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Abstract
Markov Decision Problems, MDPs offer an effective mech-
anism for planning under uncertainty. However, due to un-
avoidable uncertainty over models, it is difficult to obtain an
exact specification of an MDP. We are interested in solving
MDPs, where transition and reward functions are not exactly
specified. Existing research has primarily focussed on com-
puting infinite horizon stationary policies when optimizing
robustness, regret and percentile based objectives. We focus
specifically on finite horizon problems with a special empha-
sis on objectives that are separable over individual instanti-
ations of model uncertainty (i.e., objectives that can be ex-
pressed as a sum over instantiations of model uncertainty):
(a) First, we identify two separable objectives for uncertain
MDPs: Average Value Maximization (AVM) and Confidence
Probability Maximisation (CPM).
(b) Second, we provide optimization based solutions to com-
pute policies for uncertain MDPs with such objectives. In par-
ticular, we exploit the separability of AVM and CPM objec-
tives by employing Lagrangian dual decomposition (LDD).
(c) Finally, we demonstrate the utility of the LDD approach
on a benchmark problem from the literature.

1 Introduction
For a multitude of reasons, ranging from dynamic environ-
ments to conflicting elicitations from experts, from insuf-
ficient data to aggregation of states in exponentially large
problems, researchers have previously highlighted the dif-
ficulty in exactly specifying reward and transition mod-
els in Markov Decision Problems. Motivated by this dif-
ficulty, there have been a wide variety of models, objec-
tives and algorithms presented in the literature: namely
Markov Decision Processes (MDPs) with Imprecise Tran-
sition Probabilities (White and Eldeib 1994), Bounded pa-
rameter MDPs (Givan, Leach, and Dean 2000), robust-
MDPs (Nilim and Ghaoui 2005; Iyengar 2004), reward un-
certain MDPs (Regan and Boutilier 2009; Xu and Mannor
2009), uncertain MDPs (Bagnell, Ng, and Schneider 2001;
Trevizan, Cozman, and de Barros 2007; Ahmed et al. 2013)
etc. We broadly refer to all the above models as uncertain
MDPs in the introduction.

Existing research can be divided into multiple threads
based on the objectives employed. The first thread (Givan,
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Leach, and Dean 2000; Nilim and Ghaoui 2005; Iyengar
2004) has predominantly focussed on the maximin objec-
tive, i.e., compute the policy which maximizes the minimum
value across all instantiations of uncertainty. Such an objec-
tive yields conservative policies (Delage and Mannor 2010),
as it is primarily assumes that worst case can be terminal.
The second thread (Trevizan, Cozman, and de Barros 2007;
Regan and Boutilier 2009; Xu and Mannor 2009; Ahmed
et al. 2013) focusses on the minimax objective, i.e., com-
pute the policy that minimizes the maximum regret (differ-
ence from optimal for that instantiation) over all instanti-
ations of uncertainty. Regret objective addresses the issue
of conservative policies and can be considered as an alter-
nate definition of robustness. However, it is either applicable
for only reward uncertain MDPs (Regan and Boutilier 2009;
Xu and Mannor 2009) or is limited in applicability to small
problems in the general case of reward and transition uncer-
tain MDPs (Ahmed et al. 2013).

The third thread of research (Chen and Bowling 2012;
Delage and Mannor 2010) has focussed on percentile mea-
sures that are based on the notions of value at risk and con-
ditional value at risk. Informally, percentile measures are
viewed as softer notions of robustness where the goal is to
maximize the value achieved for a fixed confidence proba-
bility. On the contrary, the CPM objective introduced in this
work maximises the confidence probability for achieving a
fixed percentage of optimal. Informally, CPM can be viewed
as a softer notion of regret as percentile measures are viewed
as softer notions of robustness.

Finally, focussing on maximizing expected reward objec-
tive, the fourth thread of research (Strens 2010; Poupart et
al. 2006; Wang et al. 2012) has focussed on Bayesian Rein-
forcement Learning. The second objective of interest in this
paper is similar to expected reward maximisation and the re-
search presented here is complementary and can potentially
be used to improve scalability of Bayesian RL while provid-
ing quality bounds. Unlike the focus on history dependent
stationary (infinite horizon) policies in Bayesian RL, we fo-
cus on Markovian non-stationary policies for finite horizon
decision making.

