒃𝑖 , 𝒃−𝑖 )]

where P𝑖 (𝒃𝑖 , 𝒃−𝑖 ) :=
∑︁
𝑗∈[𝑀 ]

P𝑖, 𝑗 (𝒃⊤𝑗 ) . (2)

The expectation here is with respect to possible randomness in

the allocation and payment rules of auctions (A 𝑗 ) 𝑗∈[𝑀 ] . When

allocation and payment for (A 𝑗 ) 𝑗∈[𝑀 ] are deterministic (like in

VCG, GSP, and GFP), the expectation is omitted for clarity.

Definition 2.4 (Feasible bid profiles). For parallel auctions (A 𝑗 ) 𝑗∈[𝑀 ] ,
a bid profile 𝒃 ∈ R𝑁×𝑀

+ is feasible if Eq. (2) is satisfied for all bidders.

All feasible bid profiles are denoted by F . Given a bidder 𝑖 and her

bids 𝒃𝑖 ∈ R𝑀+ , F−𝑖 (𝒃𝑖 ) = {𝒃−𝑖 ∈ R(𝑁−1)×𝑀
+ : (𝒃𝑖 , 𝒃−𝑖 ) ∈ F }.

In simpler terms, F−𝑖 (𝒃𝑖 ) captures all competing bid profiles for

bidder 𝑖 that ensure all bidders’ ROAS constraints are met.

Autobidder and uniform bidding. A bidder is termed an au-

tobidder if she aims to maximize the welfare E [𝑊𝑖 (X(𝒃𝑖 , 𝒃−𝑖 ))]
subject to the ROAS constraint in Eq. (2). Autobidding represents

advertisers’ behavior of maximizing conversions while adhering to

constraints on spend. For any autobidder 𝑖 , Proposition B.1 in the

appendix demonstrates that the optimal bidding strategy in truthful

auctions, given any competing bid profile, is uniform bidding, where

the submitted bids are 𝒃𝑖 = 𝛼𝑖𝒗𝑖 with uniform bid multiplier 𝛼𝑖 ≥ 1.

3
Our results also apply to more general return-on-investment (ROI) constraints.

Here, each bidder 𝑖 has a target ROI T𝑖 , and the constraint in Eq. (2) becomes

𝑊𝑖 (X(𝒃𝑖 ,𝒃−𝑖 ) ) ≥ T𝑖 ·
∑

𝑗 ∈ [𝑀 ] 𝑝𝑖,𝑗 ; see e.g. [13, 25, 29].

2.3 Efficient auction outcomes and individual

welfare guarantees

Let ℓ∗
𝑖, 𝑗

be the ranking of bidder 𝑖 in auction A 𝑗 , based on de-

creasing order of true values 𝒗 𝑗 ∈ R𝑁+ . We define the outcome

𝒙∗ = (𝒙∗
𝑗
) 𝑗∈[𝑀 ] with 𝑥

∗
𝑖,ℓ, 𝑗

= I{ℓ = ℓ∗
𝑖, 𝑗
} as the efficient outcome.

This outcome yields the largest total welfare because the allocation

of slots in each auction follows the ranking of bidders’ true values.

In analogy with our welfare definition in Eq. (1), we have

OPT𝑖, 𝑗 = 𝜇 𝑗 (ℓ∗𝑖, 𝑗 ) · 𝑣𝑖, 𝑗 , OPT𝑖 =
∑
𝑗∈[𝑀 ] OPT𝑖, 𝑗 , (3)

and OPT =
∑
𝑖∈[𝑁 ] OPT𝑖 . Here, OPT𝑖, 𝑗 , OPT𝑖 , and OPT represent

the welfare of bidder 𝑖 in auction 𝑗 , the total welfare contribution of

bidder 𝑖 , and the overall total welfare under the efficient outcome,

respectively. We adopt the convention that 𝜇 𝑗 (ℓ) = 0 for all ℓ > 𝐿𝑗 .

It’s important to recall that the welfare here refers to the bidder’s

total value, not the surplus (the difference between value and pay-

ment). This is because autobidders are primarily interested in the

total value they can obtain.

Due to the presence of ROAS constraints, autobidders may adopt

arbitrary strategies to optimize personal welfare. This can cause real

auction outcomes to deviate from the efficient outcome, resulting in

significant welfare losses for some bidders compared to the welfare

they would have attained under the efficient one. Conversely, some

other bidders may be significantly better off. It is thus important

for auction platforms to: (1) provide welfare guarantees on the

individual level; and (2) understand how individual welfare relates

to advertiser strategies. In the following Definition 2.5, we present

an individual welfare metric that achieves these two goals.

Definition 2.5 (Individual welfare metric). Fix a bidder 𝑖 ∈ [𝑁 ]
and bids 𝒃𝑖 ∈ R𝑀+ . Then the individual welfare metric for 𝑖 is given

by min𝒃−𝑖 ∈F−𝑖 (𝒃𝑖 )
E[𝑊𝑖 (X(𝒃 ) ]

OPT𝑖
, where F−𝑖 (·) is defined in Definition

2.4. The total welfare𝑊𝑖 under outcome X(𝒃) is as defined in Eq. (1),

and the expectation is taken w.r.t possible randomness in the auctions.

In words, our individual welfare metric provides a quantita-

tive answer to the following question: fixing a bid profile 𝒃𝑖 for
bidder 𝑖 , among all outcomes induced by competing bid profiles

𝒃−𝑖 ∈ F−𝑖 (𝒃𝑖 ) that ensure every bidder’s ROAS constraint is sat-

isfied (see Definition 2.4), what proportion of the welfare under

the efficient outcome can be retained under the worst case out-

come? We remark that this work studies welfare guarantees under

worst-case scenarios as opposed to under some equilibrium notion

(i.e., mutually best responding bid profiles). This is mainly because

autobidders in practice may not necessarily converge to any equilib-

rium when deploying autobidding algorithms. In real autobidding

platforms, well-behaved algorithms deployed in autobidding sys-

tems converge to bid profiles at which all bidders’ constraints are

satisfied, but not necessarily mutually best responding; see e.g., [4].

Thus studying welfare guarantees under a “feasible” bidding profile

as opposed to an equilibrium would be more practically relevant.

On a related note, the auction mechanism is not responsible for

satisfying bidders’ ROAS constraints, as it is the responsibility of

the autobidding system (that bids on behalf of the advertisers using

algorithms) to honor advertisers’ ROAS constraints.
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3 ML ADVICE FOR BIDDER VALUES AS

PERSONALIZED RESERVE PRICES

In this section, we aim to present lower bound guarantees for the

individual welfare metric as per Definition 2.5 to ensure each indi-

vidual autobidder is well off. In particular, wemotivate the approach

to set personalized reserve prices based on ML advice that takes

the form of lower-confidence bound predictions on true advertiser

values; see e.g. [42, 44].

3.1 Motivating example

Consider 2 bidders competing in two (single-slot) second-price

auctions (i.e. 𝐿1 = 𝐿2 = 1) with CTRs 𝜇1 (1) = 𝜇2 (1) = 1. Sup-

pose that both bidders are autobidders who adopt uniform bidding

strategies (see Section 2.2). In particular, suppose that bidder 1

sets her bid multiplier to be 𝛼1 = 1. Then, when her competitor,

bidder 2, sets a multiplier 𝛼2 > 2, bidder 2 will win both auc-

tions and acquire a total value/welfare of 𝑣2,1 + 𝑣2,2 = 3

2
𝑣 while

submitting a payment of 𝛼1 (𝑣1,1 + 𝑣1,2) = 𝑣 . In this case, bidder

2 satisfies her ROAS constraint, leaving bidder 1 with no value.

We also highlight that this bid multiplier profile constitutes an

equilibrium because bidder 1 cannot deviate and raise her bid mul-

tiplier to outbid bidder 2 for auction 1. With 𝛼2 > 2, bidder 1

would violate her ROAS constraint if she bids more than 𝛼2𝑣2,1 > 𝑣 .

Auction 1 Auction 2

bidder 1 𝑣1,1 = 𝑣 𝑣1,2 = 0

bidder 2 𝑣2,1 = 𝑣
2

𝑣2,2 = 𝑣

Now, suppose that for

each value 𝑣𝑖, 𝑗 where 𝑖, 𝑗 ∈
[2], the platform possesses a

ML-based lower-confidence

bound, (𝑣𝑖, 𝑗 )𝑖, 𝑗∈[𝑁 ] , such that for some 𝛽 > 1

2
, 𝛽𝑣𝑖, 𝑗 ≤ 𝑣𝑖, 𝑗 < 𝑣𝑖, 𝑗 for

all non-zero 𝑣𝑖, 𝑗 , and sets the personalized reserve price 𝑟𝑖, 𝑗 = 𝑣𝑖, 𝑗 .

If bidder 2 attempts to win both auctions by setting 𝛼2 > 2, her

payment will be at least max{𝛽𝑣2,1, 𝛼1𝑣1,1} + max{𝛽𝑣2,2, 𝛼1𝑣1,2} =
𝑣 + 𝛽𝑣 > 3

2
𝑣 , violating her ROAS constraint. Therefore, by setting

personalized reserves with ML advice, bidder 2 is prohibited from

outbidding bidder 1 in auction 1, safeguarding bidder 1’s welfare.

Key takeaway from Example 3.1. From the example, it’s ev-

ident that without reserve prices, bidder 2 takes advantage of a

significant margin in her ROAS constraint by winning auction 2,

where the payment to secure a win is minimal. This allows her to

increase her bid and outbid bidder 1 in auction 1 without violating

her overall ROAS constraint. Essentially, she offsets the additional

cost in auction 1 using the value advantage gained from auction 2.

By setting personalized reserve prices, the platform can raise

the payment bidder 2 needs to make in auction 2, thereby reduc-

ing her manipulative influence. More specifically, in the absence

of reserve prices, bidders who have high aggregate values across

auctions might excessively overbid. This allows them to manipulate

outcomes in specific auctions by balancing out their costs with

the values secured from other auctions. Introducing personalized

reserve prices makes this kind of overbidding more costly, and as a

result, decreases bidders’ overall manipulative power.

3.2 Personalized reserve prices using ML advice

Here, we focus on the following notion of approximate reserve

prices with which we can reduce bidders’ manipulative power, as

exemplified in Example 3.1, and thereby improve individual welfare.

Definition 3.1 (𝛽-accurate ML advice and approximate reserve

prices). Suppose there exists ML advice (𝑣𝑖, 𝑗 )𝑖, 𝑗∈[𝑁 ] in the form of a

lower-confidence bound. If 𝑣𝑖, 𝑗 ∈ [𝛽𝑣𝑖, 𝑗 , 𝑣𝑖, 𝑗 ) for any bidder 𝑖 ∈ [𝑁 ]
and auction 𝑗 ∈ [𝑀] with some 𝛽 ∈ (0, 1), we say the ML advice

is 𝛽-accurate. Further, if the platform sets 𝑟𝑖, 𝑗 = 𝑣𝑖, 𝑗 , we say reserve

prices 𝒓 are 𝛽-approximate.

The gap between the lower bound 𝛽𝑣𝑖, 𝑗 and the true value 𝑣𝑖, 𝑗
in Definition (3.1) represents the inaccuracies of the platform’s ML

advice. In other words, 𝛽 can be perceived as a quality measure of

the platform’s ML advice for advertiser value, such that a larger 𝛽

represents better advice quality.

Furthermore, ML advice in online advertising settings generally

concerns predicting advertiser values with historical conversion

data and produces confidence intervals of advertiser values (see

e.g. [10, 12, 31, 43]). We remark that these confidence intervals can

be viewed as a special case of the lower-confidence type of ML

advice in Definition (3.1): suppose the platform utilizes some ML

model to predict the true value 𝑣𝑖, 𝑗 of bidder 𝑖 in auction 𝑗 , and

produces a confidence interval (𝑣𝑖, 𝑗 , 𝑣𝑖, 𝑗 ) ∋ 𝑣𝑖, 𝑗 with 𝑣𝑖, 𝑗 , 𝑣𝑖, 𝑗 > 0.

The platform can then choose a personalized reserve 𝑟𝑖, 𝑗 = 𝑣𝑖, 𝑗 ,

which is 𝛽-approximate for 𝛽 = 𝑣𝑖, 𝑗/𝑣𝑖, 𝑗 ∈ (0, 1) because 𝛽𝑣𝑖, 𝑗 <
𝛽𝑣𝑖, 𝑗 = 𝑣𝑖, 𝑗 = 𝑟𝑖, 𝑗 < 𝑣𝑖, 𝑗 .

Furthermore, in Definition 3.1, it is assumed that the ML advice

𝑣𝑖, 𝑗 is a true lower bound on bidder 𝑖’s value in auction 𝑗 . This

assumption can be relaxed to high probability statements: suppose

we possess some prediction 𝑣𝑖, 𝑗 for 𝑣𝑖, 𝑗 that satisfies |𝑣𝑖, 𝑗 − 𝑣𝑖, 𝑗 | < 𝜂
with high probability (w.h.p.) for some known 𝜂. Then, the confi-

dence interval (𝑣𝑖, 𝑗 − 𝜂, 𝑣𝑖, 𝑗 + 𝜂) contains 𝑣𝑖, 𝑗 w.h.p. The platform
can then set a personalized reserve 𝑟𝑖, 𝑗 = 𝑣𝑖, 𝑗 − 𝜂. With such per-

sonalized reserve prices derived from probabilistic ML advice, all

results in this paper remain valid w.h.p.

We note that the ML advice accuracy parameter 𝛽 can be con-

sidered a lower bound on advertiser value approximations. All our

results remain valid if each advertiser’s approximation factor is no

less than 𝛽 . If each bidder 𝑖 has an approximation factor 𝛽𝑖 , then 𝛽

can represent the minimum among all 𝛽𝑖 . We conclude this section

with the following remark.

Remark 3.1. Implementing 𝛽-approximate personalized reserve

prices in an allocation-anonymous auction does not impact anonymity.

This is because 𝛽 < 1 and thus all bidders clear their reserves.

4 INDIVIDUALWELFARE GUARANTEES FOR

VCGWITH ML ADVICE

In the motivating Example 3.1, we observe that ML advice and

corresponding 𝛽-approximate reserves allow the parallel auctions

to safeguard welfare for individual bidders by increasing payments

and consequently limit the manipulative behavior of bidders who

face significantly less competition in certain auctions. In this section,

through the following Theorem 4.1, we formalize this intuition for

the classic VCG auction and present a quantitative measure for

the relationship between overall individual welfare and ML advice

when incorporated in the form of approximate reserves.

Theorem 4.1 (Lower bound for VCGs with approximate re-

serves). Let (A 𝑗 ) 𝑗∈[𝑀 ] be VCG auctions, and personalized reserve

prices 𝒓 be 𝛽-approximate as in Definition 3.1. Fix an autobidder
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𝑖 ∈ [𝐾] who adopts a bid multiplier 𝛼𝑖 > 1 (see Section 2.2), so

𝒃𝑖 = 𝛼𝑖𝒗𝑖 . Recall F−𝑖 (·) defined in Definition 2.4. Then the individual

welfare guarantee (as defined in Definition 2.5) is bounded as:

min𝒃−𝑖 ∈F−𝑖 (𝛼𝑖𝒗𝑖 )
𝑊𝑖 (X(𝒃 ) )

OPT𝑖
≥ 1 − 1−𝛽

𝛼𝑖−1
· OPT−𝑖

OPT𝑖

where OPT−𝑖 =
∑︁
𝑗≠𝑖

OPT𝑗 .

Details on implementation of VCG with personalized reserve

prices can be found in Definition 2.3 and Example B.2. We defer our

proof for Theorem 4.1 to Section C.1, and here we provide some

intuition for the individual welfare bound in the theorem.

Given our understanding of the individual welfare metric from

Definition 2.5, Theorem 4.1 implies that for a given bid multiplier

𝛼𝑖 , and across all potential outcomes driven by any competing bid

profiles (including non-uniform bidding) that meet every bidder’s

ROAS constraints, bidder 𝑖 is guaranteed to retain at the very least

a fraction of 1− 1−𝛽
𝛼𝑖−1

· OPT−𝑖
OPT𝑖

of the welfare anticipated in the most

efficient outcome.

This welfare assurance is particularly broad in scope. It doesn’t

hinge on predefined assumptions about the strategic decisions of

other bidders and remains applicable across all bid profiles that

adhere to the bidders’ ROAS criteria. An important nuance is that

our outlined bounds don’t rely on the notion of an autobidding

equilibrium. This is rooted in the observation that in real-world

applications, autobidders might not consistently reach an equi-

librium state (meaning a mutually best response among bid pro-

files). However, typical bidding algorithms tend to stabilize on bid

profiles where every bidder’s constraints are met [8, 14, 16, 22].

