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a b s t r a c t

Let X1, X2, . . . , Xn be independent uniform random variables on [0, 1]2. Let L(X1, . . . , Xn) be the length
of the shortest Traveling Salesman tour through these points. Beardwood et al (1959) showed that
there exists a constant β such that

lim
n→∞

L(X1, . . . , Xn)
√
n

= β

almost surely. It was shown that β ≥ 0.625. Building upon an approach proposed by Steinerberger
(2015), we improve the lower bound to β ≥ 0.6277.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Let X1, . . . , Xn be independent uniform random variables on
[0, 1]2. Let d(x, y) = ∥x − y∥2 be the Euclidean distance. Let
L(X1, . . . , Xn) be the distance of the optimal Traveling Salesman
tour through these points, under distance d(·, ·). In seminal work,
Beardwood et al. [1] analyzed the limiting behavior of the value
of the optimal Traveling Salesman tour length, under the random
Euclidean model.

Theorem 1 ([1]). There exists a constant β such that

lim
n→∞

L(X1, . . . , Xn)
√
n

= β

almost surely.

This limiting behavior is true of other problems in Euclidean
combinatorial optimization; please see [5].

The value of β is presently unknown. Empirical analysis has
shown that β ≈ 0.71 [4]. The optimal tour length for large
values of n can be approximated using the relaxation technique
proposed by Held and Karp [3]; see [2] for a probabilistic analysis
of the Held–Karp lower bound.

The authors additionally showed in [1] that 0.625 ≤ β ≤ β+,
where

β+ = 2
∫

∞

0

∫ √
3

0

√
z21 + z22e

−
√
3z1

(
1 −

z2
√
3

)
dz2dz1.
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This integral is equal to approximately 0.92116 [6]. To date, the
only improvement to the upper bound was given in [6], showing
that β ≤ β+ − ϵ0, for an explicit ϵ0 > 9

1610
−6. In [6], the

author also claimed to improve the lower bound; however, we
have found a fault in the argument.

The rest of this note is structured as follows. In Section 2,
we present the proof of β ≥ 0.625 by [1]. We then outline
the approach of [6] to improve the bound. Section 3 corrects
the result in [6], giving the lower bound β ≥ 0.625 +

19
10368 ≈

0.6268. Finally, Section 4 tightens the argument of [6] to derive
the improved bound, β ≥ 0.6277.

2. Approaches for the lower bound

By the following lemma, we can equivalently study the limit-
ing behavior of

E [L(X1, . . . , Xn)]
√
n

.

Lemma 1 ([1]). It holds that
E [L(X1, . . . , Xn)]

√
n

→ β.

Further, we can switch to a Poisson process with intensity n.
Let Pn denote a Poisson process with intensity n on [0, 1]2.

Lemma 2 ([1]). It holds that
E [L(Pn)]

√
n

→ β.
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[1] gave the following lower bound on β .

Theorem 2 ([1]). The value β is lower bounded by 5
8 .

Proof (Sketch). We outline the proof given by [1], giving a lower
bound on E [L(Pn)]. Observe that in a valid Traveling Salesman
tour, every point is connected to exactly two other points. To
lower bound, we can connect each point to its two closest points.
We can further assume that the Poisson process is over all of R2,
rather than just [0, 1]2, in order to remove the boundary effect.
The expected distance of a point to its closest neighbor is shown
to be 1

2
√
n , and the expected distance to the next closes neighbor is

shown to be 3
4
√
n . Each point contributes half the expected lengths

to the closest two other points. Since the number of points is
concentrated around n, it holds that β ≥

1
2

( 1
2 +

3
4

)
. □

Certainly there is room to improve the lower bound. Observe
that short cycles are likely to appear when we connect each
point to the two closest other points. In [6], the author gave an
approach to identify situations in which 3-cycles appear, and then
lower-bounded the contribution of correcting these 3-cycles. We
outline the approach below.

1. For point a, let r1 be the distance of a to the closest point,
and let r2 be the distance to the next closest point. Let Ea
be the event that the third closest point is at a distance of
r3 ≥ r1 + 2r2.