Similar to other existing representations for uncertain
MDPs, we specify the uncertain transition and reward mod-
els as sets of possible instantiations of the transition and re-
ward models. There are two key advantages to using such



a model over other representations: (a) First, since there are
no assumptions made on the uncertainty sets (e.g., imposing
continuous intervals or convex uncertainty sets) and since
we only require a simulator, such a model is general; and
(b) We can represent dependence in probability distributions
of uncertainty across time steps and states. This dependence
is important for characterizing many important applications.
For instance, in disaster rescue, if a part of the building
breaks, then the parts of the building next to it also have a
higher risk of falling. Capturing such dependencies of tran-
sitions or rewards across states has received scant attention
in the literature.

Our contribution is a general decomposition approach
based on Lagrangian dual decomposition to exploit separa-
ble structure present in certain optimization objectives for
uncertain MDPs. An advantage of our approach is the pres-
ence of posterior quality guarantees. Finally, we provide ex-
perimental results on a disaster rescue problem from the lit-
erature to demonstrate the utility of our approach with re-
spect to both solution quality and run-time in comparison
with benchmark approaches.

2 Model: Uncertain MDPs
We now provide the formal definition for uncertain MDP.
A sample is used to represent an MDP that is obtained by
taking an instantiation from the uncertainty distribution over
transition and reward models in an uncertain MDP. Since
we consider multiple objectives, we exclude objective in the
definition of an uncertain MDP and then describe the vari-
ous objectives separately. An uncertain MDP (Ahmed et al.
2013) captures uncertainty over the transition and reward
models in an MDP. A finite horizon uncertain MDP is de-
fined as the tuple: 〈S,A, ξ,Q,H〉. S denotes the set of states
and A denotes the set of actions. ξ denotes the set of tran-
sition and reward models with Q (finite) elements. A sam-
ple ξq in this set is given by ξq = 〈Tq,Rq〉, where Tq and
Rq denote transition and reward functions for that sample.
T tq (s, a, s′) represents the probability of transitioning from
state s ∈ S to state s′ ∈ S on taking action a ∈ A at time
step t according to the qth sample in ξ. Similarly, Rtq(s, a)
represents the reward obtained on taking action a in state s
at time t according to qth sample in ξ. Finally, H is the time
horizon.

We do not assume the knowledge of the distribution over
the elements in sets {Tq}q≤Q or {Rq}q≤Q. Also, an uncer-
tain MDP captures the general case where uncertainty dis-
tribution across states and across time steps are dependent
on each other. This is possible because each of our samples
is a transition and reward function, each of which is defined
over the entire time horizon.

We consider two key objectives1:
• In AVM, we compute a policy, ~π0 that maximizes the av-

erage of expected values, vq(~π0) across all the samples,

1Depending on the objective, the optimal policy for an uncertain
MDP with dependent uncertainty can potentially be history depen-
dent. We only focus on computing the traditional reactive Marko-
vian policies (where action or distribution over actions is associated
with a state).

ξ of transition and reward models:

max
~π0

1

Q

∑
q

vq(~π
0)

• In CPM, we compute a policy, ~π0 that maximizes the
probability over all samples, ξ, Pξ() that the value,
vq(~π

0) obtained is at least β% of the optimal value, v̂∗q
for that same sample:

max
~π0

Pξ
(
vq(~π

0) ≥ β

100
v̂∗q

)
(1)

The sample set, ξ based representation for uncertain tran-
sition and reward functions is general and can be generated
from other representations of uncertainty such as bounded
intervals. It should be noted that our policy computation can
just focus on a limited number of samples and using princi-
ples of Sample Average Approximation (Ahmed et al. 2013)
we can find empirical guarantees on solution quality for a
larger set of samples. The limited number of samples can be
obtained using sample selection heuristics, such as greedy
or maximum entropy (Ahmed et al. 2013).