Consequently, even if the strategies of bidder 𝑖’s competitors are

multifaceted and tailored to achieve varying objectives, Theorem

4.1 remains applicable, contingent only on the resulting bid profile

being feasible.

The main takeaway from Theorem 4.1 is that with more accurate

ML-based predictions for valuations (i.e., a larger 𝛽), auctions can

set higher approximate reserves, leading to enhanced individual

welfare guarantees for each bidder. To provide some insight into

the term
1−𝛽
𝛼𝑖−1

· OPT−𝑖
OPT𝑖

, in the bound: Increasing either 𝛽 (through

enhanced accuracy of ML-based valuations) or the bid multiplier

𝛼𝑖 makes it costlier for competitors to outbid bidder 𝑖 in certain

auctions. This makes it more challenging for them to cover the costs

arising from aggressive overbidding, thereby curbing their manipu-

lative influence and consequently bolstering the welfare guarantees

for bidder 𝑖 . This observation is consistent with the insights de-

rived from Example 3.1. Additionally, the ratio
OPT𝑖

OPT−𝑖
reflects bidder

𝑖’s relative market presence compared to other competitors. Our

results indicate that a minor market presence can render bidders

more susceptible to the manipulative tactics of others, leading to

weaker individual welfare guarantees.

We recognize that the individual welfare lower bound guarantee

in Theorem 4.1, specifically 1 − 1−𝛽
𝛼𝑖−1

· OPT−𝑖
OPT𝑖

, may be negative, ren-

dering it meaningless for a small advertiser, specifically advertiser 𝑖

with a very small market share
OPT𝑖

OPT−𝑖
resulting from a large number

of bidders 𝑁 . However, based on the proof provided for Theorem

4.1, in Section 4.1, we present a tighter individual welfare guaran-

tee that replaces OPT−𝑖 in the numerator—total welfare summed

over the 𝑁 − 1 competitors of bidder 𝑖—with the total welfare of a

potentially much smaller subset of bidder 𝑖’s competitors, leading

to a tighter bound for small advertisers.

The following theorem states the welfare bound in Theorem 4.1

is tight; see Appendix C.3 for proof.

Theorem 4.2 (Matching lower bound). For any 𝛽 ∈ (0, 1), 𝛼 >

1, and 𝑅 ≥ 1−𝛽
𝛼−1

, there exists values 𝒗 ∈ R𝑁×𝑀
+ and 𝛽-approximate

reserves 𝒓 ∈ R𝑁×𝑀
+ , such that there is a bidder 𝑖 with multiplier

𝛼𝑖 = 𝛼 and relative market share
OPT𝑖

OPT−𝑖
= 𝑅, who has an individual

welfare guarantee

min

𝒃−𝑖 ∈F−𝑖 (𝛼𝑖𝒗𝑖 )
𝑊𝑖 (X(𝒃))

OPT𝑖
= 1 − 1 − 𝛽

𝛼𝑖 − 1

· OPT−𝑖
OPT𝑖

.

4.1 A tighter individual welfare guarantee

The individual welfare lower bound in Theorem 4.1, namely 1 −
1−𝛽
𝛼𝑖−1

· OPT−𝑖
OPT𝑖

, may become small when OPT−𝑖 is large under a

large number of bidder 𝑁 . In this subsection, we present a tighter

individual welfare guarantee that does not depend on the total

efficient welfare of all bidder 𝑖’s competitors OPT−𝑖 , but instead
only the total welfare of a subset of 𝑖’s competitors. Our tighter

lower bound relies on the following definitions:

L𝑖 =
{
𝑗 ∈ [𝑀] : OPT𝑖, 𝑗 > 0

}
,

B𝑖 (𝑘) =
{
𝑗 ∈ L𝑖 : 𝑣𝑘,𝑗 > 0, 𝑣𝑘,𝑗 ≤ 𝑣𝑖, 𝑗

}
,

(4)

See the definition of a maximal set cover in Eq. (8) in the Appendix

C.1. Here, recall OPT𝑖, 𝑗 is the welfare of bidder 𝑖 in auction A 𝑗

under the efficient outcome; see Eq. (3); L𝑖 is the collection of

auctions wherein bidder 𝑖 can potentially experience a welfare loss

due to competitors’ overbidding; B𝑖 (𝑘) is the collection of auctions

where competitor 𝑘 could potentially cause bidder 𝑖 to lose welfare

(notice that competitor 𝑘 can win an auction 𝑗 only if 𝑣𝑘,𝑗 > 0). We

give an example of these definitions in the following: consider an

instance consisting of 2 single slot VCG auctions (i.e. SPA) and 3

bidders with the following advertiser values

SPA 1 SPA 2 SPA 3

bidder 1 𝑣1,1 = 2 𝑣1,2 = 5 𝑣1,3 = 0

bidder 2 𝑣2,1 = 1 𝑣2,2 = 1 𝑣2,3 = 10

bidder 3 𝑣3,1 = 0 𝑣3,2 = 4 𝑣3,3 = 10

Under the efficient outcome, bidder 1 wins auctions 1 and 2, and

therefore bidder 1 can potentially lose welfare in auctions 1 and 2,

so L1 = {1, 2}. Now, for competitor 𝑘 = 2, it may be possible that

bidder 2 solely outbids bidder 1 to win both auctions 1 and 2, i.e.,

B1 (2) = {1, 2}. Similarly, for competitor 𝑘 = 3, she can only outbid

bidder 1 in auction 2 so that B1 (3) = {2}.
With these definitions, we now present a tighter individual wel-

fare guarantee than that of Theorem 4.1.

Theorem 4.3. Consider that (A 𝑗 ) 𝑗∈[𝑀 ] are VCG auctions, and

the personalized reserve prices 𝒓 are 𝛽-approximate as per Definition

3.1. Fix an autobidder 𝑖 ∈ [𝐾] who adopts a bid multiplier 𝛼𝑖 > 1,

ensuring 𝒃𝑖 = 𝛼𝑖𝒗𝑖 . The individual welfare guarantee, as described in
Definition 2.5, is bounded as:

min

𝒃−𝑖 ∈F−𝑖 (𝛼𝑖𝒗𝑖 )
𝑊𝑖 (X(𝒃))

OPT𝑖
≥ 1 − 1 − 𝛽

𝛼𝑖 − 𝛽
·
∑
𝑘∈[𝑁 ]/{𝑖 }:B𝑖 (𝑘 )≠∅ OPT𝑘

OPT𝑖
,
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where F−𝑖 (·) is defined in Definition 2.4.

To illustrate the tighter welfare guarantee in Theorem 4.3 w.r.t.

that in Theorem 4.1, consider the following example with 𝑁 = 3

bidders, 𝑀 = 3 single slot SPA auctions, and parameters 𝜖 > 0 to

be small and 𝑋 > 0 to be large.

SPA 1 SPA 2 SPA 3

bidder 1 𝑣1,1 = 1 𝑣1,2 = 1 𝑣1,3 = 0

bidder 2 𝑣2,1 = 1 + 𝜖 𝑣2,2 = 1 − 𝜖 𝑣2,3 = 0

bidder 3 𝑣3,1 = 0 𝑣3,2 = 0 𝑣3,3 = 𝑋

Note that when 𝑖 = 1, OPT−𝑖 = 𝑋 + 1 + 𝜖 . The set L1 contains

auctions 1 and 2, since bidder 1 can potentially lose welfare only

in these two auctions. Moreover, we have B1 (2) = {1, 2} whereas
B1 (3) = ∅, so ∑

𝑘∈[𝑁 ]/{𝑖 }:B𝑖 (𝑘 )≠∅ OPT𝑘 = 𝑣2,1 = 1 + 𝜖 ≪ OPT−1.

From this example, bidder 𝑖 = 1’s welfare loss can only be driven

by bidders who have direct competition with 𝑖 , and hence bidder 𝑖’s

welfare guarantee should only depend on the manipulative power

these direct competitors have. More generally speaking, when there

is less direct competition (e.g., when auctions 𝑀 is considerably

large and each advertiser only participates in a limited amount of

auctions so that the value matrix of bidders is sparse), Theorem 4.3

offers a welfare guarantee independent of 𝑁 . Instead, it relies on

a select group of competing advertisers. In keyword search adver-

tising, the number of distinct auctions𝑀 aligns with the universe

of keywords queried by users on an ad platform. This number can

be extremely large compared to the number of keywords advertis-

ers actually target, thereby making our performance guarantee in

Theorem 4.3 superior to that in Theorem 4.1.

5 VCG YIELDS BEST GUARANTEE IN BROAD

CLASS OF AUCTIONS

Having presented an individual welfare guarantee in the previous

Section 4 that improves based on the platform’s ML advice accuracy,

a natural question arises: For a given level of accuracy 𝛽 , can one

achieve a universally better individual welfare guarantee than that

of Theorem 4.1 by considering auction formats other than VCG?

In this section, we demonstrate that the answer is negative when

we restrict the auction to a broad class of truthful mechanisms

(Definition 2.1) and anonymous allocations (Definition 2.2).

In the subsequent theorem, we demonstrate that no allocation-

anonymous, truthful auction A augmented by 𝛽-approximate re-

serves (see Definition 3.1) can universally surpass VCG. That is, for

any A, there exists a problem instance where a bidder’s welfare

guarantee does not exceed the individual welfare lower bound for

VCG as presented in Theorem 4.1.

Theorem 5.1. Let A be any single-slot auction format (with po-

sition bias 𝜇 = 1) that is allocation-anonymous, truthful, and pos-

sibly randomized. Then, there exists an instance of 𝑀 parallel auc-

tions (A 𝑗 ) 𝑗∈[𝑀 ] of format A, 𝑁 bidders with values 𝒗 ∈ R𝑁×𝑀
+ ,

𝛽-approximate reserves 𝒓 ∈ R𝑁×𝑀
+ , and an autobidder 𝑖 with mul-

tiplier 𝛼𝑖 > 1 (refer to Section 2.2), such that there exists a feasible

bid profile 𝒃 ∈ F in which 𝒃𝑖 = 𝛼𝑖𝒗𝑖 ∈ R𝑀+ leading to the following

welfare upper bound for autobidder 𝑖 :

E [𝑊𝑖 (X(𝒃))]
E [OPT𝑖 ]

≤ 1 − 1 − 𝛽
𝛼𝑖 − 1

· E [OPT−𝑖 ]
E [OPT𝑖 ]

Here, the expectation is taken w.r.t possible randomness in A.

Our proof strategy for Theorem 5.1 hinges on the construction

of a challenging autobidding instance for any given auction A.

In this instance, a specific bidder consistently finds himself with

a diminished individual welfare. We showcase that, within this

context, there’s a bidder 𝑖 whose welfare is constricted to the upper

bound mentioned in the theorem. This method of construction is

influenced by Example 3.1. In this example, the reduced welfare

for the bidder 𝑖 stems from other bidders consistently outbidding 𝑖

in auctions where 𝑖’s value is the highest. These competitors then

compensate for their aggressive bids using the gains from other

auctions where they face little to no competition.

Building on this insight, in the problematic instance outlined in

the proof of Theorem 5.1, we elevate the individual welfare for our

target bidder 𝑖 . We do this by setting up auctions where each of 𝑖’s

competitors is the sole participant with a non-zero bid. Such "no-

competition" auctions act as a buffer, allowing these competitors to

recover costs associated with outbidding bidder 𝑖 in auctions where

𝑖 has the highest value. The proof is available in Appendix D.2.

6 EXTENSION: INDIVIDUALWELFARE

GUARANTEES FOR GSP AND GFP

In this section, we extend our individual welfare guarantees for the

VCG auction from Theorem 4.1 to both the GSP and GFP auctions,

which are non-truthful.

As discussed in Section 2.2, uniform bidding (i.e., setting the same

bid multiplier for all auctions) is optimal only in truthful auctions.

For GSP and GFP, instances can be constructed where non-uniform

bidding strictly outperforms uniform bidding (for more details,

see e.g., [17]). Therefore, for GSP and GFP autobidding instances,

we do not impose any constraints on the bid values of bidders,

except that they should be undominated. We define a bid value

𝒃𝑖 ∈ R𝑀+ as undominated for bidder 𝑖 if no other bid value 𝒃′
𝑖
∈ R𝑀+

exists that consistently yields a higher welfare than 𝒃𝑖 across all
possible competing bid profiles. Formally, �𝒃′

𝑖
∈ R𝑀+ such that

𝑊𝑖 (X(𝒃𝑖 , 𝒃−𝑖 )) < 𝑊𝑖 (X(𝒃′
𝑖
, 𝒃−𝑖 )) for all 𝒃−𝑖 ∈ R(𝑁−1)×(𝑀 )

+ . The

following lemma provides a lower bound for undominated bids in

scenarios with 𝛽-approximate reserves.

Lemma 6.1 (Lemma 4.7 & 4.9 of [3]). Consider the setting where

(A 𝑗 ) 𝑗∈[𝑀 ] are all GSP auctions or GFP auctions, and reserve prices
𝒓 are 𝛽-approximate. Denote U ⊆ F to be the set of bid profiles

in which each bid is undominated and satisfies all bidders’ ROAS

constraints. Then for any 𝒃 ∈ U, 𝑏𝑖, 𝑗 must satisfy 𝑏𝑖, 𝑗 ≥ 𝑟𝑖, 𝑗 ≥ 𝛽𝑣𝑖, 𝑗
for any bidder 𝑖 ∈ [𝑁 ] and auction A 𝑗 .

Finally, our main theorem for this section is the following:

Theorem 6.2 (Individual welfare guarantee for GSP/GFP).

Consider that all auctions (A 𝑗 ) 𝑗∈[𝑀 ] are either GSP or GFP auctions.
Let the reserve prices 𝒓 be 𝛽-approximate, and the values 𝒗 be Δ-
separated with 𝛽 > Δ

2Δ−1
. Values are termed as Δ-separated if, in

all auctions, the value of any bidder is at least Δ times any lesser

value from a competing bidder (for a formal definition, see Definition

C.2). Now, consider any undominated bid profile 𝒃 ∈ U, whereU is

a subset of F representing all undominated bids that satisfy every

bidder’s ROAS constraint (refer to Equation (2)). In this context, the
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individual welfare guarantee, (Definition 2.5), is bounded by:

min

𝒃∈U
𝑊𝑖 (X(𝒃))

OPT𝑖
≥ 1 − 1 − 𝛽

𝛽 − Δ
2Δ−1

· OPT−𝑖
OPT𝑖

.

Details on implementing GSP and GFP with personalized re-

serve prices are provided in Definition 2.3 and further illustrated in

Example B.2. The proof of Theorem 6.2 is detailed in Appendix E.1.

When we compare the individual welfare guarantees of Theorem

4.1 (for VCG) with Theorem 6.2 (for GSP/GFP), some observations

emerge. Given that values are Δ-separated and ML advice possesses

𝛽-accuracy, GSP/GFP offers superior individual welfare guarantees

over VCG when bidders opt for smaller uniform multipliers in VCG,

i.e., 𝛼𝑖 − 1 < 𝛽 − Δ
2Δ−1

. However, for larger multipliers, where

𝛼𝑖 − 1 > 𝛽 − Δ
2Δ−1

, the individual welfare within VCG surpasses

that in the discussed non-truthful auctions.

7 NUMERICAL STUDY

Recall from Sections 4 and 6 that we theoretically demonstrated

how setting personalized reserve prices with ML advice (refer to

Definition 3.1) ensures individual bidder-level worst-case welfare

guarantees in VCG, GSP, and GFP auctions. Moreover, these guar-

antees improve as the accuracy of the ML advice increases. In

this section, we provide a practical counterpart to this theoreti-

cal finding for worst-case scenarios. We illustrate how employing

personalized reserve prices, informed by ML advice, can protect

individual welfare on an average basis. This demonstration uses

semi-synthetic data, which is derived from genuine auction data

from a search ad platform.

It’s worth noting that our experiments in this section are limited

to VCG auctions. This choice is deliberate, primarily because bid-

ders’ bidding strategies in VCG can be confined to uniform bidding

(refer to Proposition B.1 and subsequent discussions). Incorporating

near-optimal or best response bidding strategies in GSP and GFP

auctions adds a layer of complexity without necessarily providing

new insights, as discussed in [2, 3, 16].