2. The probability that Ea occurs is calculated to be 7
324 for

a given point a. Therefore, the expected number of points
satisfying this geometric property is 7

324n, and the number
of triples involved is at least 1

3
7

324n in expectation.
3. Using the relationship r3 ≥ r1 + 2r2, we can show that if

{a, b, c, d} satisfy the geometric property with ∥a−b∥ = r1,
∥a− c∥ = r2, and ∥a− d∥ = r3 ≥ r1 + 2r2, then the closest
two points to b are a and c , and the closest two points to c
are a and b. Therefore, the ‘‘count the closest two distances’’
method would create a triangle in this situation.

4. To correct for the triangle, subtract the lengths coming
from the triangle and add a lower bound on the new
lengths. The final adjustment is the sum of contributions
for each triple that satisfies the geometric property.

The analysis requires careful bookkeeping of edge lengths. We
may count length contributions from the perspective of vertices,
giving each vertex two ‘‘stubs.’’ These stubs are connected to
other vertices, and may form edges if there are agreements. A
stub from vertex a to vertex b contributes 1

2∥a − b∥ to the
path length. In this way, a triangle comprises six stubs, and the
contribution to the path length is the sum of the edge lengths.

The analysis in [6] contains two errors in Step (4), both due to
inconsistency in counting edge lengths. On page 35, the author
writes r1 + r2 + 2∥a − c∥ as the contribution of the triangle. This
is probably a typo and likely r1+r2+2∥b−c∥ was meant instead.
However, it should be r1 + r2 + ∥b − c∥ ≤ 2(r1 + r2).

Next, six stubs must be redirected, and their length contribu-
tions determined. We break edge (b, c), which means we need to
redirect two stubs, while the four stubs that comprise the edges
(a, b) and (a, c) remain. This is illustrated in Fig. 1. The redirected
stubs contribute 1

2∥b−d∥+
1
2∥c−e∥. The six stubs therefore yield

an overall contribution of ∥a−b∥+∥a−c∥+
1
2∥b−d∥+

1
2∥c−e∥ ≥

r1 + r2 +
1
2 (r3 − r1)+

1
2 (r3 − r2) = r3 +

1
2 (r1 + r2). In the analysis

above Figure 5 in [6], the author includes the full lengths ∥b− d∥
and ∥c−e∥. The effect of this is to give points d and e a third stub
each.

To summarize, the overall contribution for the triangle sce-
nario, after breaking edge (b, c), is r3 +

1
2 (r1 + r2) − 2(r1 + r2) =

r3 −
3
2 r1 −

3
2 r2.

Fig. 1. The six stubs associated with vertices a, b, and c .

3. Derivation of the lower bound

In this section we use the approach of [6] to derive a lower
bound on β .

Theorem 3. It holds that β ≥
5
8 +

19
10368 .

The proof of Theorem 3 requires Lemmas 3 and 4.

Lemma 3 (Lemma 4 in [6]). Let Pn be a Poisson point process on
R2 with intensity n. Then for any fixed point p ∈ R2, the probability
distribution of the distance between p and the three closest points to
p is given by

h(r1, r2, r3) =

{
e−nπr33 (2nπ )3r1r2r3 if r1 < r2 < r3
0 otherwise.

Lemma 4.∫
∞

r1=0

∫
∞

r2=r1

∫
∞

r3=r1+2r2

(
r3 −

3
2
r1 −

3
2
r2

)
e−nπr23 r1r2r3dr3dr2dr1

=
19

27648π3n
7
2

Proof. We can change the order of integration to compute the
integral more easily.∫

∞

r1=0

∫
∞

r2=r1

∫
∞

r3=r1+2r2

(
r3 −

3
2
r1 −

3
2
r2

)
e−nπr23 r1r2r3dr3dr2dr1

=

∫
∞

r3=0

∫ r3
3

r1=0

∫ r3−r1
2

r2=r1

(
r3 −

3
2
r1 −

3
2
r2

)
e−nπr23 r1r2r3dr2dr1dr3

=

∫
∞

r3=0
r3e−nπr23

∫ r3
3

r1=0
r1

∫ r3−r1
2

r2=r1

r2

(
r3 −

3
2
r1 −

3
2
r2

)
dr2dr1dr3

=

∫
∞

r3=0
r3e−nπr23

∫ r3
3

r1=0
r1

(
r22
2

(
r3 −

3
2
r1

)
−

1
2
r32

) ⏐⏐⏐ r3−r1
2

r2=r1
dr1dr3

=

∫
∞

r3=0
r3e−nπr23

∫ r3
3

r1=0
r1

(( r3−r1
2

)2
− r21

2

(
r3 −

3
2
r1

)