3 Solving Uncertain MDPs with Separable
Objectives

We first provide the notation in Table 1. Our approach to

Symbol Description
~π0 Policy for all time steps, given by〈

π0, . . . , πt, . . . , πH−1
〉

xtq(s, a) Number of times action a is executed in state s at
time step t according to the sample ξq for ~π0

πtq(s, a) Probability of taking action a in state s at
time t according to policy ~π0 for sample ξq

δ(s) Starting probability for the state s
ξq Sample q that is equal to 〈Tq,Rq〉

Table 1: Notation

solving Uncertain MDPs with separable objectives is to em-
ploy optimization based techniques. Initially, we provide a
general optimization formulation for a separable objective
Uncertain MDP and then provide examples of objectives for
Uncertain MDPs that have that structure in their optimiza-
tion problems. Formally, the separable structure in the op-
timization problem solving an Uncertain MDP is given in
SOLVEUNCMDP-SEPSTRUCTURE() of Table 2.

Intuitively, separability is present in the objective (sum of
functions defined over individual samples) as well as in a
subset of the constraints. w denotes the set of variables over

1

Q
max

w

∑
q

fq(w) s.t. (2)

Cq(wq) ≤ 0 (3)
J1,...,q,...,Q(w) ≤ 0 (4)

Table 2: SOLVEUNCMDP-SEPSTRUCTURE()



1

Q
max
x

∑
q

[∑
t,s,a

Rtq(s, a) · xtq(s, a)

]
s.t. (5)

∑
a

x0q(s, a) = δ(s), ∀q, s (6)∑
a

xt+1
q (s, a)−∑

s′,a

T t+1
q (s′, a, s) · xtq(s′, a) = 0, ∀q, t, s (7)

πtq(s, a) =
xtq(s, a)∑
a′ x

t
q(s, a′)

, ∀q, t, s, a (8)

πtq(s, a)− κt(s, a) = 0, ∀q, t, s, a. (9)

Table 3: SOLVEUNCMDP-AVM()

which maximization is performed and we assume that the
function fq(w) is convex. Cq refers to the constraints asso-
ciated with an individual sample, q. J1,...,q,...,Q refers to the
joint (or complicating) constraints that span multiple sam-
ples. We provide two objectives, which have this structure
(of Table 2) in their optimization problem.

3.1 Average Value Maximization (AVM)
In AVM, we compute a single policy ~π0 that maximizes the
total average value over the sample set ξ. Extending on the
dual formulation for solving MDPs, we provide the formu-
lation in SOLVEUNCMDP-AVM() (Table 3) for solving un-
certain MDPs.

Intuitively, we compute a single policy, ~π0, for all sam-
ples, such that the flow, x corresponding to that policy satis-
fies flow preservation constraints (flow into a state = flow
out of a state) for each of the samples, q. In optimiza-
tion problem of SOLVEUNCMDP-AVM(), constraints (6)-
(7) describe the conservation of flow for the MDP associ-
ated with each sample q of transition and reward functions.
Constraints (8) compute the policy from the flow variables,
x and constraints (9) ensure that the policies are the same
for all the sample MDPs. κ is a free variable that is em-
ployed to ensure that policies over all the sample MDPs re-
mains the same. Due to the presence of constraints (8), it
should be noted that this optimization problem is challeng-
ing to solve. Figures 1(b)-(c) in experimental results demon-
strate the challenging nature of this optimization problem
with run-time increasing exponentially over increased scale
of the problem.

In the optimization model provided in SOLVEUNCMDP-
AVM, if the constraints (9) are relaxed, the resulting model
can be decomposed into Q deterministic MDPs, each of
which can be solved very efficiently. Therefore, we pur-
sue a Lagrangian dual decomposition approach (Boyd et al.
2007),(Komodakis, Paragios, and Tziritas 2007),(Furmston
and Barber 2011) to solve the uncertain MDP. We have the
following steps in this decomposition approach2:
– We first compute the Lagrangian dual decomposition

2We refer the readers to (Boyd and Vandenberghe 2009) for a
detailed discussion of the method

(LDD) corresponding to the model in SOLVEUNCMDP-
AVM(), by dualizing the combination of constraints (9) and
(8).
– We then employ a projected sub-gradient descent algo-
rithm to update prices based on the solutions computed from
the different sub-problems.