We obtain semi-synthetic data from ad auction logs of a search ad

platform, using it to simulate VCG auctions for autobidders. Specifi-

cally, each dataset entry 𝑗 includes all necessary details to replicate

an auction. This includes the number of ad slots sold 𝐿𝑗 , the CTRs

for each slot denoted as 𝝁 𝑗 = (𝜇 𝑗 (1), . . . , 𝜇 𝑗 (𝐿𝑗 )) ∈ [0, 1]𝐿𝑗 , and a

list of candidate advertisers along with their respective conversion

values 𝑣𝑖, 𝑗 and so forth. The conversion value for an advertiser rep-

resents the anticipated monetary benefit they would obtain from a

user’s conversion action, such as a download, email sign-up, in-app

purchase, and similar actions.

For a specified accuracy level 𝛽 belonging to {0.25, 0.5, 0.75},
we independently sample 𝑠

𝛽

𝑖,𝑗
∼ Uniform[𝛽, 1] for each 𝑖, 𝑗 . Subse-

quently, we determine the ML advice as 𝑣
𝛽

𝑖,𝑗
= 𝑠

𝛽

𝑖,𝑗
· 𝑣𝑖, 𝑗 . Clearly, the

ML advice generated in this manner is 𝛽-accurate, meaning 𝑣
𝛽

𝑖,𝑗
lies

in the interval [𝛽𝑣𝑖, 𝑗 , 𝑣𝑖, 𝑗 ], consistent with Definition 3.1.

Calculating uniform bidmultipliers. For simplicity, and with

a slight departure from standard notation, we let the accuracy level

𝛽 = 0 signify the imposition of no-reserve prices. Using a reserved

portion of our data, we determine each advertiser’s uniform bid

multiplier for every accuracy level 𝛽 in the set {0.25, 0.5, 0.75}. We

Figure 1: Empirical cumulative distribution function (CDF)

𝜃 (𝑧; 𝛽) = 1

𝑁

∑
𝑖∈[𝑁 ] I

(
𝑊

𝛽

𝑖

OPT𝑖
≤ 𝑧

)
for various accuracy levels:

𝛽 = 0 (no personalized reserve prices), 0.25, 0.5, and 0.75. For

a given 𝑧 < 1, the empirical CDF decreases as 𝛽 increases,

reflecting improved accuracy. For instance, at 𝑧 = 0.8, we

have 𝜃 (0.8; 0) = 0.17, 𝜃 (0.8; 0.25) = 0.13, 𝜃 (0.8; 0.5) = 0.11, and

𝜃 (0.8; 0.75) = 0.08.

employ gradient descent for this task, mimicking prevalent uniform

bidding practices. This choice is motivated by the widespread use

of descent/primal-dual methods in real-world autobidding. These

techniques have demonstrated near-optimal convergence and com-

mendable performance guarantees, as evidenced by works such as

[1, 4, 39, 45]. After these computations, we obtain our bid multipli-

ers denoted 𝛼
𝛽

𝑖
. For a comprehensive explanation on calculating

these uniform bid multipliers, we direct readers to Appendix F.1.

For each accuracy level 𝛽 in the set {0, 0.25, 0.5, 0.75} (where 𝛽 =

0 represents the control experiment without personalized reserve

prices), let𝑊
𝛽

𝑖
denote the realized total welfare for advertiser 𝑖 ∈

[𝑁 ] across𝑀 VCG auctions. This welfare is calculated with respect

to bid multipliers (𝛼𝛽
𝑖
)𝑖∈[𝑁 ] , values 𝒗 = (𝑣𝑖, 𝑗 )𝑖∈[𝑁 ], 𝑗∈[𝑀 ] , ad slot

counts (𝐿𝑗 ) 𝑗∈[𝑀 ] , and CTRs (𝝁 𝑗 ) 𝑗∈[𝑀 ] .
Given that OPT𝑖 represents the welfare of bidder 𝑖 ∈ [𝑁 ] under

the efficient outcome (as defined in Eq. (3)), we introduce the empir-

ical cumulative distribution function (CDF) 𝜃 (𝑧; 𝛽) to represent the

proportion of advertisers whose realized welfare does not exceed 𝑧

times their efficient outcome welfare. Here, 𝑧 can be either less or

greater than 1. Specifically, 𝜃 (𝑧; 𝛽) for 𝑧 < 1 shows the proportion

of advertisers who experience a welfare deficit relative to OPT𝑖 .

In Figure 1, we depict 𝜃 (𝑧; 𝛽) for the given 𝛽 values. Observations
show that, for 𝑧 < 1, 𝜃 (𝑧; 𝛽) diminishes as 𝛽 rises. This indicates that

enhancing the accuracy ofML advice in setting personalized reserve

prices reduces the proportion of advertisers enduring a welfare

reduction relative to the efficient outcome. For instance, when

𝑧 = 0.8, indicating a 20% welfare loss from the efficient outcome,

the proportion of advertisers facing this loss is 17% without reserve

prices (𝛽 = 0). This proportion reduces to 13%, 11%, and 8% for

𝛽 values of 0.25, 0.5, and 0.75, respectively. The primary insight

is that better ML advice empowers the ad platform to reduce the

proportion of advertisers suffering from welfare losses compared

to the efficient outcome. Another observation is that the empirical

CDF tends toward a step function with a significant shift at 𝑧 = 1,

suggesting that as ML accuracy improves, an increasing number of

advertisers approach their efficient outcome welfare.



Individual Welfare Guarantees in the Autobidding World with Machine-learned Advice WWW ’24, May 13–17, 2024, Singapore, Singapore

REFERENCES

[1] Gagan Aggarwal, Ashwinkumar Badanidiyuru, and AranyakMehta. Autobidding

with constraints. In International Conference onWeb and Internet Economics, pages

17–30. Springer, 2019.

[2] Rui Ai, Chang Wang, Chenchen Li, Jinshan Zhang, Wenhan Huang, and Xiaotie

Deng. No-regret learning in repeated first-price auctions with budget constraints.

arXiv preprint arXiv:2205.14572, 2022.

[3] Santiago Balseiro, Yuan Deng, Jieming Mao, Vahab Mirrokni, and Song Zuo.

Robust auction design in the auto-bidding world. Advances in Neural Information

Processing Systems, 34, 2021.

[4] Santiago Balseiro, Anthony Kim, Mohammad Mahdian, and Vahab Mirrokni.

Budget management strategies in repeated auctions. Operations Research, 2021.

forthcoming.

[5] Santiago Balseiro, Anthony Kim, Mohammad Mahdian, and Vahab Mirrokni.

Budget-management strategies in repeated auctions. Operations Research,

69(3):859–876, 2021.

[6] Santiago Balseiro, Haihao Lu, and VahabMirrokni. The best of many worlds: Dual

mirror descent for online allocation problems. arXiv preprint arXiv:2011.10124,

2020.

[7] Santiago R Balseiro, Yuan Deng, Jieming Mao, Vahab S Mirrokni, and Song Zuo.

The landscape of auto-bidding auctions: Value versus utility maximization. In

Proceedings of the 22nd ACM Conference on Economics and Computation, pages

132–133, 2021.

[8] Santiago R Balseiro and Yonatan Gur. Learning in repeated auctions with budgets:

Regret minimization and equilibrium. Management Science, 65(9):3952–3968, 2019.

[9] Hedyeh Beyhaghi, Negin Golrezaei, Renato Paes Leme, Martin Pál, and Balasub-

ramanian Sivan. Improved revenue bounds for posted-price and second-price

mechanisms. Operations Research, 69(6):1805–1822, 2021.

[10] Petrônio L Braga, Adriano LI Oliveira, and Silvio RL Meira. Software effort

estimation using machine learning techniques with robust confidence intervals.

In 7th international conference on hybrid intelligent systems (HIS 2007), pages

352–357. IEEE, 2007.

[11] José Correa, Andrés Cristi, Laurent Feuilloley, Tim Oosterwijk, and Alexandros

Tsigonias-Dimitriadis. The secretary problem with independent sampling. In

Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA),

pages 2047–2058. SIAM, 2021.

[12] Bo Dai, Ofir Nachum, Yinlam Chow, Lihong Li, Csaba Szepesvári, and Dale

Schuurmans. Coindice: Off-policy confidence interval estimation. Advances in

neural information processing systems, 33:9398–9411, 2020.

[13] Yuan Deng, Negin Golrezaei, Patrick Jaillet, Jason Cheuk Nam Liang, and Vahab

Mirrokni. Multi-channel autobidding with budget and ROI constraints. In

Proceedings of the 40th International Conference on Machine Learning, volume 202

of Proceedings of Machine Learning Research, pages 7617–7644. PMLR, 23–29 Jul

2023.

[14] Yuan Deng, Negin Golrezaei, Patrick Jaillet, Jason Cheuk Nam Liang, and Vahab

Mirrokni. Multi-channel autobidding with budget and ROI constraints. In

Proceedings of the 40th International Conference on Machine Learning, volume 202

of Proceedings of Machine Learning Research, pages 7617–7644. PMLR, 23–29 Jul

2023.

[15] Yuan Deng, Jieming Mao, Vahab Mirrokni, Hanrui Zhang, and Song Zuo. Ef-

ficiency of the first-price auction in the autobidding world. arXiv preprint

arXiv:2208.10650, 2022.

[16] Yuan Deng, Jieming Mao, Vahab Mirrokni, and Song Zuo. Towards efficient

auctions in an auto-bidding world. In Proceedings of the Web Conference 2021,

pages 3965–3973, 2021.

[17] Yuan Deng, Jon Schneider, and Balasubramanian Sivan. Prior-free dynamic

auctions with low regret buyers. Advances in Neural Information Processing

Systems, 32, 2019.

[18] Mahsa Derakhshan, Negin Golrezaei, and Renato Paes Leme. Linear program-

based approximation for personalized reserve prices. Management Science,

68(3):1849–1864, 2022.

[19] Benjamin Edelman, Michael Ostrovsky, and Michael Schwarz. Internet advertis-

ing and the generalized second-price auction: Selling billions of dollars worth of

keywords. American economic review, 97(1):242–259, 2007.

[20] Zhe Feng and Sébastien Lahaie. Robust clearing price mechanisms for reserve

price optimization. arXiv preprint arXiv:2107.04638, 2021.

[21] Zhe Feng, Sebastien Lahaie, Jon Schneider, and Jinchao Ye. Reserve price opti-

mization for first price auctions in display advertising. In International Conference

on Machine Learning, pages 3230–3239. PMLR, 2021.

[22] Yuan Gao, Kaiyu Yang, Yuanlong Chen, Min Liu, and Noureddine El Karoui.

Bidding agent design in the linkedin ad marketplace. AdKDD 2023, 2023.

[23] Anindya Ghose and Sha Yang. An empirical analysis of search engine advertising:

Sponsored search in electronic markets. Management science, 55(10):1605–1622,

2009.

[24] Negin Golrezaei, Patrick Jaillet, and Jason CheukNamLiang. Incentive-aware con-

textual pricing with non-parametric market noise. arXiv preprint arXiv:1911.03508,

2019.

[25] Negin Golrezaei, Patrick Jaillet, Jason Cheuk Nam Liang, and Vahab Mirrokni.

Bidding and pricing in budget and roi constrained markets. arXiv preprint

arXiv:2107.07725, 2021.

[26] Negin Golrezaei, Patrick Jaillet, and Zijie Zhou. Online resource allocation with

samples. Available at SSRN, 2022.

[27] Negin Golrezaei, Patrick Jaillet, and Zijie Zhou. Online resource allocation with

convex-set machine-learned advice. arXiv preprint arXiv:2306.12282, 2023.

[28] Negin Golrezaei, Adel Javanmard, and VahabMirrokni. Dynamic incentive-aware

learning: Robust pricing in contextual auctions. Advances in Neural Information

Processing Systems, 32, 2019.

[29] Negin Golrezaei, Ilan Lobel, and Renato Paes Leme. Auction design for roi-

constrained buyers. In Proceedings of the Web Conference 2021, pages 3941–3952,

2021.

[30] Piotr Indyk, Frederik Mallmann-Trenn, Slobodan Mitrovic, and Ronitt Rubinfeld.

Online page migration with ml advice. In International Conference on Artificial

Intelligence and Statistics, pages 1655–1670. PMLR, 2022.

[31] Bo Jiang, Xuegong Zhang, and Tianxi Cai. Estimating the confidence interval for

prediction errors of support vector machine classifiers. The Journal of Machine

Learning Research, 9:521–540, 2008.

[32] Yash Kanoria and Hamid Nazerzadeh. Dynamic reserve prices for repeated

auctions: Learning from bids. arXiv preprint arXiv:2002.07331, 2020.

[33] Sébastien Lahaie, DavidM Pennock, Amin Saberi, and Rakesh VVohra. Sponsored

search auctions. Algorithmic game theory, 1:699–716, 2007.

[34] Kuang-chih Lee, Burkay Orten, Ali Dasdan, and Wentong Li. Estimating con-

version rate in display advertising from past erformance data. In Proceedings of

the 18th ACM SIGKDD international conference on Knowledge discovery and data

mining, pages 768–776, 2012.

[35] Thodoris Lykouris and Sergei Vassilvtiskii. Competitive caching with machine

learned advice. In International Conference on Machine Learning, pages 3296–3305.

PMLR, 2018.

[36] H Brendan McMahan, Gary Holt, David Sculley, Michael Young, Dietmar Ebner,

Julian Grady, Lan Nie, Todd Phillips, Eugene Davydov, Daniel Golovin, et al.

Ad click prediction: a view from the trenches. In Proceedings of the 19th ACM

SIGKDD international conference on Knowledge discovery and data mining, pages

1222–1230, 2013.

[37] Aranyak Mehta. Auction design in an auto-bidding setting: Randomization

improves efficiency beyond vcg. In Proceedings of the ACM Web Conference 2022,

pages 173–181, 2022.

[38] Andres Munoz and Sergei Vassilvitskii. Revenue optimization with approximate

bid predictions. Advances in Neural Information Processing Systems, 30, 2017.

[39] Yurii Nesterov. Introductory lectures on convex optimization: A basic course,

volume 87. Springer Science & Business Media, 2003.

[40] Renato Paes Leme, Martin Pal, and Sergei Vassilvitskii. A field guide to personal-

ized reserve prices. In Proceedings of the 25th international conference on world

wide web, pages 1093–1102, 2016.

[41] Mallesh M Pai and Rakesh Vohra. Optimal auctions with financially constrained

buyers. Journal of Economic Theory, 150:383–425, 2014.

[42] Matthew Richardson, Ewa Dominowska, and Robert Ragno. Predicting clicks:

estimating the click-through rate for new ads. In Proceedings of the 16th interna-

tional conference on World Wide Web, pages 521–530, 2007.

[43] Durga L Shrestha and Dimitri P Solomatine. Machine learning approaches for

estimation of prediction interval for the model output. Neural networks, 19(2):225–

235, 2006.

[44] Eric Sodomka, Sébastien Lahaie, and Dustin Hillard. A predictive model for adver-

tiser value-per-click in sponsored search. In Proceedings of the 22nd international

conference on World Wide Web, pages 1179–1190, 2013.

[45] Fransisca Susan, Negin Golrezaei, and Okke Schrijvers. Multi-platform budget

management in ad markets with non-ic auctions. arXiv preprint arXiv:2306.07352,

2023.

[46] Hal R Varian. Position auctions. international Journal of industrial Organization,

25(6):1163–1178, 2007.

[47] Shufan Wang, Jian Li, and Shiqiang Wang. Online algorithms for multi-shop ski

rental with machine learned advice. Advances in Neural Information Processing

Systems, 33:8150–8160, 2020.

[48] Yanwu Yang and Panyu Zhai. Click-through rate prediction in online advertising:

A literature review. Information Processing & Management, 59(2):102853, 2022.

[49] Shuai Yuan, Jun Wang, Bowei Chen, Peter Mason, and Sam Seljan. An empirical

study of reserve price optimisation in real-time bidding. In Proceedings of the 20th

ACM SIGKDD international conference on Knowledge discovery and data mining,

pages 1897–1906, 2014.



Individual Welfare Guarantees in the Autobidding World with Machine-learned Advice WWW ’24, May 13–17, 2024, Singapore, Singapore

Appendices for

Individual Welfare Guarantees in the Autobidding World with Machine-learned Advice

A EXTENDED LITERATURE REVIEW

Mechanism design with constrained bidders. This work considers autobidders who aim to maximize welfare while respecting an ROAS

constraint that ensures total spend is less than total acquired value, and thus our work relates to the general theme of mechanism design in

the presence of constrained agents. The works of [29, 41] study revenue-optimal auction design when bidders who maximize quasi-linear

utility are constrained by budgets, and return-on-investment (ROI), respectively. [7] study revenue-maximizing auctions for ROI constrained

bidders under different objectives and information structures for values and ROI targets. This work differs from these papers as we do not

study new auction formats and platform revenue-optimization, but instead presents insights into how to incorporate ML advice as reserves

in classic auctions like VCG, GSP and GFP can improve individual bidder welfare.