−
1
2

((
r3 − r1

2

)3

− r31

))
dr1dr3

=

∫
∞

r3=0
r3e−nπr23

∫ r3
3

r1=0

(
9r41
8

−
3r31 r3
16

−
r21 r

2
3

4
+

r1r33
16

)
dr1dr3

=

∫
∞

r3=0
r3e−nπr23

(
9r51
40

−
3r41 r3
64

−
r31 r

2
3

12
+

r21 r
3
3

32

) ⏐⏐⏐ r33
r1=0

dr3

=

∫
∞

r3=0
r3e−nπr23

(
9
( r3

3

)5
40

−
3
( r3

3

)4 r3
64

−

( r3
3

)3 r23
12

+

( r3
3

)2 r33
32

)
dr3
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=

(
9
( 1
3

)5
40

−
3
( 1
3

)4
64

−

( 1
3

)3
12

+

( 1
3

)2
32

)∫
∞

r3=0
r63 e

−nπr23 dr3

=
19

25920

∫
∞

r3=0
r63 e

−nπr23 dr3 =
19

25920
15

16π3n
7
2

=
19

27648π3n
7
2

□

Proof of Theorem 3. First we verify that the lower bound from
breaking edge (b, c) is valid. If edge (a, b) is broken instead, the
new stub lengths are ∥a − c∥ + ∥b − c∥ +

1
2∥a − d∥ +

1
2∥b − e∥.

The difference after subtracting the original stub lengths is then
equal to

∥a − c∥ + ∥b − c∥ +
1
2
∥a − d∥ +

1
2
∥b − e∥

− (∥a − c∥ + ∥b − c∥ + ∥a − b∥)

=
1
2
∥a − d∥ +

1
2
∥b − e∥ − ∥a − b∥

≥
1
2
r3 +

1
2

(∥a − e∥ − ∥a − b∥) − r1

≥
1
2
r3 +

1
2

(r3 − r1) − r1 = r3 −
3
2
r1

Similarly, if edge (a, c) is broken, the contribution is lower
bounded by r3 −

3
2 r2. Since r3 −

3
2 r1 −

3
2 r2 ≤ r3 −

3
2 r2 ≤ r3 −

3
2 r1,

we conclude that r3 −
3
2 r1 −

3
2 r1 from breaking edge (b, c) is a

valid lower bound. Therefore, from the discussion in Section 2
and Lemma 3 we adjust the integral in [6] to give

β ≥
5
8

+

√
n
3

∫
∞

r1=0

∫
∞

r2=r1

∫
∞

r3=r1+2r2

(
r3 −

3
2
r1 −

3
2
r2

)
× e−nπr23 (2nπ )3r1r2r3dr3dr2dr1

From Lemma 4,

β ≥
5
8

+

√
n
3

(2nπ )3
19

27648π3n
7
2

=
5
8

+
19

10368
≈ 0.626833. □

4. An improvement

In this section, we improve upon the bound in Section 3 by
tightening the triangle inequality.

Theorem 4. It holds that

β ≥
5
8

+
1
2

(
19

10368

)
+

1
2

(
3072

√
2 − 4325

5376

)
≥ 0.6277.

Proof. Place a Cartesian grid so that point a is at the origin and
point b is at (r1, 0). Then with probability 1

2 , point c falls into
the first or fourth quadrant, and with probability 1

2 , point c falls
into the second or third quadrant. Conditioned on point c falling
into the first or fourth quadrant, the maximum length of ∥b− c∥
is
√
r21 + r22 . Conditioned on point c falling into the second or

third quadrant, the maximum length of ∥b − c∥ is r1 + r2, which
corresponds to the computation in Section 3. See Fig. 2 for an
illustration of this conditioning.

Conditioned on point c falling into the first or fourth coor-
dinate, the length contribution from breaking edge (b, c) is at
least

r3 +
1
2

(r1 + r2) −

(
r1 + r2 +

√
r21 + r22

)
= r3 −

1
2
r1 −

1
2
r2 −

√
r21 + r22 .