Dual Decomposition for AVM We start with computing
the Lagrangian by first substituting (8) into (9):

xtq(s, a)− κt(s, a)
∑
a′

xtq(s, a
′) = 0 ∀q, t, s, a. (10)

Constraints (10) are valid as
∑
a′ x

t
q(s, a

′) = 0 implies that
state s is an absorbing state and typically, not all states are
absorbing . We replace (8)-(9) with (10) and dualize these
constraints. Lagrangian dual is then provided as follows:

L(x,κ,λ) =
∑
q,t,s,a

Rtq(s, a) · xtq(s, a)+

∑
q,t,s,a

λtq(s, a)

(
xtq(s, a)− κt(s, a)

∑
a′

xtq(s, a
′)

)
where λ is the dual vector associated with constraints (10).
Denote by C the feasible set for vector x, described by con-
straints (6)-(7). A solution with respect to a given vector λ
is determined by:

G(λ) = max
(x)∈C,κ

L(x,κ,λ)

= max
(x)∈C,κ

( ∑
q,t,s,a

Rtq(s, a) · xtq(s, a)+

∑
q,t,s,a

λtq(s, a)
(
xtq(s, a)− κt(s, a)

∑
a′

xtq(s, a
′)
))

Since κ only impacts the second part of the expression, we can
equivalently rewrite as follows:

= max
(x)∈C,κ

( ∑
q,t,s,a

R̂tq(s, a, λ) · xtq(s, a)+

max
κ

[
−
∑
t,s,a

κt(s, a)
∑
q

(
λtq(s, a) ·

∑
a′

xtq(s, a
′)
)])

where R̂tq(s, a, λ) = Rtq(s, a) + λtq(s, a). Since κ ∈ R, the
second component above can be set to -∞ making the op-
timization unbounded. Hence, the equivalent bounded opti-
mization is:

max
(x)∈C

∑
q,t,s,a

R̂tq(s, a, λ) · xtq(s, a)

s.t.
∑
q

(
λtq(s, a) ·

∑
a′

xtq(s, a
′)

)
= 0, ∀t, s, a. (11)

If constraints in (11) are relaxed, the resulting problem,
denoted by SP(λ), is separable, i.e.,

SP(λ) =
∑
q

SPq(λq) =
∑
q

max
(xq)∈Cq

∑
t,s,a

R̂tq(s, a, λ) ·xtq(s, a)



Each subproblem SPq(λq) is in fact a deterministic MDP
with modified reward function R̂. Denote by σ(x) the set
of feasible vector λ defined by constraints in (11) associated
with x, and x∗ an optimal vector x. An optimal objective
value V∗ can be expressed as:

V∗ = min
λ∈σ(x∗)

∑
q

Gq(λq) ≤ min
λ∈σ(x)

∑
q

Gq(λq). (12)

We must obtain λ ∈ σ(x) to find a valid upper bound.
This is enforced by projecting vector λ to a feasible space
σ(x) and this method is the projected subgradient method
(Boyd et al. 2007).

Lagrangian Subgradient Descent In this step, we em-
ploy projected sub gradient descent to alter prices, λ at the
master. The updated prices are used at the slaves to com-
pute new flow values, x, which are then used at the next
iteration to compute prices at the master. The price vari-
ables and the flow variables are used to compute the up-
per and lower bounds for the problem. Let x̄tq(s, a) denote
the solution value obtained by solving the subproblems and

π̄tq(s, a) =
x̄t
q(s,a)∑

a′ x̄
t
q(s,a) . We also use V(~π0) (=

∑
q Vq(~π0))

to represent the objective value of the model (5)-(9) asso-
ciated with a single policy ~π0 imposed across all the sam-
ples. An index k in brackets is used to represent the iteration
counter. The projected sub-gradient descent algorithm is de-
scribed as follows:
(1) Initialize λ(k=0) ← 0, UB(0) ←∞, LB(0) ← −∞
(2) Solve the subproblems SPq(λq),∀q and obtain the solu-
tion vector x̄(k)

q ,∀q. Solution vector is then used to compute
the policy corresponding to each sample q, ~̄π0

q ,∀q.
(3) Set

UB(k+1) ← min
{
UB(k), G(λ(k))

}
; (13)

LB(k+1) ← max

LB(k),max
q

∑
q′

Vq′(~̄π0
q)

 (14)

λ(k+1) ← projσ(x̄(k))

(
λ(k) − α(k) · ∂G′(λ(k))

)
(4) If any of the following criterion are satisfied, then stop:
UB(k) − LB(k) ≤ ε or k = MAX ITERS or
UB - LB remains constant for a fixed number of iterations,
say GAP CONST ITERS.
Otherwise set k ← k + 1 and go to 2.