Algorithmic bidding/learning under constraints The behavior of our bidders of interest are governed by their ROAS constraints, and

there has been a growing area of works on bidding-algorithm design under similar financial constraints for online advertising markets.

[4] develops theoretical performance guarantees of the budget pacing strategy for bidders with hard budget cap (see more on budget

management strategies in [5]), while [6] presents a more general mirror descent algorithm for online resource allocation problems. [25]

present near-optimal bidding algorithms for bidders with both budget and ROI constraints in expectation. Finally, [13] study a multi-channel

ad procurement problem under the autobidding setup where ad platforms, i.e. channels, autobid on behalf of advertisers, and the work

develops algorithms that optimizes advertisers’ interaction decisions with channels to maximize conversion. In this work, we do not study

the design of bidding algorithms but instead consider worst case outcomes under any feasible bidding profile.

Reserve price optimization. Reserve price techniques and optimization have been studied for different auction formats and settings. In

the single-shot second price auction setting [9, 18, 40] presents different approaches with theoretical performance guarantees to optimize

personalized reserve prices, while [49] presents an empirical study on the impact of reserve price on the entire auction system for display

advertising. For repeated second price auctions, [24, 28, 32] dynamically learn reserve prices to maximize cumulative revenue facing strategic

agents, where as [20] optimize reserve prices to balance revenue and bidders’ incentives to misreport. For first price auctions, [21] introduces

a gradient-based adaptive algorithm to dynamically optimize reserve prices. Nevertheless, all aforementioned works attempt to design and

learn optimal or near optimal reserve prices for the purpose of revenue maximization, whereas in our work we directly set reserves using

ML advice provided by some external black-box, and shed light on how reserve prices can improve individual welfare among all bidders.

B ADDITIONAL MATERIALS FOR SECTION 2

Example B.1 (Example for allocation anonymous auctions). Consider a single GSP auction with 2 slots and 3 bidders who submitted a

bid profile 𝒃 = (0.1, 0.2, 0.3). As GSP allocates slots by ranking bidders’ submitted bids, the outcome under bid profile 𝒃 is 𝒙 =

©­­­­«
0, 0

0, 1

1, 0

ª®®®®¬
. Next,

consider some permutation 𝜎 that maps {1, 2, 3} to {3, 1, 2}. That is, 𝜎 (1) = 3, 𝜎 (2) = 1 and 𝜎 (3) = 2. Under this permutation, the corresponding

permuted bid profile 𝒃′ = (0.3, 0.1, 0.2), which results in the outcome 𝒙′ =

©­­­­«
1, 0

0, 0

0, 1

ª®®®®¬
. Then, it is easy to check that P(𝑥𝜎 (𝑖 ), 𝑗 = 1) = P(𝑥 ′

𝑖, 𝑗
=

1) =

{
1 if (𝑖, 𝑗) = (1, 1) or (3, 2)
0 otherwise

. In particular, because 𝜎 (1) = 3 we have P(𝑥3,1 = 1) = P(𝑥 ′
1,1

= 1) = 1, and because 𝜎 (3) = 2 we have

P(𝑥2,2 = 1) = P(𝑥 ′
3,2

= 1) = 1.

Example B.2 (Personalized-reserve augmented VCG, GSP, GFP auctions). Consider𝑀 ≥ 2 parallel position auctions (A 𝑗 ) 𝑗∈[𝑀 ] all of which
take the form of VCG, GSP or GFP auctions. Each auction A 𝑗 is associated with 𝐿𝑗 ≥ 1 slots and CTRs 𝝁 𝑗 = (𝜇 𝑗 (ℓ))ℓ∈𝐿𝑗 . Assume 𝑁 bidders

submit bid profile 𝒃 𝑗 ∈ R𝑁+ to auction A 𝑗 , where 𝑁 𝑗 ≤ 𝑁 are cleared, i.e. greater than respective personalized reserve prices. Define 𝒃̃ 𝑗 ∈ R
𝑁 𝑗

+ to

be all “cleared bids”, and let 𝑏
(ℓ )
𝑗

be the ℓth highest cleared bid. Then, in A 𝑗 bidders who cleared their reserves are assigned slots according to the

ranking of 𝒃̃ 𝑗 , whereas the bidders who do not clear their reserves never get allocated any slots. The payment for a bidder 𝑖 who cleared her reserve

and allocated slot ℓ𝑖, 𝑗 ∈ [min{𝑁 𝑗 , 𝐿𝑗 }] is

• VCG: 𝑝𝑖, 𝑗 =
∑min{𝑁 𝑗 ,𝐿𝑗 }
ℓ=ℓ𝑖,𝑗

(𝜇 𝑗 (ℓ) − 𝜇 𝑗 (ℓ + 1) · max{𝑏 (ℓ+1)
𝑗

, 𝑟𝑖, 𝑗 } where 𝑏 (ℓ )𝑗 = 0 when ℓ > 𝑁 𝑗 .

• GSP: 𝑝𝑖, 𝑗 = 𝜇 𝑗 (ℓ𝑖, 𝑗 ) · max{𝑏 (ℓ𝑖,𝑗+1)
𝑗

, 𝑟𝑖, 𝑗 }.
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• GFP: 𝑝𝑖, 𝑗 = 𝜇 𝑗 (ℓ𝑖, 𝑗 ) · max{𝑏 (ℓ𝑖,𝑗 )
𝑗

, 𝑟𝑖, 𝑗 }.

It is well known that for the same bid profile 𝒃 and for any bidder 𝑖 , the payment under the GFP auction is greater than equal to that

under GSP auction, and the payment under the GSP auction is greater than equal to that under VCG; see e.g. [19].

Uniform bidding. The following proposition shows uniform bidding is the optimal bidding strategy in truthful auctions.

Proposition B.1 (Uniform bidding is optimal for autobidders in truthful auctions). Let all auctions (A 𝑗 ) 𝑗∈[𝑀 ] be identical truthful auctions
(see Definition 2.1), and bidder 𝑖 ∈ [𝑁 ] is an autobidder who aims to maximize welfare E [𝑊𝑖 (X(𝒃𝑖 , 𝒃−𝑖 ))] subject to the ROAS constraint in Eq.

(2) for any fixed competing bids 𝒃−𝑖 ∈ R𝑁−1

+ . Then, there exists some constant uniform multiplier 𝛼∗
𝑖
≥ 1 s.t. the uniform bidding profile 𝛼∗

𝑖
𝒗𝑖 is

𝑖’s optimal strategy:

𝛼∗𝑖 · 𝒗𝑖 ∈ arg max

𝒃𝑖 ∈R𝑀+
E [𝑊𝑖 (X(𝒃𝑖 , 𝒃−𝑖 ))] s.t. E [𝑊𝑖 (X(𝒃𝑖 , 𝒃−𝑖 ))] ≥ E [P𝑖 (𝒃𝑖 , 𝒃−𝑖 )] , .

(5)

Further, adopting any uniform bid multiplier 𝛼𝑖 < 1 is weakly dominated by truthful bidding, i.e.

E [𝑊𝑖 (X(𝛼𝑖𝒗𝑖 , 𝒃−𝑖 ))] ≤ E [𝑊𝑖 (X(𝒗𝑖 , 𝒃−𝑖 ))] for any 𝒃−𝑖 ∈ R𝑁−1

+ .

This is a well-known result that has been proved and adopted in many related works such as [1, 3, 16, 37] and we will omit the proof here.

C ADDITIONAL MATERIALS FOR SECTION 4

C.1 Proof for Theorem 4.1

First, to prove Theorem 4.1, we rely on the definition of an advertisers’ loss in welfare compared to her welfare contribution under the

efficient outcome, formally defined as followed:

Definition C.1 (Welfare loss w.r.t. efficient outcome). For any bidder 𝑖 ∈ [𝑁 ] and outcome 𝒙 = (𝒙 𝑗 ∈ {0, 1}𝑁×𝐿𝑗 ) 𝑗∈[𝑀 ] , let L𝑖 (𝒙) = { 𝑗 ∈
[𝑀] :𝑊𝑖, 𝑗 (𝒙) < OPT𝑖, 𝑗 } be the set of auctions in which bidder 𝑖’s acquired welfare is less than that of her welfare under the efficient outcome.

Then, we define the welfare loss of bidder 𝑖 under outcome 𝒙 w.r.t. the efficient outcome 𝒙∗ as:

loss𝑖 (𝒙) =
∑︁

𝑗∈L𝑖 (𝒙 )

(
OPT𝑖, 𝑗 −𝑊𝑖, 𝑗 (𝒙)

)
. (6)

Remark C.1. For any outcome 𝒙 , let ℓ𝑖, 𝑗 be the position (i.e. ranking) of bidder 𝑖 in auction 𝑗 , and recall that ℓ∗
𝑖, 𝑗

is the position of bidder 𝑖 in

auction 𝑗 under the efficient outcome 𝒙∗. Then, the set L𝑖 (𝒙) = { 𝑗 ∈ [𝑀] :𝑊𝑖, 𝑗 (𝒙 𝑗 ) < OPT𝑖, 𝑗 } (where𝑊𝑖, 𝑗 (𝒙 𝑗 ) is bidder 𝑖’s welfare in A 𝑗 as

defined in Eq.(1)) can also be interpreted as the set of auctions where bidder 𝑖’s ranking under 𝒙 is lower than her ranking under 𝒙∗, or in other

words the set of auctions that incur a welfare loss w.r.t. 𝒙∗. Hence we can also rewrite L𝑖 (𝒙) = { 𝑗 ∈ [𝑀] : ℓ𝑖, 𝑗 > ℓ∗
𝑖, 𝑗
}.

The following proposition connects the notion of welfare loss (as in Definition C.1) and individual welfare (as in Definition 2.5) by showing

an upper bound on welfare loss can be directly translated into a welfare lower bound that corresponds to our individual welfare guarantee.

Proposition C.1 (Translating loss to individual welfare guarantee). Assume for bidder 𝑖 ∈ [𝑁 ] and outcome 𝒙 = (𝒙 𝑗 ∈ {0, 1}𝑁×𝐿𝑗 ) 𝑗∈[𝑀 ] we

have loss𝑖 (𝒙) ≤ 𝐵 for some 𝐵 > 0. Then,
𝑊𝑖 (𝒙 )
OPT𝑖

≥ 1 − 𝐵
OPT𝑖

.

The proof of this proposition is presented in Section C.4. Now, in light of this proposition, we proceed to prove Theorem 4.1 by bounding

bidder 𝑖’s welfare loss for auctions where she obtains a slot that is lower in position than what she would have obtained under the efficient

outcome.

Proof of Theorem 4.1. Fix any feasible competing bid profile 𝒃−𝑖 ∈ F−𝑖 (𝛼𝑖𝒗𝑖 ) under which every bidders’ ROAS constraint is satisfied;

see Definition 2.4. Denote the corresponding outcome as 𝒙 = X(𝒃), and ℓ𝑘,𝑗 , ℓ∗𝑘,𝑗 to be the position of any bidder 𝑘 ∈ [𝑁 ] in auction 𝑗 ∈ [𝑀]
under outcome 𝒙 and the efficient outcome, respectively.

Consider any auction 𝑗 ∈ L𝑖 (𝒙) = { 𝑗 ∈ [𝑀] : ℓ𝑖, 𝑗 > ℓ∗
𝑖, 𝑗
} (see Remark C.1), i.e. in auction A 𝑗 , bidder 𝑖 acquires a position (under 𝒙) bellow

her position in the efficient outcome 𝒙∗. This implies there must exist competing bidders in auction A 𝑗 whose values are smaller than that

of bidder 𝑖’s, but obtains a better position, making bidder 𝑖 lose welfare. Motivated by this, we let B𝑖 (𝑘 ; 𝒙) denote the set of all auctions in
which bidder 𝑘’s value is lower than 𝑖’s but acquires a better position than 𝑖:

B𝑖 (𝑘 ; 𝒙) =
{
𝑗 ∈ [𝑀] : OPT𝑖, 𝑗 > 0, 𝑣𝑘,𝑗 < 𝑣𝑖, 𝑗 and ℓ𝑘,𝑗 ≤ ℓ∗𝑖, 𝑗 < ℓ𝑖, 𝑗

}
(7)

where we recall OPT𝑖, 𝑗 is the welfare of bidder 𝑖 in auction 𝑗 under the efficient outcome. Further, we can find a collection of 𝑖’s competitors

whose B𝑖 ( · ; 𝒙) “covers” all auctions L𝑖 (𝒙) in which 𝑖 loses welfare. We call this collection of competitors a covering, and formally define

the collection of all coverings, called C𝑖 (𝒙), as followed:

C𝑖 (𝒙) =
{
C ⊆ [𝑁 ]/{𝑖} : (B𝑖 (𝑘 ; 𝒙))𝑘∈C is a maximal set cover of L𝑖 (𝒙)

}
. (8)
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Here, for any set S, we say S1 . . .S𝑛 a maximal set cover of S if S ⊆ ⋃
𝑛′∈[𝑛] S𝑛′ but S ⊊

⋃
𝑛′∈[𝑛] S𝑛′/S𝑛′′ for any 𝑛′′ ∈ [𝑛]. In words,

B𝑖 (𝑘 ; 𝒙) is the set of auctions in which bidder 𝑘 has a smaller value than bidder 𝑖 but acquires a better position, and any C ∈ C𝑖 (𝒙) is a
subset of 𝑖’s competitors who are responsible for all welfare losses of bidder 𝑖 in auctions of L𝑖 (𝒙).

Fix any covering C ∈ C𝑖 (𝒙), and some bidder 𝑘 ∈ C. We first state the following inequality that bounds the welfare loss of bidder 𝑖 caused

by competitor 𝑘 ∈ C in the covering (we will prove this inequality later).∑︁
𝑗∈B𝑖 (𝑘 ;𝒃 )

(
𝜇 (ℓ∗𝑖, 𝑗 ) − 𝜇 (ℓ𝑖, 𝑗 )

)
𝑣𝑖, 𝑗 ≤

1 − 𝛽
𝛼𝑖 − 𝛽

∑︁
𝑗∈[𝑀 ]

𝜇 (ℓ𝑘,𝑗 )𝑣𝑘,𝑗 (9)

Summing the above over all competitors 𝑘 ∈ C, we have

loss𝑖 (𝒙) =
∑︁

𝑗∈L𝑖 (𝒙 )

(
𝜇 (ℓ∗𝑖, 𝑗 ) − 𝜇 (ℓ𝑖, 𝑗 )

)
𝑣𝑖, 𝑗

(𝑎)
≤

∑︁
𝑘∈C

∑︁
𝑗∈B𝑖 (𝑘 ;𝒃 )

(
𝜇 (ℓ∗𝑖, 𝑗 ) − 𝜇 (ℓ𝑖, 𝑗 )

)
𝑣𝑖, 𝑗

(𝑏 )
≤ 1 − 𝛽
𝛼𝑖 − 𝛽

∑︁
𝑘∈C

∑︁
𝑗∈[𝑀 ]

𝜇 (ℓ𝑘,𝑗 )𝑣𝑘,𝑗 =
1 − 𝛽
𝛼𝑖 − 𝛽

∑︁
𝑘∈C

𝑊𝑘 (𝒙)

≤ 1 − 𝛽
𝛼𝑖 − 𝛽

𝑊−𝑖 (𝒙)

(𝑐 )
≤ 1 − 𝛽
𝛼𝑖 − 𝛽

(OPT−𝑖 + loss𝑖 (𝒙))

=⇒ loss𝑖 (𝒙) ≤ 1 − 𝛽
𝛼𝑖 − 1

OPT−𝑖 .

(10)

Here, in (a) we used the fact that L𝑖 (𝒙) ⊆
⋃
𝑘∈C B𝑖 (𝑘 ; 𝒙) (see Eq. (8)); in (b) we applied Eq. (9); (c) follows from OPT ≥ ∑

𝑖∈[𝑁 ]𝑊𝑖 (𝒙) where
OPT is the total efficient welfare and

∑
𝑖∈[𝑁 ]𝑊𝑖 (𝒙) is the total welfare under outcome 𝒙 , so further

OPT−𝑖 ≥𝑊−𝑖 (𝒙) +𝑊𝑖 (𝒙) − OPT𝑖

=𝑊−𝑖 (𝒙) +
∑︁

𝑗∈L𝑖 (𝒙 )

(
𝑊𝑖, 𝑗 (𝒙) − OPT𝑖, 𝑗

)
+

∑︁
𝑗∈[𝑀 ]/L𝑖 (𝒙 )

(
𝑊𝑖, 𝑗 (𝒙) − OPT𝑖, 𝑗

)
(𝑒 )
≥ 𝑊−𝑖 (𝒙) +

∑︁
𝑗∈L𝑖 (𝒙 )

(
𝑊𝑖, 𝑗 (𝒙) − OPT𝑖, 𝑗

)
=𝑊−𝑖 (𝒙) − loss𝑖 (𝒙) .