If edge (a, b) is broken instead, the new stub lengths are ∥a−c∥+

∥b − c∥ +
1
2∥a − d∥ +

1
2∥b − e∥. The difference after subtracting

Fig. 2. Conditioning on the location of point c. The gray regions indicate where
point c may lie.

the original stub lengths is then equal to

∥a − c∥ + ∥b − c∥ +
1
2
∥a − d∥ +

1
2
∥b − e∥

− (∥a − c∥ + ∥b − c∥ + ∥a − b∥)

=
1
2
∥a − d∥ +

1
2
∥b − e∥ − ∥a − b∥

≥
1
2
r3 +

1
2

(∥a − e∥ − ∥a − b∥) − r1

≥
1
2
r3 +

1
2

(r3 − r1) − r1 = r3 −
3
2
r1

Similarly, if edge (a, c) is broken, the contribution is lower
bounded by r3−

3
2 r2. Since r3−

1
2 r1−

1
2 r2−

√
r21 + r22 ≤ r3−

3
2 r2 ≤

r3− 3
2 r1, we conclude that r3− 1

2 r1−
1
2 r2−

√
r21 + r22 from breaking

edge (b, c) is a valid lower bound. We therefore break edge (b, c).

Proposition 1. If r3 ≥ r2 +

√
r21 + r22 , then the closest points to

each of a, b, c are the other two points in the set {a, b, c}, whenever
point b is in the first or fourth quadrant.

Proof. Point a: d(a, b) = r1, d(a, c) = r2, and for any d /∈ {a, b, c},
it holds that d(a, d) ≥ r3 ≥ r2 +

√
r21 + r22 . Therefore d(a, d) ≥

d(a, b) and d(a, d) ≥ d(a, c).
Point b: d(a, b) = r1, d(b, c) ≤

√
r21 + r22 , and for any d /∈ {a, b, c},

it holds that d(b, d) ≥ d(a, d) − d(a, b) ≥ r2 +

√
r21 + r22 − r1.

Therefore d(b, d) ≥ d(a, b) and d(b, d) ≥ d(b, c).
Point c: d(a, c) = r2, d(b, c) ≤

√
r21 + r22 , and for any d /∈ {a, b, c},

it holds that d(c, d) ≥ d(a, d) − d(a, c) ≥ r2 +

√
r21 + r22 − r2 =√

r21 + r22 . Therefore d(c, d) ≥ d(a, c) and d(c, d) ≥ d(b, c). □

The lower bound on β is therefore

5
8

+

√
n
3

∫
∞

r1=0

∫
∞

r2=r1

∫
∞

r3=r2+

√
r21+r22

fn(r1, r2, r3)dr3dr2dr1,

where

fn(r1, r2, r3) =

(
r3 −

1
2
r1 −

1
2
r2 −

√
r21 + r22

)
e−nπr23 (2nπ )3r1r2r3.

Lemma 5. Let α =
1

1+
√
2
. It holds that∫

∞

r1=0

∫
∞

r2=r1

∫
∞

r3=r2+

√
r21+r22

(
r3 −

1
2
r1 −

1
2
r2 −

√
r21 + r22

)
× e−nπr23 r1r2r3dr3dr2dr1

=

[
−

α8

8 · 48
−

α7

7 · 16
−

α6

6 · 16
+

1
120

(
13 + 16

√
2
)

α5

−
13α4

64
−

α3

48
+

α2

32

]
15

16π3n
7
2
.
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Proof. Again we change the order of integration to compute the
integral more easily. Given r3, the upper bound on r1 is derived
by setting r3 = r1 +

√
2r21 ⇐⇒ r1 =

r3
1+

√
2
. Given r3 and r1, set

r3 = r2 +

√
r21 + r22 . We rearrange to obtain r2 =

r23−r21
2r3

. Therefore,∫
∞

r1=0

∫
∞

r2=r1

∫
∞

r3=r2+

√
r21+r22

(
r3 −

1
2
r1 −

1
2
r2 −

√
r21 + r22

)
× e−nπr23 r1r2r3dr3dr2dr1

=

∫
∞

r3=0
r3e−nπr23

∫ r3
1+

√
2

r1=0
r1

∫ r23−r21
2r3

r2=r1

r2

(
r3 −

1
2
r1

−
1
2
r2 −

√
r21 + r22

)
dr2dr1dr3

=

∫
∞

r3=0
r3e−nπr23

∫ r3
1+

√
2

r1=0
r1

[
r22
2

(
r3 −

1
2
r1

)
−

1
6
r32

−
1
3

(
r21 + r22

) 3
2

] ⏐⏐⏐ r23−r21
2r3

r2=r1
dr1dr3

=

∫
∞

r3=0
r3e−nπr23

∫ r3
1+

√
2

r1=0
r1

⎡⎢⎢⎢⎣
(

r23−r21
2r3

)2

2

(
r3 −

1
2
r1

)