Upper bound, UB(k+1) represents the dual solution cor-
responding to the given prices and hence is an upper bound
as indicated in Equation (12). Lower bound, LB(k+1) rep-
resents the best feasible (primal) solution found so far. To
retrieve a primal solution corresponding to the obtained dual
solution, we consider the policy (of the ones obtained for
each of the samples) that yields the highest average value
over all samples. Equation 14 sets the LB to the best known
primal solution.

In step 3, we compute the new lagrangian multipliers
λ (Boyd et al. 2007; Furmston and Barber 2011):

λ̃t,(k+1)
q (s, a) = λt,(k)

q (s, a)− α(k)π̄tq(s, a),∀q, t, s, a

Denote by z̄tq(s) =
∑
a x̄

t
q(s, a). We project this value to the

feasible set ×(x̄(k)) by computing:

λt,(k+1)
q (s, a) = λ̃t,(k+1)

q (s, a)−∑
q′≤Q

(
z̄tq′(s)∑

q′′≤Q z̄
t
q′′(s)

λ̃
t,(k+1)
q′ (s, a)

)
,∀q, t, s, a (15)

which ensure that constraints (11) are satisfied. The stepsize
value is computed as:

α(k) =
maxq,t,s,a,

{
Rtq(s, a)

}
k

Proposition 1 Price projection rule in Equation (15) en-
sures that constraint in (11) is satisfied.

Proof Sketch3 If the given lambda values do not satisfy the
constraint in (11), then, we can subtract the weighted aver-
age from each of the prices to satisfy the constraint. �

A key advantage of the LDD approach is the theoretical
guarantee on solution quality if sub-gradient descent is ter-
minated at any iteration k. Given lower and upper bounds at
iteration k, i.e., LB(k) and UB(k) respectively, the optimal-
ity gap for the primal solution (retrieved in Step 3 of pro-
jected sub gradient descent) is UB(k)−LB(k)

UB(k) %. This is be-
cause LB(k) and UB(k) are actual lower and upper bounds
on optimal solution quality.

Mixed Integer Linear Program (MILP) Formulation for
AVM In this section, we first prove an important property
for the optimal policy when maximizing average value in
Uncertain MDPs. Before we describe the property and its
proof, we provide definitions of deterministic and random-
ized policies.

Definition 1 A policy, ~̂π0 is randomized, if there exists at
least one decision epoch, t at which for at least one of the
states, s there exists an action a, such that π̂t(s, a) ∈ (0, 1).
That is to say, probability of taking an action is not 0 or 1,
but a value between 0 and 1. A policy, ~̂π0 is deterministic if
it is not randomized.

It should be noted that every randomized policy ~̂π0 can be
expressed as a probability distribution over the set of deter-
ministic policies, Π i.e., ~̂π0 = ∆(Π), where ∆ is a probabil-
ity distribution.

Proposition 2 For an uncertain MDP with sample set of
transition and reward models given by ξ, there is an aver-
age value maximizing policy that is deterministic4.

Since the policy for AVM objective is always determin-
istic (shown in Proposition 2), another way of solving the
optimization in Table 3 is by linearizing the non-linearity in
constraint 8. Let

ztq(s, a) = πtq(s, a) ·
∑
a′

xtq(s, a
′) (16)

3Refer to supplementary material for detailed proof.
4Please refer to supplementary material for the proof.



1

Q
max
x
−
∑
q

yq (18)

s.t.
(6)− (9) and∑
t,s,a

Rtq(s, a) · xtq(s, a) +M · yq ≥
β

100
v̂q
∗, ∀q (19)

yq ∈ {0, 1}, ∀q. (20)

Table 4: SOLVEUNCMDP-CPM()
Then, linear constraints corresponding to the non-linear

constraint 8 of Table 3 are given by:

ztq(s, a) ≤ πtq(s, a) ·M ; ztq(s, a) ≤
∑
a′

xtq(s, a
′);

ztq(s, a) ≥
∑
a′

xtq(s, a
′)− (1− πtq(s, a)) ·M ; ; ztq(s, a) ≥ 0

where M refers to a large positive constant.