(11)

where in (e) we used the fact that𝑊𝑖, 𝑗 (𝒙) ≥ OPT𝑖, 𝑗 in any auction 𝑗 ∈ [𝑀]/L𝑖 (𝒙). Finally, applying Proposition C.1 w.r.t. upper bound of

loss𝑖 (𝒙), and noting that the feasible competing bid profile is arbitrary, we obtain the desired welfare guarantee lower bound.

Now, it remains to prove Eq. (9) that bounds the welfare loss of bidder 𝑖 caused by competitor 𝑘 ∈ C in the covering. Denote 𝑝𝑘,𝑗 as the

payment of bidder 𝑘 , and ˆ𝑏ℓ, 𝑗 as the ℓth largest bid in any auction 𝑗 ∈ [𝑀]. Then in some auction 𝑗 ∈ B𝑖 (𝑘 ; 𝒃) recall from Eqs. (7) and (8)

that 𝑣𝑘,𝑗 < 𝑣𝑖, 𝑗 but ℓ𝑘,𝑗 ≤ ℓ∗
𝑖, 𝑗

< ℓ𝑖, 𝑗 . Thus bidder 𝑘’s payment is lower bounded as

For 𝑗 ∈ B𝑖 (𝑘 ; 𝒃), 𝑝𝑘,𝑗
(𝑎)
≥

𝐿𝑗∑︁
ℓ=ℓ𝑘,𝑗

(𝜇 (ℓ) − 𝜇 (ℓ + 1)) ˆ𝑏ℓ+1, 𝑗

=

ℓ∗𝑖,𝑗−1∑︁
ℓ=ℓ𝑘,𝑗

(𝜇 (ℓ) − 𝜇 (ℓ + 1)) ˆ𝑏ℓ+1, 𝑗 +
ℓ𝑖,𝑗−1∑︁
ℓ=ℓ∗

𝑖,𝑗

(𝜇 (ℓ) − 𝜇 (ℓ + 1)) ˆ𝑏ℓ+1, 𝑗 + 𝑝𝑖, 𝑗

(𝑏 )
≥

(
𝜇 (ℓ𝑘,𝑗 ) − 𝜇 (ℓ∗𝑖, 𝑗 )

)
𝑣𝑖, 𝑗 + 𝛼𝑖

(
𝜇 (ℓ∗𝑖, 𝑗 ) − 𝜇 (ℓ𝑖, 𝑗 )

)
𝑣𝑖, 𝑗 + 𝛽 · 𝜇 (ℓ𝑖, 𝑗 )𝑣𝑖, 𝑗

= 𝜇 (ℓ𝑘,𝑗 )𝑣𝑖, 𝑗 + (𝛼𝑖 − 1)
(
𝜇 (ℓ∗𝑖, 𝑗 ) − 𝜇 (ℓ𝑖, 𝑗 )

)
𝑣𝑖, 𝑗 − (1 − 𝛽) · 𝜇 (ℓ𝑖, 𝑗 )𝑣𝑖, 𝑗 .

(12)

Here , (a) follows from the VCG payment rule (see Example B.2); (b) follows from the fact that bidder 𝑖’s ranking is ℓ𝑖, 𝑗 , so any bidder who is

ranked before position ℓ𝑖, 𝑗 submits a bid greater than bidder 𝑖’s bid 𝑏𝑖, 𝑗 = 𝛼𝑖𝑣𝑖, 𝑗 , i.e. ˆ𝑏ℓ, 𝑗 ≥ 𝑏𝑖, 𝑗 = 𝛼𝑖𝑣𝑖, 𝑗 > 𝑣𝑖, 𝑗 for any ℓ ≤ ℓ𝑖, 𝑗 .

On the other hand, we have ∑︁
𝑗∈B𝑖 (𝑘 ;𝒃 )

𝑝𝑘,𝑗 +
∑︁

𝑗∉B𝑖 (𝑘 ;𝒃 )
𝑝𝑘,𝑗 ≤

∑︁
𝑗∈B𝑖 (𝑘 ;𝒃 )

𝜇 (ℓ𝑘,𝑗 )𝑣𝑘,𝑗 +
∑︁

𝑗∉B𝑖 (𝑘 ;𝒃 )
𝜇 (ℓ𝑘,𝑗 )𝑣𝑘,𝑗

𝑝𝑘,𝑗 ≥ 𝛽 · 𝜇 (ℓ𝑘,𝑗 )𝑣𝑘,𝑗 ∀𝑗 ∈ [𝑀] ,
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where the first inequality follows from bidder 𝑘’s ROAS constraint; the second inequality follows from the fact that any winning bidder’s

payment must be greater than her 𝛽-approximate reserves. Combining the above inequalities and rearranging we get∑︁
𝑗∈B𝑖 (𝑘 ;𝒃 )

𝑝𝑘,𝑗 ≤
∑︁

𝑗∈B𝑖 (𝑘 ;𝒃 )
𝜇 (ℓ𝑘,𝑗 )𝑣𝑘,𝑗 + (1 − 𝛽) ·

∑︁
𝑗∉B𝑖 (𝑘 ;𝒃 )

𝜇 (ℓ𝑘,𝑗 )𝑣𝑘,𝑗 , (13)

Summing Eq.(12) over all 𝑗 ∈ B𝑖 (𝑘 ; 𝒃) and combining with Eq. (13), we get

(𝛼𝑖 − 1) ·
∑︁

𝑗∈B𝑖 (𝑘 ;𝒃 )

(
𝜇 (ℓ∗𝑖, 𝑗 ) − 𝜇 (ℓ𝑖, 𝑗 )

)
𝑣𝑖, 𝑗

≤ (1 − 𝛽) · ©­«
∑︁

𝑗∈B𝑖 (𝑘 ;𝒃 )
𝜇 (ℓ𝑖, 𝑗 )𝑣𝑖, 𝑗 +

∑︁
𝑗∉B𝑖 (𝑘 ;𝒃 )

𝜇 (ℓ𝑘,𝑗 )𝑣𝑘,𝑗
ª®¬ +

∑︁
𝑗∈B𝑖 (𝑘 ;𝒃 )

𝜇 (ℓ𝑘,𝑗 )
(
𝑣𝑘,𝑗 − 𝑣𝑖, 𝑗

)
(𝑎)
≤ (1 − 𝛽) · ©­«

∑︁
𝑗∈B𝑖 (𝑘 ;𝒃 )

𝜇 (ℓ𝑖, 𝑗 )𝑣𝑖, 𝑗 +
∑︁

𝑗∉B𝑖 (𝑘 ;𝒃 )
𝜇 (ℓ𝑘,𝑗 )𝑣𝑘,𝑗 +

∑︁
𝑗∈B𝑖 (𝑘 ;𝒃 )

𝜇 (ℓ𝑘,𝑗 )
(
𝑣𝑘,𝑗 − 𝑣𝑖, 𝑗

)ª®¬
(𝑏 )
≤ (1 − 𝛽) · ©­«

∑︁
𝑗∈B𝑖 (𝑘 ;𝒃 )

𝜇 (ℓ𝑖, 𝑗 )𝑣𝑖, 𝑗 +
∑︁
𝑗∈[𝑀 ]

𝜇 (ℓ𝑘,𝑗 )𝑣𝑘,𝑗 −
∑︁

𝑗∈B𝑖 (𝑘 ;𝒃 )
𝜇 (ℓ∗𝑖, 𝑗 )𝑣𝑖, 𝑗

ª®¬ .
In (a), we used the fact that 𝛽 ∈ (0, 1] and 𝑣𝑘,𝑗 − 𝑣𝑖, 𝑗 < 0 for any 𝑘 ∈ C ⊆ C𝑖 (𝒙); see definition of C𝑖 (𝒙) in Eq. (8); and (b) follows from

ℓ𝑘,𝑗 ≤ ℓ∗
𝑖, 𝑗

for any 𝑘 ∈ C ⊆ C𝑖 (𝒙). Rearranging terms we obtain the desired Eq. (9). □

C.2 Applicability of the individual welfare guarantee when all bidders bid uniformly

We recognize that as the individual welfare lower bound in Theorem 4.1 monotonically increases in the bid multiplier 𝛼𝑖 , it is tempting for

bidder 𝑖 to apply a very large multiplier 𝛼𝑖 . Nevertheless, in this section we describe a potential tradeoff between large multipliers (i.e. better

individual welfare guarantees in light of Theorem 4.1) and ROAS feasibility in the practical scenario where all bidders are autobidders and

adopt uniform bidding.

To illustrate, we see that for large multiplier 𝛼𝑖 , the set of competing bids F−𝑖 (𝛼𝑖𝒗𝑖 ) may only include very small bid values (e.g. the bid

profile where each competing bidder (under)bids some small 𝜖 > 0 close to 0 in each auction), at which bidder 𝑖 faces nearly no competition

so that the ROAS constraint can be trivially satisfied for every bidder. In light of this discussion, we consider a more practical scenario where

all competing bidders are also autobidders and adopt uniform bidding, or equivalently, a refinement of F−𝑖 (𝛼𝑖𝒗𝑖 ) in which each competing

bidder 𝑗 ≠ 𝑖 , similar to bidder 𝑖 , also adopts uniform bidding with bid multiplier 𝛼 𝑗 ≥ 1. We define F𝑢−𝑖 (𝒃𝑖 ) = F−𝑖 (𝒃𝑖 ) ∩ {(𝛼 𝑗𝒗 𝑗 ) 𝑗≠𝑖 : 𝛼 𝑗 ≥ 1}
that represents the set of uniform competing bids for bidder 𝑖 that ensure ROAS constraint satisfaction for every bidder. From Theorem 4.1, it

is easy to see

min

𝒃−𝑖 ∈F𝑢
−𝑖 (𝛼𝑖𝒗𝑖 )

𝑊𝑖 (X(𝒃))
OPT𝑖

(𝑖 )
≥ 1 − 1 − 𝛽

𝛼𝑖 − 1

· OPT−𝑖
OPT𝑖

, (14)

where (i) follows from min𝒃−𝑖 ∈F𝑢
−𝑖 (𝛼𝑖𝒗𝑖 )

𝑊𝑖 (X(𝒃 ) )
OPT𝑖

≥ min𝒃−𝑖 ∈F−𝑖 (𝛼𝑖𝒗𝑖 )
𝑊𝑖 (X(𝒃 ) )

OPT𝑖
because F𝑢−𝑖 (𝛼𝑖𝒗𝑖 ) ⊆ F−𝑖 (𝛼𝑖𝒗𝑖 ). Nevertheless, in light of

Eq. (14), when all bidders bid uniformly, an excessively large 𝛼𝑖 may let bidder 𝑖 incur large payments that significantly exceed her values,

resulting in non-existence of competing uniform bids 𝒃−𝑖 that can ensure satisfaction of every bidders’ ROAS constraints, i.e. F𝑢−𝑖 (𝛼𝑖𝒗𝑖 )
being empty. In other words, there exists a tradeoff between large multipliers (i.e. better individual welfare guarantees) and ROAS feasibility

when all bidders bid uniformly. The following Lemma C.2, along with a technical definition of “well-separated” values per Definition C.2,

addresses this tradeoff by characterizing how large the multiplier 𝛼𝑖 can be set that still ensures the existence of uniform competing bids

within F𝑢−𝑖 (𝛼𝑖𝒗𝑖 ).

Definition C.2 (Δ-separated values). We say values 𝒗 ∈ R𝑁×𝑀
≥0

are Δ-separated for some Δ > 1 if any value 𝑣𝑖, 𝑗 is at least Δ times as much as

any value that is less than 𝑣𝑖, 𝑗 in the same auction 𝑗 , i.e. 𝑣𝑖, 𝑗 ≥ Δ · max{𝑣𝑘,𝑗 : 𝑘 ∈ [𝑁 ], 𝑣𝑘,𝑗 < 𝑣𝑖, 𝑗 } for any bidder 𝑖 and auction 𝑗 .4

Lemma C.2 (Valid regions for uniform bid multiplier). Let (A 𝑗 ) 𝑗∈[𝑀 ] be VCG auctions and assume bidders values are Δ-separated (Definition
C.2) in every auction for some Δ > 1, then F𝑢−𝑖 (𝛼𝑖𝒗𝑖 ) ≠ ∅ for any 𝛼𝑖 ∈ [1,Δ).

Proof. Recall there is Δ-separation in values. Fix a bidder 𝑖 and let 𝑣+
𝑗
be the smallest competitor value that is strictly greater than 𝑣𝑖, 𝑗 in

any auction A 𝑗 where bidder 𝑖’s value is not the largest, and by definition of Δ-separated values we have 𝑣+
𝑗
≥ Δ𝑣𝑖, 𝑗 . Hence, by using any

multiplier 𝛼𝑖 ∈ [1,Δ) and assuming competitors bid truthfully, the outcome of the auctions would be identical to that of everyone (including

bidder 𝑖) bidding truthfully. And since truthful bidding is always feasible, we conclude that 𝒗−𝑖 ∈ F𝑢−𝑖 (𝛼𝑖𝒗𝑖 ) for 𝛼𝑖 ∈ [1,Δ). □

4
Definition C.2 also captures values which are “additively separated”. In particular, take some 𝑑 > 0 such that 𝑑 < min{𝑣𝑖,𝑗 : 𝑣𝑖,𝑗 ≠ 0} and also 𝑣𝑖,𝑗 − 𝑑 ≥ max{𝑣𝑘,𝑗 : 𝑘 ∈
[𝑁 ], 𝑣𝑘,𝑗 < 𝑣𝑖,𝑗 } for any bidder 𝑖 and auction 𝑗 . Then, by taking Δ ∈ min𝑣𝑖,𝑗 :𝑣𝑖,𝑗 ≠0

{
𝑣𝑖,𝑗

𝑣𝑖,𝑗 −𝑑

}
, the values are Δ-separated according to Definition C.2 because

1

Δ 𝑣𝑖,𝑗 ≥ 𝑣𝑖,𝑗 − 𝑑 ≥
max{𝑣𝑘,𝑗 : 𝑘 ∈ [𝑁 ], 𝑣𝑘,𝑗 < 𝑣𝑖,𝑗 } for all 𝑣𝑖,𝑗 . This suggests Definition C.2 is quite general to capture value separation scenarios.
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Figure 2: Left: Two colored regions represent uniform bid multipliers (𝛼1, 𝛼2) ∈ [1,∞)2
that lead to feasible bid profiles

(𝒃1, 𝒃2) ∈ F . Right: Comparison between the individual welfare guarantee of Theorem 4.1, namely 1 − 1−𝛽
𝛼𝑖−1

· OPT−𝑖
OPT𝑖

, and the

worst case welfare for each bidder 𝑖 (normalized by OPT𝑖 ) among all feasible bid profiles when both bidders adopt uniform

bidding, namely min𝒃−𝑖 ∈F𝑢
−𝑖 (𝛼𝑖𝒗𝑖 )

𝑊𝑖 (X(𝒃 ) )
OPT𝑖

.

We also remark that the upper bound Δ in Lemma C.2 is sufficient, meaning that there may exist larger values of 𝛼𝑖 that can ensure the

set F𝑢−𝑖 (𝛼𝑖𝒗𝑖 ) ≠ ∅ nonempty. To better visualize the structure of F𝑢−𝑖 (𝛼𝑖𝒗𝑖 ), as well as our individual welfare guarantee in Theorem 4.1 and

Eq. (14), we present the following example.

Example C.1. Consider 2 bidders bidding in 3 single-slot VCG auctions in which each slot is associated with CTR equal to 1. Bidder values

are 𝒗1 = (4, 3, 1) and 𝒗2 = (1, 4, 3), while personalized reserves are set to be 𝒓𝑖 = 𝛽𝒗𝑖 for 𝛽 = 0.7 and 𝑖 = 1, 2. It is easy to check that with the

presence of personalized reserves, no bidder can significantly overbid and win all auctions (otherwise she will incur large payments and thus

violate their ROAS constraints), and therefore each bidder will obtain non-zero value. This aligns with our intuition presented in Sections 3 that

states personalized reserves benefit individual welfare.