−
1
6

(
r23 − r21
2r3

)3

−
1
3

(
r21 +

(
r23 − r21
2r3

)2
) 3

2

−
r21
2

(
r3 −

1
2
r1

)
+

1
6
r31 +

1
3

(
r21 + r21

) 3
2

⎤⎥⎥⎥⎦ dr1dr3

=

∫
∞

r3=0
r3e−nπr23

∫ r3
1+

√
2

r1=0
r1

⎡⎢⎢⎢⎣
(

r23−r21
2r3

)2

2

(
r3 −

1
2
r1

)

−
1
6

(
r23 − r21
2r3

)3

−
1
3

((
r21 + r23

)2
4r23

) 3
2

−
r21 r3
2

+

(
1
4

+
1
6

+
2

3
2

3

)
r31

⎤⎥⎥⎥⎦ dr1dr3

=

∫
∞

r3=0
r3e−nπr23

∫ r3
1+

√
2

r1=0
r1

⎡⎢⎢⎢⎣
(

r23−r21
2r3

)2

2

(
r3 −

1
2
r1

)

−
1
6

(
r23 − r21
2r3

)3

−
1
3

(
r21 + r23
2r3

)3

−
r21 r3
2

+

(
1
4

+
1
6

+
2

3
2

3

)
r31

⎤⎥⎥⎥⎦ dr1dr3

=

∫
∞

r3=0
r3e−nπr23

∫ r3
1+

√
2

r1=0

[
−

r71
48r33

−
r61

16r23
−

r51
16r3

+

(
1
8

+
1
4

+
1
6

+
2

3
2

3

)
r41 −

13r31 r3
16

−
r21 r

2
3

16
+

r1r33
16

]
dr1dr3

=

∫
∞

r3=0
r3e−nπr23

[
−

r81
8 · 48r33

−
r71

7 · 16r23
−

r61
6 · 16r3

+
1
5

(
1
8

+
1
4

+
1
6

+
2

3
2

3

)
r51 −

13r41 r3
64

−
r31 r

2
3

48
+

r21 r
3
3

32

] ⏐⏐⏐ r3
1+

√
2

r1=0
dr3

=

∫
∞

r3=0
r3e−nπr23

[
−

(αr3)8

8 · 48r33
−

(αr3)7

7 · 16r23
−

(αr3)6

6 · 16r3

+
1
5

(
1
8

+
1
4

+
1
6

+
2

3
2

3

)
(αr3)5

−
13 (αr3)4 r3

64
−

(αr3)3 r23
48

+
(αr3)2 r33

32

]
dr3

=

[
−

α8

8 · 48
−

α7

7 · 16
−

α6

6 · 16
+

1
120

(
13 + 16

√
2
)

α5

−
13α4

64
−

α3

48
+

α2

32

] ∫
∞

r3=0
r63 e

−nπr23 dr3

=

[
−

α8

8 · 48
−

α7

7 · 16
−

α6

6 · 16
+

1
120

(
13 + 16

√
2
)

α5

−
13α4

64
−

α3

48
+

α2

32

]
15

16π3n
7
2

□

Multiplying the value of the integral in Lemma 5 by
√
n(2nπ )3

3 ,
we obtain the following lower bound.

5
8

+
5
2

[
−

α8

8 · 48
−

α7

7 · 16
−

α6

6 · 16
+

1
120

(
13 + 16

√
2
)

α5

−
13α4

64
−

α3

48
+

α2

32

]
=

5
8

+
3072

√
2 − 4325

5376
≈

5
8

+ 0.003621

Finally, conditioning on the quadrant, the overall lower bound is

β ≥
5
8

+
1
2

(
19

10368

)
+

1
2

(
3072

√
2 − 4325

5376

)
≥ 0.6277 □
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