3.2 Confidence Probability Maximization (CPM)
The decomposition scheme and the sub-gradient descent al-
gorithm in the previous section can be also applied to CPM.
With CPM, the goal is to find a single policy ~π0 across all
instantiations of uncertainty, so as to achieve the following:

max
~π0
{α} s.t. P

(
vq(~π

0) ≥ β

100
v̂∗q

)
≥ α (17)

The optimization model can be rewritten over the sample set,
ξ as shown in Table 4. The objective function (18) minimizes
the number of scenarios violating constraints (19). Denote
by CCPM the set of constraints defined by C and constraints
(19)-(20). Using a similar approach to the AVM case, we can
write the Lagrangian function

LCPM (x,y,κ,λ) = −
∑
q

yq+

∑
q,t,s,a

λtq(s, a)

(
xtq(s, a

′)− κt(s, a)
∑
a′

xtq(s, a
′)

)
.

As a consequence,
GCPM (λ) = max

(x,y)∈CCPM ,κ
L(x,y,κ,λ)

= max
(x,y)∈CCPM

(
−
∑
q

yq +
∑
q,t,s,a

λtq(s, a) · xtq(s, a) +

max
κ

[
−
∑
t,s,a

κt(s, a)
∑
q

(
λtq(s, a) ·

∑
a′

xtq(s, a
′)

)])
and the corresponding subproblem can be written as

SPCPM (λ) =
∑
q

SPCPM,q(λq)

=
∑
q

max
(xq,yq)∈CCPM,q

(
−yq +

∑
t,s,a

λtq(s, a) · xtq(s, a)

)
The resulting subproblem SPCPM,q(λq) is a binary-linear

program with a single binary variable which can be solved
efficiently. The LDD algorithm proposed earlier can be ap-
plied to this problem by replacing SP(λ) with SPCPM (λ).

4 Experimental Results
Our experiments are conducted on path planning problems
that are motivated by disaster rescue and are a modification
of the ones employed in Bagnell et al. (Bagnell, Ng, and
Schneider 2001). In these problems, we consider movement
of an agent/robot in a grid world. On top of the normal tran-
sitional uncertainty in the map (movement uncertainty), we
have uncertainty over transition and reward models due to
random obstacles (due to unknown debris) and random re-
ward cells (due to unknown locations of victims). Further-
more, these uncertainties are dependent on each other due
to patterns in terrains. Each sample of the various uncertain-
ties represents an individual map and can be modelled as an
MDP. We experimented with grid worlds of multiple sizes
(3x5,4x5, 5x5 etc.), while varying number of obstacles, re-
ward cells. We assume a time horizon of 10 for all problems.
Note that subproblems are solved using standard solvers. In
this case, we used CPLEX.

Averaged MDP (AMDP) is one of the approximation
benchmark approaches and we employ it as a compari-
son benchmark because: (a) It is one of the common com-
parison benchmarks employed (Chen and Bowling 2012;
Delage and Mannor 2010); (b) It provides optimal solutions
for AVM objective in reward only uncertain MDPs; We com-
pare the performance of AMDP with our LDD approach on
both AVM and CPM objectives. AMDP computes an out-
put policy for an uncertain MDP by maximizing expected
value for the averaged MDP. Averaged MDP corresponding
to an uncertain MDP, 〈S,A, ξ,Q,H〉 is given by the tuple〈
S,A, T̂ , R̂

〉
, where

T̂ t(s, a, s′) =

∑
q T tq (s, a, s′)

Q
; R̂t(s, a) =

∑
qRtq(s, a)

Q

Even though AMDP is a heuristic algorithm with no guaran-
tees on solution quality for our problems, it is scalable and
can provide good solutions especially with respect to AVM.

On the AVM objective, we compare the performance of
the LDD with the MILP (described in Section 3.1) and the
AMDP approach. AMDP is faster than LDD, finishing in a
couple of minutes on all the problems, because we essen-
tially have to solve an MDP. Figure 1a provides the solution
quality results over three different maps (3x5, 4x5 and 5x5)
as the number of obstacles is increased5. We represent the
number of obstacles present in the map on X-axis and on
Y-axis, we represent the difference in solution quality (ex-
pected value) obtained by LDD and AMDP.