In the left subgraph of Figure 2, we color the region of all pairs of uniform bid multipliers (𝛼1, 𝛼2) ∈ [1,∞)2
that induce feasible bid profiles

(𝒃1, 𝒃2) ∈ F , where the blue dotted region corresponds to bid profiles under which bidder 1 wins only A1, and the grey vertically-dashed

region corresponds to bid profiles under which bidder 1 wins A1 and A2. From this subgraph, we can see that F𝑢−1
(𝛼1𝒗1) = {𝛼2𝒗2 : 𝛼2 ∈

any colored vertical line segments at 𝛼1} and similarly F𝑢−2
(𝛼2𝒗2) = {𝛼1𝒗1 : 𝛼1 ∈ any colored horizontal line segments at 𝛼2}. On the right

subgraph of Figure 2, for each bidder 𝑖 = 1, 2, we plot the individual welfare guarantee 1 − 1−𝛽
𝛼𝑖

· OPT−𝑖
OPT𝑖

as well as min𝒃−𝑖 ∈F𝑢
−𝑖 (𝛼𝑖𝒗𝑖 )

𝑊𝑖 (X(𝒃 ) )
OPT𝑖

which is the worst case welfare among all outcomes induced by uniform bid profiles that satisfy both bidders’ ROAS constraints.

On the left subgraph of Figure 2, we observe that it is easier for bidder 2 to ensure a non-empty feasibility set F𝑢−2
(𝛼2𝒗2) at large 𝛼2 values

than bidder 1 to ensure non-empty F𝑢−1
(𝛼1𝒗1) at large 𝛼1; e.g. for large 𝛼2 such as 𝛼2 = 3, bidder 1 can take any 𝛼1 ∈ [1, 1.75], but for large

𝛼1 = 3, bidder 2 can only take 𝛼2 ∈ [1, 1.25]. Nevertheless on the right subgraph, we see that bidder 2’s realized welfare is much closer to her

theoretical lower bound guarantee than that of bidder 1. Therefore this highlights a tradeoff between uniform multiplier feasibility and

welfare guarantee.

C.3 Proof for Theorem 4.2

Theorem C.3 (Restatement of Theorem 4.2). Consider 2 bidders competing in three SPA auctions whose values are indicated in the

following table for any 𝛽 ∈ (0, 1) and 𝑦 ≥ 0.

Auction 1 Auction 2 Auction 3 .

bidder 1 𝑦 𝑣 0

bidder 2 0 𝑣 − 𝜖 𝛾 + 1

1−𝛽 · 𝜖
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Bidder 1’s multiplier is fixed to be 𝛼1 > 1, and consider 𝑣 =
1−𝛽
𝛼1−1

· 𝛾 for any 𝛾 > 0. The reserve prices are set to be 𝑟𝑖, 𝑗 = 𝛽𝑣𝑖, 𝑗 . Then, we have

min

𝒃∈F
𝑊1 (X(𝒃))

OPT1

= 1 − 1 − 𝛽
𝛼1 − 1

·
OPT−1 − 1

1−𝛽 · 𝜖
OPT1

(15)

Taking 𝜖 → 0 shows that bidder 1’s welfare is equal to the individual welfare guarantee in Theorem 4.1.

Remark C.2. We remark that as 𝜖 → 0,
OPT−𝑖
OPT𝑖

=

𝛼
1
−1

1−𝛽 𝑣

𝑦+𝑣 ∈
[
0,
𝛼1−1

1−𝛽

]
, so by varying 𝑦 ∈ [0,∞), the above example demonstrates our individual

welfare lower bound in Theorem 4.1 is tight for any nontrivial market share ratio
OPT𝑖

OPT−𝑖
∈
[
𝛼1−1

1−𝛽 ,∞
)
.

proof Note that in any feasible outcome, bidder 1 must win auction 1, and bidder 2 must win auction 3. Hence for auction 2, we only need

to consider the following outcome:

Bidder 1 loses auction 2, and suffers welfare loss 𝑣 . This outcome can be achieved by setting 𝛼2 such that 𝛼2 (𝑣 − 𝜖) > 𝛼1𝑣 . Bidder 2

accumulates value 𝑣 + 𝛾 +
(

1

1−𝛽 − 1

)
𝜖 . Her payment for auction 2 is max{𝛼1𝑣, 𝛽 (𝑣 − 𝜖)}, and for auction 3 is 𝛽

(
𝛾 + 1

1−𝛽 · 𝜖
)
. The following

shows that her ROAS constraint is satisfied:

𝑣 + 𝛾 +
(

1

1 − 𝛽 − 1

)
𝜖 − max{𝛼1𝑣, 𝛽 (𝑣 − 𝜖)} − 𝛽

(
𝛾 + 1

1 − 𝛽 · 𝜖
)

(𝑎)
= 𝑣 + 𝛾 +

(
1

1 − 𝛽 − 1

)
𝜖 − 𝛼1𝑣 − 𝛽

(
𝛾 + 1

1 − 𝛽 · 𝜖
)

= (1 − 𝛼1) 𝑣 + (1 − 𝛽)𝛾 +
(

1

1 − 𝛽 − 1 − 𝛽 · 1

1 − 𝛽

)
𝜖

= 0 ,

where in (a) we used the fact 𝛽 ≤ 1 < 𝛼1 and 𝜖 → 0. In the final equality we used the definition that 𝑣 =
1−𝛽
𝛼1−1

· 𝛾 . On the other hand, bidder

1’s ROAS constraint is apparently satisfied.

Under this outcome, denoting bidder 1’s welfare as𝑊1 we have

𝑊1

𝑂𝑃𝑇1

= 1 − 𝑣

𝑂𝑃𝑇1

= 1 − 1 − 𝛽
𝛼𝑖 − 1

· 𝛾

OPT𝑖
= 1 − 1 − 𝛽

𝛼𝑖 − 1

·
OPT−𝑖 − 1

𝛽
· 𝜖

OPT𝑖

C.4 Proof of Proposition C.1

Proof. For simplicity, denote 𝛿𝑖, 𝑗 = OPT𝑖, 𝑗 −𝑊𝑖, 𝑗 (𝒙). Then, OPT𝑖 −𝑊𝑖 (𝒙) =
∑
𝑗∈[𝑀 ]:𝛿𝑖,𝑗>0

𝛿𝑖, 𝑗 +
∑
𝑗∈[𝑀 ]:𝛿𝑖,𝑗=0

𝛿𝑖, 𝑗 +
∑
𝑗∈[𝑀 ]:𝛿𝑖,𝑗<0

𝛿𝑖, 𝑗 =

loss𝑖 (𝒙)+
∑
𝑗∈[𝑀 ]:𝑊𝑖,𝑗 (𝒙 )>OPT𝑖,𝑗

(
OPT𝑖, 𝑗 −𝑊𝑖, 𝑗 (𝒙)

)
≤ loss𝑖 (𝒙) ≤ 𝐵 . Rearranging and dividing both sides by OPT𝑖 we get

𝑊𝑖 (𝒙 )
OPT𝑖

≥ 1− 𝐵
OPT𝑖

.

Here we remark that it is possible to have𝑊𝑖, 𝑗 (𝒙) > OPT𝑖, 𝑗 because bidders may overbid, and therefore win auctions/slots that they

would not have won under the efficient outcome. □

C.5 Proof of Theorem 4.3

Proof. Let 𝒃 ∈ F be any feasible bid profile, and let 𝒙 = X(𝒃) be the corresponding outcome. Also, let C𝑖 (𝒃) be the set of coverings
defined in Eq. (8), and consider any C ∈ C𝑖 (𝒙). Note that any competitor 𝑘 ∈ C must have B𝑖 (𝑘) ≠ ∅.

In Eq. (10) within the proof of Theorem 4.1, we showed loss𝑖 (𝒙) ≤ 1−𝛽
𝛼𝑖−1

∑
𝑘∈C𝑊𝑘 (𝒙), so

loss𝑖 (𝒙) ≤ 1 − 𝛽
𝛼𝑖 − 1

∑︁
𝑘∈C

𝑊𝑘 (𝒙)
(𝑎)
≤ 1 − 𝛽

𝛼𝑖 − 1

∑︁
𝑘∈[𝑁 ]/{𝑖 }:B𝑖 (𝑘 )≠∅

𝑊𝑘 (𝒙)

≤ 1 − 𝛽
𝛼𝑖 − 1

∑︁
𝑘∈[𝑁 ]/{𝑖 }:B𝑖 (𝑘 )≠∅

OPT𝑘 ,

Rearranging and applying Proposition C.1 yields the desired lower bound. □

D ADDITIONAL MATERIALS FOR SECTION 5

D.1 Additional Definitions and Lemmas for Section 5

The following lemma shows that for anonymous and truthful auctions, the probability of the lowest bidder winning a single auction is

capped by a bound that decreases as the number of bidders grow.

Lemma D.1 (Lemma 3 in [37]). In an anonymous and truthful auction for a single item with 𝑁 bidders, the bidder who submits the lowest bid

wins the item with probability at most
1

𝑁
.
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The following technical definition and lemma (i.e. Definition D.1 and Lemma D.2) concerns the scenario where only one bidder participates

in the auction (others bid 0), and present an upper bound on the probability and cost respectively for the single bidder to win the auction.

Definition D.1 (Single bidder purchase probability and bid threshold). For any allocation-anonymous and truthful auction A, consider the

setting with a single bidder who submits bid 𝑏 > 0 and define

𝜋A = lim

𝑏→∞
P(bidder wins item with bid 𝑏) , (16)

where the limit exists because in a truthful auction, P(bidder wins item with bid 𝑏) increases in 𝑏 (see Definition 2.1 for truthful auctions). Assume

this max probability is reached at some bid threshold 𝑄A , i.e.

𝑄A = min {𝑏 > 0 : P(bidder wins item with bid 𝑏) = 𝜋A } . (17)

Note that in a deterministic single-slot auction that allocates to the highest bidder, 𝜋A = 1, and 𝑄A → 0. For example, in an SPA with no

reserve, the single bidder can win the auction with any arbitrarily small positive bid with probability 1.

Lemma D.2 (Lemma 4 in [37]). For any allocation-anonymous and truthful auction A with single-bidder purchase probability 𝜋A and bid

threshold 𝑄A , the expected cost for a single bidder for winning the item is at most 𝜋A ·𝑄A .

D.2 Proof of Theorem 5.1

Theorem D.3 (Restatement of Theorem 5.1). For any auction A that is allocation-anonymous, truthful, and possibly randomized,
5

consider an autobidding problem instance w.r.t. A with𝑀 = 2𝐾 + 1 auctions and 𝑁 = 𝐾 + 1 bidders. Fix bidder 0’s bid multiplier to be 𝛼0 and

some 𝛽 ∈ [0, 1). Consider the bidder values {𝑣𝑖, 𝑗 }𝑖∈[𝑁 ], 𝑗∈[𝑀 ] given in the following table.

𝐴1 𝐴2 . . . 𝐴𝐾 𝐴𝐾+1 𝐴𝐾+2 . . . 𝐴2𝐾 𝐴2𝐾+1

𝐵1

𝛼0𝑣+𝜖
𝜌

𝛼0𝑣+2𝜖
𝜌 . . .

𝛼0𝑣+𝐾𝜖
𝜌 𝛾 0 . . . 0 0

𝐵2

𝛼0𝑣+2𝜖
𝜌

𝛼0𝑣+3𝜖
𝜌 . . .

𝛼0𝑣+𝜖
𝜌 0 𝛾 . . . 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

𝐵𝐾
𝛼0𝑣+𝐾𝜖

𝜌
𝛼0𝑣+𝜖
𝜌 . . .

𝛼0𝑣+(𝐾−1)𝜖
𝜌 0 0 . . . 𝛾 0

𝐵0 𝑣 𝑣 . . . 𝑣 0 0 . . . 0 𝑦

In the table, we let 𝛾 >
𝑄A
𝛽

> 𝑄A , 𝜖 = 𝑂 (1/𝐾3) and 𝑣 = 1−𝛽
𝛼0−1

· 𝜋A · 𝛾 . Let 𝜌,𝑦 and a large enough 𝐾 satisfy the following:

𝛼0 < 𝜌 <
𝛼0

𝛽
s.t.

𝛼0𝑣 + 𝐾𝜖
𝜌

< 𝑣, and 𝑦 > max

{
𝑄A
𝛼0

,
𝛼0𝑣

𝜋A

}
, (18)

where 𝑄A , 𝜋A are defined in Definition D.1. Further, suppose the platform enforces personalized reference prices 𝒓 ∈ R𝑁×𝑀
+ on top of auction

A, where 𝑟𝑖, 𝑗 = 𝛽𝑣𝑖, 𝑗 . Then, letting the (possibly random) outcome be 𝒙 when bidders 1, ... K all adopt the bid multiplier 𝜌 , the ROAS constraints

for all bidders are satisfied when 𝐾 → ∞ and 𝜌 → 𝛼0, and for bidder 0 we have

lim

𝐾→∞
EA [𝑊0 (𝒙)]
EA [OPT0]

≤ 1 − 1 − 𝛽
𝛼0 − 1

· lim

𝐾→∞
EA [OPT−0]
EA [OPT0]

(19)

where EA is taken w.r.t. the randomness in outcome 𝒙 due to randomness in the auction A.

5
Here, we assume all auctions of interest are individually rational (IR), i.e. the payment of a bidder is always less than her submitted bid.
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Proof. First note that bidder 0 only has competition in auctions 𝐴1 ...𝐴𝐾 , and hence can only incur a loss (that contributes to loss0 (𝒙)
defined in Equations (6)) within these auctions. Hence EA [loss0 (𝒙)] = 𝑣

∑
𝑗∈[𝐾 ] P(bidder 0 loses auction 𝑗). Then we consider the following:

EA [loss0 (𝒙)] = 𝑣
∑︁
𝑗∈[𝐾 ]

P(bidder 0 loses auction 𝑗) = 𝑣
∑︁
𝑗∈[𝐾 ]

(1 − P(bidder 0 wins auction 𝑗))

(𝑎)
≥ 𝑣 · 𝐾2

𝐾 + 1

=
1 − 𝛽
𝛼0 − 1

· 𝛾 · 𝜋A · 𝐾2

𝐾 + 1

(𝑏 )
=

1 − 𝛽
𝛼0 − 1

· EA [OPT−0] ·
𝐾

𝐾 + 1

.

(20)

Here (a) holds because bidder 0 bids 𝛼0𝑣 for any auction in 1,2...K, which is strictly less than all other bidders’ bids as they all adopt

multipliers 𝜌 in these auctions, so from Lemma D.1, we have P(bidder 0 wins auction 𝑗) ≤ 1

𝐾+1
; in (b) we used the fact that EA [OPT−0] =∑

2𝐾
𝑗=𝐾+1

EA [𝛾] = 𝛾 ·𝐾 ·𝜋A since there is only a single non-zero bidder in auctions𝐴𝐾+1 . . . 𝐴2𝐾 and each bidder submits a bid 𝜌𝛾 > 𝜌 > 𝑄A
(see Definition D.1).

Therefore we have

lim

𝐾→∞
EA [𝑊0 (𝒙)]
EA [OPT0]

(𝑎)
= 1 − lim

𝐾→∞
EA [loss0 (𝒙)]
EA [OPT0]

≤ 1 − 1 − 𝛽
𝛼0 − 1

lim

𝐾→∞
EA [OPT−0]
EA [OPT0]

, (21)

where (a) follows from the fact that in our constructed autobidding instance, bidder 0’s acquired value in each auction cannot exceed that

under the efficient allocation, and hence can only incur loss in welfare.

Now it only remains to show that the multiplies (𝛼0, 𝜌, . . . 𝜌) ∈ (1,∞)𝐾+1
yields a feasible outcome, i.e. the ROI constraints of each bidder

is satisfied in expectation. Let 𝑉𝑖, 𝑗 and 𝐶𝑖, 𝑗 be the expected value and cost of bidder 𝑖 in auction 𝐴 𝑗 , respectively.

1. Showing bidder 0’s ROI constraint is satisfied. We show by the following: bidder 0 only incurs a non-zero expected cost in auctions

𝐴1 . . . 𝐴𝐾 and 𝐴2𝐾+1, and we will show that the expected value 𝑉0,2𝐾+1 is lower bounded by the expected costs 𝐶0,2𝐾+1 +
∑
𝑗∈[𝐾 ] 𝐶0, 𝑗 .

Since 𝛼0𝑦 > 𝑄A , the definition of the single-bidder purchasing probability in Definition D.1 implies that bidder 0 acquires an expected

value from auction 𝐴2𝐾+1 of 𝑉0,2𝐾+1 = 𝜋A𝑦. Further, since bidder 0 is submits the lowest bids in auctions 𝐴1 . . . 𝐴𝐾 under bid multiplier

profile (𝛼0, 𝜌 . . . 𝜌) ∈ (0,∞)𝐾+1
, from Lemma D.1, we have P(bidder 0 wins auction 𝑗) ≤ 1

𝐾+1
for all 𝑗 ∈ [𝐾]. Since the payment of a bidder

in an auction is at most her submitted bid (as the auction is IR), we know that

∑
𝑗∈[𝐾 ] 𝐶0, 𝑗 ≤ 𝐾 · 𝛼0𝑣

𝐾+1
< 𝜋A𝑦 = 𝑉0,2𝐾+1, where the inequality

follows from the definition of 𝑦 in Equation (18) such that 𝑦 > max

{
𝑄A
𝛼0

,
𝛼0𝑣
𝜋A

}
. This implies bidder 0’s ROI constraint is satisfied.

2. Showing bidder 𝑖’s ROI constraint is satisfied for any 𝑖 = 1, 2 . . . 𝐾 . We show this by considering the following: bidder 𝑖 only incurs

a non-zero expected cost in auctions 𝐴1 . . . 𝐴𝐾 and 𝐴𝐾+𝑖 , and we will show that the expected values 𝑉𝑖,𝐾+𝑖 +
∑
𝑘∈[𝐾 ] 𝑉𝑖, 𝑗 is lower bounded

by the expected costs 𝐶𝑖,𝐾+𝑖 +
∑
𝑗∈[𝐾 ] 𝐶𝑖, 𝑗 .

• Calculate cost 𝐶𝑖,𝐾+𝑖 : For auction 𝐴𝐾+𝑖 , bidder 𝑖’s bid is 𝜌𝛾 > 𝛾 > 𝑄A from the definition of 𝛾 , so by Definition D.1, the probability

of 𝑖 winning the item in auction 𝐴𝐾+𝑖 is 𝜋A , and the expected cost is

𝐶𝑖,𝐾+𝑖 ≤ 𝜋A · max

{
𝑟𝑖,𝐾+𝑖 , 𝑄A

}
≤ 𝜋A · 𝛽𝛾 , (22)

where the final inequality follows from the definition 𝑟𝑖,𝐾+𝑖 = 𝛽𝛾
• Upper bound costs

∑
𝑗∈[𝐾 ] 𝐶𝑖, 𝑗 : For auctions [𝐾] = 1 . . . 𝐾 , bidder 𝑖’s total expected cost can be bounded as∑︁

𝑗∈[𝐾 ]
𝐶𝑖, 𝑗 ≤ 𝜌

∑︁
𝑗∈[𝐾 ]

𝑣𝑖, 𝑗P
(
bidder 𝑖 wins auction 𝐴 𝑗

)
= 𝛼0𝑣

∑︁
𝑗∈[𝐾 ]

P
(
bidder 𝑖 wins auction 𝐴 𝑗

)
+ (𝐾 + 1)𝐾

2

𝜖 .

(23)

where the first inequality follows from a bidder’s payment is at most her submitted bid since the auction is IR.

• Calculate 𝑉𝑖,𝐾+𝑖 : Considering auction 𝐴𝐾+𝑖 , bidder 𝑖 is the only bidder, and since 𝜌𝛾 > 𝛾 > 𝑄A , the definition of the single-bidder

purchasing probability in Definition D.1 implies that bidder 𝑖’s acquires an expected value from this auction of

𝑉𝑖,𝐾+𝑖 = 𝜋A · 𝛾 . (24)

• Lower bound

∑
𝑘∈[𝐾 ] 𝑉𝑖, 𝑗 :

∑︁
𝑘∈[𝐾 ]

𝑉𝑖, 𝑗 ≥
𝛼0𝑣

𝜌

∑︁
𝑗∈[𝐾 ]

P (bidder 𝑖 wins auction 𝑗) . (25)
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Combining Equations (22),(23),(24) and (25), we get∑︁
𝑗∈[𝐾 ]

𝑉𝑖, 𝑗 +𝑉𝑖,𝐾+𝑖 −
©­«
∑︁
𝑗∈[𝐾 ]

𝐶𝑖, 𝑗 +𝐶𝑖,𝐾+𝑖
ª®¬

≥ 𝜋A · 𝛾 + 𝛼0𝑣

𝜌
·
∑︁
𝑗∈[𝐾 ]

P (bidder 𝑖 wins auction 𝑗)

− ©­«𝜋A · 𝛽𝛾 + 𝛼0𝑣 ·
∑︁
𝑗∈[𝐾 ]

P (bidder 𝑖 wins auction 𝑗) + (𝐾 + 1)𝐾
2

𝜖
ª®¬

= 𝜋A · (1 − 𝛽)𝛾 −
(
𝛼0 −

𝛼0

𝜌

)
𝑣 ·

∑︁
𝑗∈[𝐾 ]

P (bidder 𝑖 wins auction 𝑗) − (𝐾 + 1)𝐾
2

𝜖

(𝑎)
= (𝛼0 − 1)𝑣 −

(
𝛼0 −

𝛼0

𝜌

)
𝑣 ·

∑︁
𝑗∈[𝐾 ]

P (bidder 𝑖 wins auction 𝑗) − (𝐾 + 1)𝐾
2

𝜖

(𝑏 )
≥ (𝛼0 − 1)𝑣 −

(
𝛼0 −

𝛼0

𝜌

)
𝑣 − (𝐾 + 1)𝐾

2

𝜖

,

(26)

where (a) follows from the definition 𝑣 =
1−𝛽
𝛼0−1

· 𝜋A · 𝛾 ; In (b) we used the fact that 𝜌 > 𝛼0 > 1 and

∑
𝑗∈[𝐾 ] P

(
bidder 𝑖 wins auction 𝐴 𝑗

)
≤ 1

due to the following: Consider the set of bid values B = {𝛼0𝑣, 𝛼0𝑣 + 𝜖, 𝛼0𝑣 + 2𝜖 . . . 𝛼0𝑣 + 𝐾𝜖} ⊆ R>0, and we recognize that any bid value

𝑏𝑘 ∈ B exceeds the maximim reserve price 𝛽𝑣 in auctions 𝐴1 ...𝐴𝐾 . Therefore the constructed reserve prices do not affect allocation, and

hence by anonymity of auction A there exists probabilities 𝒒(B) = (𝑞0 (B), 𝑞1 (B) . . . 𝑞𝐾 (B)) ∈ [0, 1]𝐾+1
where

𝑞𝑘 (B) = P(bid value 𝑏𝑘 wins auction A given competing bids 𝒃−𝑘 ) and

𝐾∑︁
𝑘=0

𝑞𝑘 (B) ≤ 1.

We recognize that in each auction 𝐴1 . . . 𝐴𝐾 , under bid multipliers (𝛼0, 𝜌, . . . 𝜌) ∈ (1,∞)𝐾+1
the submitted bid profile is a cyclic permutation

of B. Therefore we know that ∑︁
𝑗∈[𝐾 ]

P (bidder 𝑖 wins auction 𝑗) =
𝐾∑︁
𝑘=1

𝑞𝑘 (B) ≤ 1 − 𝑞0 (B) ≤ 1

Finally, by taking 𝜌 → 𝛼0 and 𝐾 → ∞ in Equation (26), and utilizing 𝜖 = 𝑂 (1/𝐾3) we have

lim

𝜌→𝛼0

lim

𝐾→∞

∑︁
𝑗∈[𝐾 ]

𝑉𝑖, 𝑗 +𝑉𝑖,𝐾+𝑖 −
©­«
∑︁
𝑗∈[𝐾 ]

𝐶𝑖, 𝑗 +𝐶𝑖,𝐾+𝑖
ª®¬ ≥ 0 .

This shows that bidder 𝑖’s ROI constraint is satisfied. □

E PROOFS FOR SECTION 6

E.1 Proof of Theorem 6.2

Proof. For convenience, define 𝛿 = 2 − 1

Δ , so Δ > 1 implies 𝛿 ∈ (1, 2), and further 1 > 𝛽 > Δ
2Δ−1

implies
1

𝛿
< 𝛽 < 1.

Fix a bidder 𝑖 ∈ [𝐾] and any feasible competing bid profile 𝒃 ∈ U. Denote the corresponding outcome as 𝒙 = X(𝒃), where 𝒙 = (𝒙1 ...𝒙𝑀 )
where 𝒙 𝑗 ∈ {0, 1}𝑁×𝐿𝑗

is the outcome vector in auction A 𝑗 . Note that by definition of U which is the set of undominated and feasible bids,

under the outcome 𝒙 all bidders’ ROAS constraints are satisfied. Denote ℓ𝑘,𝑗 , ℓ
∗
𝑘,𝑗

to be the position of bidder 𝑘 ∈ [𝑁 ] in auction 𝑗 ∈ [𝑀]
under outcome 𝒙 and the efficient outcome, respectively.

Recall in Eq.(8) the definition for the set of all “coverings” for bidder 𝑖 , denoted as C𝑖 (𝒙):

B𝑖 (𝑘 ; 𝒙) =
{
𝑗 ∈ [𝑀] : OPT𝑖, 𝑗 > 0, 𝑣𝑘,𝑗 < 𝑣𝑖, 𝑗 and ℓ𝑘,𝑗 ≤ ℓ∗𝑖, 𝑗 < ℓ𝑖, 𝑗

}
C𝑖 (𝒙) =

{
C ⊆ [𝑁 ]/{𝑖} : (B𝑖 (𝑘 ; 𝒙))𝑘∈C is a maximal set cover of L𝑖 (𝒙)

}
where L𝑖 (𝒙) = { 𝑗 ∈ [𝑀] :𝑊𝑖, 𝑗 (𝒙) < OPT𝑖, 𝑗 } is the set of auctions in which bidder 𝑖’s acquired welfare is less than that of her welfare under

the efficient outcome; see Definition C.1.

Denote 𝑝𝑘,𝑗 as the payment of any bidder 𝑘 , and ˆ𝑏ℓ, 𝑗 as the ℓth largest bid in any auction 𝑗 ∈ [𝑀]. Similar to the proof of Theorem 4.1,

fix any covering C ⊆ C𝑖 (𝒙), and any bidder 𝑘 ∈ C, such that in some auction 𝑗 ∈ B𝑖 (𝑘 ; 𝒙), we have 𝑣𝑘,𝑗 < 𝑣𝑖, 𝑗 but ℓ𝑘,𝑗 ≤ ℓ∗
𝑖, 𝑗

< ℓ𝑖, 𝑗 . Thus
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following a similar deduction as Eq. (12) in the proof of Theorem 4.1, bidder 𝑘’s payment is lower bounded as

For 𝑗 ∈ B𝑖 (𝑘 ; 𝒙), 𝑝𝑘,𝑗
(𝑎)
≥

𝐿𝑗∑︁
ℓ=ℓ𝑘,𝑗

(𝜇 (ℓ) − 𝜇 (ℓ + 1)) ˆ𝑏ℓ+1, 𝑗

=

ℓ𝑖,𝑗−1∑︁
ℓ=ℓ𝑘,𝑗

(𝜇 (ℓ) − 𝜇 (ℓ + 1)) ˆ𝑏ℓ+1, 𝑗 + 𝑝𝑖, 𝑗

(𝑏 )
≥ 𝛽

(
𝜇 (ℓ𝑘,𝑗 ) − 𝜇 (ℓ𝑖, 𝑗 )

)
𝑣𝑖, 𝑗 + 𝛽 · 𝜇 (ℓ𝑖, 𝑗 )𝑣𝑖, 𝑗

= 𝛽𝜇 (ℓ𝑘,𝑗 ) · 𝑣𝑖, 𝑗

= 𝜇 (ℓ𝑘,𝑗 )𝑣𝑖, 𝑗 +
(
𝛽 − 1

𝛿

) (
𝜇 (ℓ∗𝑖, 𝑗 ) − 𝜇 (ℓ𝑖, 𝑗 )

)
𝑣𝑖, 𝑗 − (1 − 𝛽) · 𝜇 (ℓ𝑖, 𝑗 )𝑣𝑖, 𝑗

− (1 − 𝛽)𝜇 (ℓ𝑘,𝑗 )𝑣𝑖, 𝑗 +
(

1

𝛿
− 𝛽

)
𝜇 (ℓ∗𝑖, 𝑗 )𝑣𝑖, 𝑗 +

(
1 − 1

𝛿

)
𝜇 (ℓ𝑖, 𝑗 )𝑣𝑖, 𝑗

(𝑐 )
≥ 𝜇 (ℓ𝑘,𝑗 )𝑣𝑖, 𝑗 +

(
𝛽 − 1

𝛿

) (
𝜇 (ℓ∗𝑖, 𝑗 ) − 𝜇 (ℓ𝑖, 𝑗 )

)
𝑣𝑖, 𝑗 − (1 − 𝛽) · 𝜇 (ℓ𝑖, 𝑗 )𝑣𝑖, 𝑗

−
(
1 − 1

𝛿

)
𝜇 (ℓ𝑘,𝑗 )𝑣𝑖, 𝑗 +

(
1 − 1

𝛿

)
𝜇 (ℓ𝑖, 𝑗 )𝑣𝑖, 𝑗

=

(
𝛽 − 1

𝛿

) (
𝜇 (ℓ∗𝑖, 𝑗 ) − 𝜇 (ℓ𝑖, 𝑗 )

)
𝑣𝑖, 𝑗 − (1 − 𝛽) · 𝜇 (ℓ𝑖, 𝑗 )𝑣𝑖, 𝑗

+ 1

𝛿
𝜇 (ℓ𝑘,𝑗 )𝑣𝑖, 𝑗 +

(
1 − 1

𝛿

)
𝜇 (ℓ𝑖, 𝑗 )𝑣𝑖, 𝑗

(27)

Here , (a) follows from the fact that for a fix bid profile, the payment of GSP or GFP for each bidder in an auction dominates that of VCG

(see Example B.2 and discussions thereof); (b) follows from
ˆ𝑏ℓ, 𝑗 ≥ 𝑏𝑖, 𝑗 for ℓ ≤ ℓ𝑖, 𝑗 , and since 𝒃 ∈ U ⊆ R𝑁×𝑀

+ is an undominated bid profile,

Lemma 6.1 applies and 𝑏𝑖, 𝑗 ≥ 𝛽𝑣𝑖, 𝑗 . Also 𝑝𝑖, 𝑗 ≥ 𝑟𝑖, 𝑗 ≥ 𝛽𝑣𝑖, 𝑗 be the definition of 𝛽-approximate reserves; (c) follows from the fact that 𝛽 > 1

𝛿
and 𝜇 (ℓ∗

𝑖, 𝑗
) ≤ 𝜇 (ℓ𝑘,𝑗 ) since ℓ𝑘,𝑗 ≤ ℓ∗

𝑖, 𝑗
for any 𝑘 ∈ C ⊆ C𝑖 (𝒙) and 𝑗 ∈ B𝑖 (𝑘 ; 𝒙); see definition in Eq. (8).

On the other hand, we have ∑︁
𝑗∈B𝑖 (𝑘 ;𝒙 )

𝑝𝑘,𝑗 +
∑︁

𝑗∉B𝑖 (𝑘 ;𝒙 )
𝑝𝑘,𝑗 ≤

∑︁
𝑗∈B𝑖 (𝑘 ;𝒙 )

𝜇 (ℓ𝑘,𝑗 )𝑣𝑘,𝑗 +
∑︁

𝑗∉B𝑖 (𝑘 ;𝒙 )
𝜇 (ℓ𝑘,𝑗 )𝑣𝑘,𝑗

𝑝𝑘,𝑗 ≥ 𝛽 · 𝜇 (ℓ𝑘,𝑗 )𝑣𝑘,𝑗 ∀𝑗 ∈ [𝑀] ,

where the first inequality follows from bidder 𝑘’s ROAS constraint; the second inequality follows from the fact that any winning bidder’s

payment must be greater than her 𝛽-approximate reserves.