Each point in the chart is averaged over 10 different un-
certain MDPs (for the same number of obstacles). There are
three different lines in the graph and each corresponds to a
different grid world. 15z represents 3x5 map, 20z represents
4x5 map and 25z represents 5x5 map. We make the follow-
ing key observations from the figure:
(i) As the number of obstacles is increased, the difference
between the solution quality of LDD and AMDP typically

5It should be noted that as number of obstacles is increased,
the uncertainty over transitions and consequently the overall un-
certainty in the problem is increased
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Figure 1: AVM: (a): LDD vs AMDP; (b)-(d): LDD vs MILP; (e): LDD % from optimal; CPM: (f)-(h): LDD vs AMDP

increases, irrespective of the map. Intuitively, as there are
more number of obstacles, there is more uncertainty in the
environment and consequently there is more variation over
the averaged MDP. Due to this, as the number of obstacles
is increased, the performance gap between LDD and AMDP
increases. Since the maximum reward in any cell is 1, even
the minimum gap represents a reasonable improvement in
performance.
(ii) While LDD always provides better solution quality than
AMDP, there are cases where there is a drop in performance
gap for LDD over AMDP. An example of the performance
drop is when number of obstacles is 6 for the 20z case. Since
the samples for each case of number of obstacles are gener-
ated independently, hence the reason for drop in gaps for
certain cases.

We first compare performance of LDD and MILP with re-
spect to run-time: (a) as we increase the number of samples
in Figure 1b; (b) as we increase the size of the map in Fig-
ure 1c. Here are the key observations:
(i) As the number of samples is increased, the time taken
by MILP increases exponentially. However, the run-time for
LDD increases linearly with increase in number of samples.
(ii) As the size of the grids is increased, the time taken by
MILP increases linearly until the 30z case and after that the
run-time increases exponentially. However, the run-time per-
formance of LDD increases linearly with map size.

We show the upper bound on optimality gap

(

(
UB−LB
UB

)
%) of LDD in Figure 1d. As we increase

the number of obstacles, we did not observe any patterns
in optimality gap. Alternatively, we do not observe any

degradation in performance of LDD with increase in num-
ber of obstacles. Overall, policies obtained had a guarantee
of 70%-80% of the optimal solution for all the values of
number of obstacles. While optimality gap provides the
guarantee on solution quality, typically, the actual gap w.r.t
optimal solution is lower. Figure 1e provides the exact
optimality gap obtained using the MILP. The gap is less
than 12% for all cases. Overall, results in Figures 1a, 1b,
1c, 1d and 1e demonstrate that LDD is not only scalable
but also provides high quality solutions for AVM uncertain
MDPs.

Our second set of results are related to CPM for Un-
certain MDPs. Since, we do not have an optimal MILP
for CPM, we only provide comparison of LDD against the
AMDP approach. We perform this comparison as β(the de-
sired percentage of optimal for each sample), number of ob-
stacles and number of samples are increased. Unless other-
wise specified, default values for number of obstacles is 8,
number of samples is 10 and β is 0.8.

Figure 1f provides the results as β is increased. On X-axis,
we have different β values starting from 0.5 and on Y-axis,
we plot the difference in average performance (w.r.t number
of samples where policy has value that is more than β frac-
tion of optimal) of LDD and AMDP. We provide the results
for 3 different grid worlds. As expected, when β value is low,
the number of samples satisfying the chance constraint with
AMDP are almost equal to the number with LDD. This is be-
cause, AMDP would obtain a policy that works in the aver-
age case. As we increase the β, LDD outperforms AMDP by
a larger number of samples until 0.8. After 0.8, we observe
that the performance increase drops. This could be because
the number of samples which satisfy the chance constraint



as probability reaches 90% is small (even with LDD) and
hence the difference drops.

Figure 1g shows that LDD consistently outperforms
AMDP as number of obstacles is increased. However, un-
like with β, we do not observe an increase in performance
gap as the number of obstacles is increased. In fact, the per-
formance gap between LDD and AMDP remained roughly
the same. This was observed for different values of number
of samples and β.

Finally, the performance as number of samples is in-
creased is shown in Figure 1h. Unlike previous cases, the
performance is measured as the percentage of samples that
have a value greater than β of optimal. As can be noted,
irrespective of the grid size, the performance of LDD is bet-
ter than AMDP. However, as the number of samples is in-
creased, the performance gap reduces.
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