Combining the above inequalities and rearranging we get∑︁
𝑗∈B𝑖 (𝑘 ;𝒙 )

𝑝𝑘,𝑗 ≤
∑︁

𝑗∈B𝑖 (𝑘 ;𝒙 )
𝜇 (ℓ𝑘,𝑗 )𝑣𝑘,𝑗 + (1 − 𝛽) ·

∑︁
𝑗∉B𝑖 (𝑘 ;𝒙 )

𝜇 (ℓ𝑘,𝑗 )𝑣𝑘,𝑗 , (28)

Summing Eq.(27) over all 𝑗 ∈ B𝑖 (𝑘 ; 𝒙) and combining with Eq. (28), we get(
𝛽 − 1

𝛿

)
·

∑︁
𝑗∈B𝑖 (𝑘 ;𝒙 )

(
𝜇 (ℓ∗𝑖, 𝑗 ) − 𝜇 (ℓ𝑖, 𝑗 )

)
𝑣𝑖, 𝑗

≤ (1 − 𝛽) · ©­«
∑︁

𝑗∈B𝑖 (𝑘 ;𝒙 )
𝜇 (ℓ𝑖, 𝑗 )𝑣𝑖, 𝑗 +

∑︁
𝑗∉B𝑖 (𝑘 ;𝒙 )

𝜇 (ℓ𝑘,𝑗 )𝑣𝑘,𝑗
ª®¬

+
∑︁

𝑗∈B𝑖 (𝑘 ;𝒙 )
𝜇 (ℓ𝑘,𝑗 )𝑣𝑘,𝑗 −

1

𝛿

∑︁
𝑗∈B𝑖 (𝑘 ;𝒙 )

𝜇 (ℓ𝑘,𝑗 )𝑣𝑖, 𝑗 −
(
1 − 1

𝛿

) ∑︁
𝑗∈B𝑖 (𝑘 ;𝒙 )

𝜇 (ℓ𝑖, 𝑗 )𝑣𝑖, 𝑗︸                                                                                                ︷︷                                                                                                ︸
𝑌

.

(29)
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We now upper bound 𝑌 :

∑︁
𝑗∈B𝑖 (𝑘 ;𝒙 )

𝜇 (ℓ𝑘,𝑗 )𝑣𝑘,𝑗 −
1

𝛿

∑︁
𝑗∈B𝑖 (𝑘 ;𝒙 )

𝜇 (ℓ𝑘,𝑗 )𝑣𝑖, 𝑗 −
(
1 − 1

𝛿

) ∑︁
𝑗∈B𝑖 (𝑘 ;𝒙 )

𝜇 (ℓ𝑖, 𝑗 )𝑣𝑖, 𝑗

=

(
1 − 1

𝛿

) ∑︁
𝑗∈B𝑖 (𝑘 ;𝒙 )

𝜇 (ℓ𝑘,𝑗 )𝑣𝑘,𝑗 −
1

𝛿

∑︁
𝑗∈B𝑖 (𝑘 ;𝒙 )

𝜇 (ℓ𝑘,𝑗 )
(
𝑣𝑖, 𝑗 − 𝑣𝑘,𝑗

)
−
(
1 − 1

𝛿

) ∑︁
𝑗∈B𝑖 (𝑘 ;𝒙 )

𝜇 (ℓ𝑖, 𝑗 )𝑣𝑖, 𝑗

=

(
1 − 1

𝛿

) ∑︁
𝑗∈B𝑖 (𝑘 ;𝒙 )

𝜇 (ℓ𝑘,𝑗 )
(
𝑣𝑘,𝑗 − 𝑣𝑖, 𝑗

)
− 1

𝛿

∑︁
𝑗∈B𝑖 (𝑘 ;𝒙 )

𝜇 (ℓ𝑘,𝑗 )
(
𝑣𝑖, 𝑗 − 𝑣𝑘,𝑗

)
+
(
1 − 1

𝛿

) ∑︁
𝑗∈B𝑖 (𝑘 ;𝒙 )

(
𝜇 (ℓ𝑘,𝑗 ) − 𝜇 (ℓ𝑖, 𝑗 )

)
𝑣𝑖, 𝑗

=

(
1 − 1

𝛿

) ∑︁
𝑗∈B𝑖 (𝑘 ;𝒙 )

𝜇 (ℓ𝑘,𝑗 )
(
𝑣𝑘,𝑗 − 𝑣𝑖, 𝑗

)
+

∑︁
𝑗∈B𝑖 (𝑘 ;𝒙 )

𝜇 (ℓ𝑘,𝑗 )𝑣𝑖, 𝑗
𝛿

(
(𝛿 − 1)

(
1 −

𝜇 (ℓ𝑖, 𝑗 )
𝜇 (ℓ𝑘,𝑗 )

)
−
(
1 −

𝑣𝑘,𝑗

𝑣𝑖, 𝑗

))
(𝑎)
≤

(
1 − 1

𝛿

) ∑︁
𝑗∈B𝑖 (𝑘 ;𝒙 )

𝜇 (ℓ𝑘,𝑗 )
(
𝑣𝑘,𝑗 − 𝑣𝑖, 𝑗

)
+

∑︁
𝑗∈B𝑖 (𝑘 ;𝒙 )

𝜇 (ℓ𝑘,𝑗 )𝑣𝑖, 𝑗
𝛿

(
(𝛿 − 1) −

(
1 −

𝑣𝑘,𝑗

𝑣𝑖, 𝑗

))
=

(
1 − 1

𝛿

) ∑︁
𝑗∈B𝑖 (𝑘 ;𝒙 )

𝜇 (ℓ𝑘,𝑗 )
(
𝑣𝑘,𝑗 − 𝑣𝑖, 𝑗

)
+

∑︁
𝑗∈B𝑖 (𝑘 ;𝒙 )

𝜇 (ℓ𝑘,𝑗 )𝑣𝑖, 𝑗
𝛿

(
(𝛿 − 2) +

𝑣𝑘,𝑗

𝑣𝑖, 𝑗

)
(𝑏 )
≤

(
1 − 1

𝛿

) ∑︁
𝑗∈B𝑖 (𝑘 ;𝒙 )

𝜇 (ℓ𝑘,𝑗 )
(
𝑣𝑘,𝑗 − 𝑣𝑖, 𝑗

)
(𝑐 )
≤ (1 − 𝛽)

∑︁
𝑗∈B𝑖 (𝑘 ;𝒙 )

𝜇 (ℓ𝑘,𝑗 )
(
𝑣𝑘,𝑗 − 𝑣𝑖, 𝑗

)
.

(30)

where in (a) we recall 𝛿 > 1 and ℓ𝑘,𝑗 < ℓ𝑖, 𝑗 for any 𝑘 ∈ C and 𝑗 ∈ B𝑖 (𝑘 ; 𝒙) so that 𝜇 (ℓ𝑘,𝑗 ) > 𝜇 (ℓ𝑖, 𝑗 ); (b) follows from the fact that values are

𝛿-separated, so 𝑣𝑖, 𝑗 > 𝑣𝑘,𝑗 for 𝑘 ∈ C and 𝑗 ∈ B𝑖 (𝑘 ; 𝒙) implies

𝑣𝑘,𝑗
𝑣𝑖,𝑗

≤ 1

Δ = 2 − 𝛿 ; in (c) we used the fact that 𝛽 > 1

𝛿
so 1 − 𝛽 < 1 − 1

𝛿
, and the

fact that 𝑣𝑘,𝑗 < 𝑣𝑖, 𝑗 for any 𝑘 ∈ C and 𝑗 ∈ B𝑖 (𝑘 ; 𝒙).
Combining Equations (29) and (30) we get

(
𝛽 − 1

𝛿

)
·

∑︁
𝑗∈B𝑖 (𝑘 ;𝒙 )

(
𝜇 (ℓ∗𝑖, 𝑗 ) − 𝜇 (ℓ𝑖, 𝑗 )

)
𝑣𝑖, 𝑗

≤ (1 − 𝛽) · ©­«
∑︁

𝑗∈B𝑖 (𝑘 ;𝒙 )
𝜇 (ℓ𝑖, 𝑗 )𝑣𝑖, 𝑗 +

∑︁
𝑗∉B𝑖 (𝑘 ;𝒙 )

𝜇 (ℓ𝑘,𝑗 )𝑣𝑘,𝑗 +
∑︁

𝑗∈B𝑖 (𝑘 ;𝒙 )
𝜇 (ℓ𝑘,𝑗 )

(
𝑣𝑘,𝑗 − 𝑣𝑖, 𝑗

)ª®¬
= (1 − 𝛽) · ©­«

∑︁
𝑗∈B𝑖 (𝑘 ;𝒙 )

𝜇 (ℓ𝑖, 𝑗 )𝑣𝑖, 𝑗 +
∑︁
𝑗∈[𝑀 ]

𝜇 (ℓ𝑘,𝑗 )𝑣𝑘,𝑗 −
∑︁

𝑗∈B𝑖 (𝑘 ;𝒙 )
𝜇 (ℓ𝑘,𝑗 )𝑣𝑖, 𝑗

ª®¬
(𝑎)
≤ (1 − 𝛽) · ©­«

∑︁
𝑗∈B𝑖 (𝑘 ;𝒙 )

𝜇 (ℓ𝑖, 𝑗 )𝑣𝑖, 𝑗 +
∑︁
𝑗∈[𝑀 ]

𝜇 (ℓ𝑘,𝑗 )𝑣𝑘,𝑗 −
∑︁

𝑗∈B𝑖 (𝑘 ;𝒙 )
𝜇 (ℓ∗𝑖, 𝑗 )𝑣𝑖, 𝑗

ª®¬ .
=⇒

∑︁
𝑗∈B𝑖 (𝑘 ;𝒙 )

(
𝜇 (ℓ∗𝑖, 𝑗 ) − 𝜇 (ℓ𝑖, 𝑗 )

)
𝑣𝑖, 𝑗 ≤ 1 − 𝛽

1 − 1

𝛿

∑︁
𝑗∈[𝑀 ]

𝜇 (ℓ𝑘,𝑗 )𝑣𝑘,𝑗

(31)

where (a) follows from 𝜇 (ℓ∗
𝑖, 𝑗
) ≤ 𝜇 (ℓ𝑘,𝑗 ) due to the fact that ℓ𝑘,𝑗 < ℓ𝑖, 𝑗 for any 𝑘 ∈ C and 𝑗 ∈ B𝑖 (𝑘 ; 𝒙).

Summing the above over all 𝑘 ∈ C, and following the same arguments as in Eq.(10) of the proof of Theorem 4.1, we have
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loss𝑖 (𝒙) =
∑︁

𝑗∈L𝑖 (𝒙 )

(
𝜇 (ℓ∗𝑖, 𝑗 ) − 𝜇 (ℓ𝑖, 𝑗 )

)
𝑣𝑖, 𝑗

≤
∑︁
𝑘∈C

∑︁
𝑗∈B𝑖 (𝑘 ;𝒙 )

(
𝜇 (ℓ∗𝑖, 𝑗 ) − 𝜇 (ℓ𝑖, 𝑗 )

)
𝑣𝑖, 𝑗

≤ 1 − 𝛽
1 − 1

𝛿

∑︁
𝑘∈C

∑︁
𝑗∈[𝑀 ]

𝜇 (ℓ𝑘,𝑗 )𝑣𝑘,𝑗

=
1 − 𝛽
1 − 1

𝛿

∑︁
𝑘∈C

𝑊𝑘 (𝒙)

≤ 1 − 𝛽
1 − 1

𝛿

𝑊−𝑖 (𝒙)

≤ 1 − 𝛽
1 − 1

𝛿

(OPT−𝑖 + loss𝑖 (𝒙)) .

(32)

Rearranging we get loss𝑖 (𝒙) ≤ 1−𝛽
𝛽− 1

𝛿

OPT−𝑖 =
1−𝛽

𝛽− Δ
2Δ−1

OPT−𝑖 . Finally, applying Proposition C.1 w.r.t. upper bound of loss𝑖 (𝒙) and using the

fact that the competing bid profile is arbitrary, we obtain the desired welfare guarantee lower bound. □

F ADDITIONAL MATERIALS FOR SECTION 7

F.1 Calculating uniform bid multipliers.

Here we describe the procedure to generate bid multipliers for bidders in two scenarios, one with reserve prices set with ML advice we

generated earlier, and the other without reserve price which we call the “control experiment” (for consistency we let 𝛽 = 0 correspond to

this no-reserve price setup). We first describe the procedure to generate bid multipliers for the scenario with reserve prices. In particular,

we calculate each advertiser’s uniform bid multiplier using gradient descent to emulate uniform bidding practices in reality, because

descent/primal-dual methods have been widely adopted for real world autobidding and has proven to have near-optimal convergence and

performance guarantees (see e.g. [1, 4, 39]. Formally, for each accuracy level 𝛽 ∈ {0.25, 0.5, 0.75}, we run 2𝑇 rounds of gradient descent,

where in each round we keep the auction environment, including advertiser values, number of slots and CTRs the same as those we derived

from the aforementioned semi-synthetic data.

The first 𝑇 rounds are dedicated to “warm start” our treatments for reserve prices with different accuracy level: we simulate VCG

auctions without reserves until all bidders’ uniform bid multipliers convergence. In particular, with an initial uniform bid multiplier 𝛼𝑖,1
for bidder 𝑖 , for each round 𝑡 ∈ [𝑇 ], set advertiser 𝑖’s bid multiplier to be 𝛼𝑖,𝑡 , and run𝑀 VCG auctions without reserves, where values are

𝒗 = (𝑣𝑖, 𝑗 )𝑖∈[𝑁 ], 𝑗∈[𝑀 ] , ad slot numbers are (𝐿𝑗 ) 𝑗∈[𝑀 ] and corresponding CTRs are (𝝁 𝑗 ) 𝑗∈[𝑀 ] . For round 𝑡 ∈ [𝑇 ], denoting𝑤𝑖,𝑡 and 𝑝𝑖,𝑡 as
the total realized welfare and payment for bidder 𝑖 across all 𝑀 auctions, we update the uniform bid multiplier with gradient descent in the

log-space (note that a similar approach has been used in [3, 16])

log𝛼𝑖,𝑡+1 = (1 − 𝜂𝑡 ) log𝛼𝑖,𝑡 + 𝜂𝑡 log(𝑤𝑖,𝑡/𝑝𝑖,𝑡 ) . (33)

Here 𝜂𝑡 are properly chosen step-sizes that ensure convergence within 𝑇 rounds. Intuitively, when𝑤𝑖,𝑡 > 𝑝𝑖,𝑡 , the per-round ROAS balance

for bidder 𝑖 is positive, so in the next round the bidder would have leeway to bid more aggressively with larger bid multipliers to acquire

more welfare. We take the bid-multiplier value 𝛼𝑖,𝑇+1 for 𝛽 ∈ {0, 0.25, 0.5, 0.75} to be our initial uniform bid multipliers for treatments of VCG

auctions with personalized reserves. For the next 𝑇 rounds, we repeat the above procedure for running VCG auctions, but with personalized

reserve prices 𝑟𝑖, 𝑗 = 𝑣
𝛽

𝑖,𝑗
for treatment trials corresponding to 𝛽 ∈ {0.25, 0.5, 0.75}, respectively, where we compute (𝛼𝛽

𝑖,𝑡
)𝑖∈[𝑁 ],𝑡=𝑇+1...2𝑇

according to Eq. (33). Finally, we arrive at our bid multipliers 𝛼
𝛽

𝑖
:= 𝛼

𝛽

𝑖,2𝑇
.

We repeat the above procedure for our control experiment with no reserve price, and again arrive at bid multipliers 𝛼
𝛽

𝑖
:= 𝛼

𝛽

𝑖,2𝑇
for 𝛽 = 0.


	Abstract
	1 Introduction
	1.1 Related works

	2 Preliminaries
	2.1 Preliminaries for a single position auction
	2.2 Autobidders' objectives and uniform bidding strategies
	2.3 Efficient auction outcomes and individual welfare guarantees

	3 ML advice for bidder values as personalized reserve prices
	3.1 Motivating example
	3.2 Personalized reserve prices using ML advice

	4 Individual welfare guarantees for VCG with ML advice
	4.1 A tighter individual welfare guarantee

	5 VCG yields best guarantee in broad class of auctions
	6 Extension: Individual welfare guarantees for GSP and GFP
	7 Numerical study
	References
	A Extended Literature Review
	B Additional materials for Section 2
	C Additional materials for Section 4
	C.1 Proof for Theorem 4.1
	C.2 Applicability of the individual welfare guarantee when all bidders bid uniformly
	C.3 Proof for Theorem 4.2
	C.4 Proof of Proposition C.1
	C.5 Proof of Theorem 4.3

	D Additional materials for Section 5
	D.1 Additional Definitions and Lemmas for Section 5
	D.2 Proof of Theorem 5.1

	E Proofs for Section 6
	E.1 Proof of Theorem 6.2

	F Additional materials for Section 7
	F.1 Calculating uniform bid multipliers.


